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Abstract—In this paper, we consider a population of digital
nodes (such as phones, computers, etc.) that are under the attack
of two competing malware. These malware infect the nodes
in order to exploit their computational resources for specific
purposes such as mining crypto-currency, cloud computing, etc.
We suppose that each virus spreads following the susceptible-
infected-susceptible (SIS) compartmental model. Additionally, we
assume that the malware designers can tune the percentage of
resource utilization from their host nodes. A higher resource uti-
lization implies a higher instantaneous profit but will also lead to
faster detection and elimination (node recovery) of the malware.
Once the malware is detected, complete protection of the infected
node by means of anti-malware software is also possible at a
smaller rate. The proposed setup results in a non-cooperative
game between the two players (the malware designers) trying to
maximize their profit i.e., the resources utilized from the infected
nodes. We characterize and analyze the Nash equilibrium for
such a game using a time-scale separation approximation. Finally,
we numerically validate the approximation and we compute the
price of anarchy.

Index Terms—Computer networks, game theory, compartmen-
tal models.

I. INTRODUCTION

With the ever-growing importance of networked or cloud
computing, crypto-mining, and other applications, the com-
putational resources available on a network have become an
important target for malicious software, known as malware.
Malware is often built by cyber-criminals, and it typically
aims to compromise target computers with the ultimate goal
of stealing sensitive data or gaining access to private systems.
However, in this work, we focus on malware that desires to ex-
ploit the computational resources for the profit of their creator,
such as by mining crypto-currency. Defense mechanisms such
as firewalls and anti-viruses have been developed in order to
defend against malicious software but the powerful ones often
require investment from the end-users. Moreover, most defense
techniques are focused on intrusion detection systems (IDS)
[1] and not on supervision systems.

To the best of our knowledge, no work has studied the
problem of smart malware that tries to maximize resource
utilization without being detected. Specifically, in our setup,
a high computational resource utilization will result in large
instantaneous profits for the malware designer but will slow
the infected targets. Consequently, the owner will be able to
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easily detect that the device is corrupted. Understanding this
trade-off and its impact is essential to design anti-malware
strategies from the network point of view. To study this trade-
off, we need to analyze the impact of resource utilization in
the spread and persistence of the malware on the network.
Epidemiological models have been widely and efficiently used
to describe the dynamics of malware proliferation over a
computer network as seen from [2], [3]. Game theoretical
models have also been used to study how the defending nodes
may utilize their resources and invest in securing their device
or not [4], [5], [6].

Since we consider that the network is under attack by two
(competing) malware, classical 1-virus models are insufficient,
and we need to look at bi-virus models. In the literature on
SIS epidemiological models, a very well known result for
the two (competing) virus case is that of the “Winner takes
all” [7]. In this case, depending on the initial conditions and
the contamination rates of the viruses, one of them becomes
extinct and the other propagates all over the network. Note
that the term competing here implies that the presence of one
virus on a node makes it inaccessible to the other virus. This is
the case for some biological viruses. This model has been well
studied in the SIS literature and control strategies for reaching
the disease-free equilibrium have been proposed in [8].

Unlike the above mentioned works, which study protection
strategies with the network agents as the decision makers
against an epidemic with fixed parameters, what we study in
our paper is the interaction framework between two malware
designers in a game-theoretic setting. The decision makers
(players) in our work are the malware designers, who, before
releasing the malware to infect the network, are able to
tune the resource utilization parameter which impacts their
instantaneous profits from an infected node, but also increases
the chance for the malware to be detected and removed.
Note that similar problem formulations can be encountered in
other application domains. For instance, we can consider the
opinion dynamics over a social network under the influence
of competing marketers. While the SIS model is geverned by
nonlinear dynamics, in [9] and [10], the authors consider a
very basic linear opinion dynamics model ([11]) under the
influence of competing entities. They used game-theoretical
tools to characterize the Nash equilibrium of the network and
the resource allocation in terms of the initial conditions and
the node centrality of each individual.

To analyze the game we first emphasize that under a
realistic assumption, the overall dynamics evolves on two time
scales. Consequently, we first use a rather classical result (see
[12] for instance) to decouple the slow and fast dynamics



leading to good approximations of the original states. With
this decoupling the analysis of the game is easier to analyze.
The methodology is numerically validated.

The rest of the paper is organized as follows. In Section II,
we provide the epidemiological model for the malware spread
and the framework for the game between the two competing
malware. In Section III, we apply time-scale separation (TSS)
on the malware spread to approximate and derive closed-form
expressions for the utilities. Next, in Section IV we analyze the
resulting non-cooperative game between the two malware and
under certain assumptions, provide a characterization of the
Nash equilibrium. In Section V numerical examples justify the
TSS and demonstrate the feasible utilities, Nash equilibrium,
and the price of anarchy for the game. Finally, we provide
concluding remarks and perspectives for future research in
Section VI.

Notation. Let R≥0 = [0,∞) denote the set of non-negative
real numbers. For the ease of exposition, when k ∈ {1, 2} is
a player index, to refer to the index of the other player as −k,
i.e. −k := 3−k. We say that a function f : R 7→ R is of order
ε and denote this by O(ε) if there exist a constant M ∈ R≥0

such that |f(x)| < Mε,∀x.

II. PROPOSED PROBLEM FORMULATION
A. Malware infection model

Our model is inspired by the well-known compartmental
epidemic modeling in [13]. In particular two types of infection
are considered, which are not often studied in such models
and for this feature, we refer to the model in [7]. We use
S(t) ∈ [0, 1] to denote the population fraction of susceptible
nodes in the network, I1(t), I2(t) ∈ [0, 1] to denote nodes
infected with the first and second malware respectively and
finally we use P (t) ∈ [0, 1] to denote the population of fully
protected nodes at any given t ∈ R≥0. As all these variables
denote the population fractions, we must have S(t) + I1(t) +
I2(t)+P (t) = 1 at any time t ≥ 0. For ease of exposition, we
will skip explicitly denoting the time dependence for the rest of
the paper. The two (competing) malware ”susceptible-infected-
susceptible-protected” (SISP) model is written as follows.

Ṡ = −γ1SI1 − γ2SI2 + δ1(u1)I1 + δ2(u2)I2
İ1 = +γ1SI1 − δ1(u1)I1 − µ1(u1)I1
İ2 = +γ2SI2 − δ2(u2)I2 − µ2(u2)I2
Ṗ = µ1(u1)I1 + µ2(u2)I2.

(1)

Here, γ1, γ2 ∈ R≥0 are the infection rates of malware one
and two respectively. The resource utilization by malware
k ∈ {1, 2} is given by uk ∈ U , which is the decision
variable for malware k. We consider |U| < ∞ and U ⊂
R>0 (a finite discrete set with positive real elements), with
umin = min(U) > 0 the minimum amount of resources that
must be utilized for a malware to be useful. The functions
δk : U → R≥0 and µk : U → R≥0 denote the recovery rate
and protection rates, respectively. A higher resource utilization
implies a higher chance of the malware being detected and
therefore being purged from the host or for the host to install
powerful anti-malware software, making it permanently free
of infection from all malware. Thus, δk and µk are strictly
increasing functions.

B. The non-cooperative game model

The revenue (or profit/utility) accumulated by each malware
k after it’s deployment at time t = 0 is given by

Rk(u1, u2) =

∫ ∞
0

ukIk(t)dt. (2)

This expression corresponds to the total amount of computa-
tional resources exploited by malware k from the population
of nodes over an infinite horizon of time. Clearly, malware
interact through the number of infected devices. We define the
non-cooperative game G := ({1, 2}, {U ,U}, {R1, R2}) where

1) The set of players (malware designers) is given by
{1, 2},

2) the action set for each player is U and
3) the utility function for each player k is Rk(u1, u2).
Our objective is to characterize the Nash equilibrium (NE)

of this game and to numerically study the price of anarchy, i.e.,
the loss of total revenue at the social optimum when compared
to the NE. To recall, a strategy (u∗1, u

∗
2) is said to be a pure

NE if and only if

Rk(uk, u
∗
−k) ≤ Rk(u∗1, u

∗
2) (3)

for all uk ∈ U and for all k ∈ {1, 2}. That is, no player
can increase its revenue by unilaterally deviating from the NE
strategy.

III. REVENUE APPROXIMATION UNDER TIME-SCALE
SEPARATION

Evaluating Rk(u1, u2) analytically is challenging due to
the non-linear dynamics (1). Thus, we apply TSS in order
to approximate the revenue under the following assumption.

Assumption 1. There exists a small ε ∈ R≥0 (we write ε <<
1) such that for all k ∈ {1, 2} and uk ∈ U one has

µk(uk) ≤ εδk(uk) (4)

The practical meaning of Assumption 1 is that deleting a
detected malware is free of cost as the host can uninstall or
delete the associated program (at rate δk) as soon as it is
detected. On the other hand, installing a powerful anti-malware
software (at rate µk) as soon as a malware is detected is rare
since it is not free. Thus, we typically have that µk(uk) is
much smaller than δk(uk).

Now, we denote the winning malware by

k∗(u1, u2) =

{
k ∈ {1, 2}

∣∣∣ δk(uk)

γk
< min

{
δ−k(u−k)

γ−k
, 1

}}
(5)

For convenience, we will drop the dependence of k∗ on
(u1, u2) and we will simply call it k∗. Note that k∗ becomes
an empty set (no winner or loser) if δ1(u1)

γ1
= δ2(u2)

γ2
. We use

φk(u1, u2) to denote the success of malware k given by

φk(u1, u2) =


1 if k∗ = k

0.5 if k∗ = ∅ and δk(uk)
γk

< 1

0 otherwise.
(6)
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Fig. 1. Phase portrait, i.e., the vector field associated to (İ1, İ2) for each
value of (I1, I2), of (1) with γ1 = γ2 = 0.1, δ1 = 0.05, δ2 = 0.03 and
µ1 = µ2 = 0.

Theorem 1. Under Assumption 1, we have

Rk(u1, u2) = φk(u1, u2)

(
1− δk(uk)

γk

)
uk

µk(uk)
+O(ε) (7)

for any I1(0) > 0, I2(0) > 0.

Proof. First, note that we consider δk(uk) < γk for at least one
k ∈ {1, 2} as otherwise both the malware will die out quickly,
making it a trivial case resulting in almost zero revenue for
both. This implies that for any u1, u2, we can write γk :=
ε−1µkgk and δk := ε−1µkdk where gk, dk are functions of
O(1) under assumption 1. We omit the dependence on actions
(u1, u2) for ease of exposition for the rest of the proof as they
do not change during the course of the dynamics.

We apply time-scale separation according to methodology
described in the chapter on singular perturbations in [12].
Since O(γ) = 1, we say that tf = t is the fast time scale
and ts = εt is the slow time scale. This allows us to rewrite
(1) in the slow time scale as follows.

ε dSdts = −µ1g1SI1 − g2µ2SI2 + d1µ1I1 + d2µ2I2
εdI1dts

= µ1I1(g1S − d1)− εµ1I1
εdI2dts

= µ2(g2SI2 − d2I2)− εµ2I2
dP
dts

= µ1I1 + µ2I2.

(8)

We can similarly rewrite (1) in the fast time scale as

dS
dtf

= −γ1SI1 − γ2SI2 + δ1µ1I1 + δ2µ2I2
dI1
dtf

= I1(γ1S − δ1)− εγ1g1 I1
dI2
dtf

= µ2(g2SI2 − d2I2)− εγ2g2 I2
dP
dtf

= εγ1g1 I1 + εγ2g2 I2.

(9)

It is noteworthy that the dynamics of the fast states S, I1, I2
do not depend on the slow state P . This simplifies the
expression of the slow and fast approximations. In the sequel
we use Sf , If1 , I

f
2 and P s to denote the approximations of

S, I1, I2 and P after the decoupling of the slow and fast
dynamics.

Fast dynamics: Setting ε→ 0 in (9), we have the following
dynamics.

dSf

dtf
= −γ1SI1 − γ2SI2 + δ1I1 + δ2I2

dIf1
dtf

= +γ1SI1 − δ1I1
dIf2
dtf

= +γ2SI2 − δ2I2
dP s

dtf
= 0

(10)

This dynamics corresponds to the classical two competing-
virus SIS model studied in Section 4.2 of [7], which has
exactly one stable equilibrium at Sf = δk∗

γk∗ , Ifk∗ = 1−Sf−P s

and If−k∗ = 0 when k∗ 6= ∅ (there is a clear winner).
We illustrate this result with a phase portrait of the fast
dynamics in Figure 1. On the other hand, if there is no
clear winner, i.e., k∗ = ∅, co-existence of the two malware
becomes possible. In this case, we will assume symmetric
initial conditions which results in an equilibrium of the fast
dynamics at Ifk (T ) = 0.5 − 0.5 δ1γ1 for both players and
Ss = δ1

γ1
.

Slow dynamics: Without any loss of generality, let’s
consider that k∗ = 1. Setting ε → 0 in (8), we obtain
Sf = δ1

γ1
= g1/d1 and If2 = 0 to satisfy the first three lines.

All that remains is the slow dynamics

dIf1
dts

= −µkIf1 = −dP
s

dts
(11)

Since P (0) = 0, applying the results in [12], we obtain

Ik∗(t) = Ifk∗(t)+O(ε) =

(
1− δk∗(uk∗)

γk∗

)
exp(−µk∗t)+O(ε)

for all t > 0. Additionally as Ik(t) is exponentially converging
to 0, even the integral of the approximation term should be
bounded and of the order of ε. Thus, we have

R̃k∗(u1, u2) =

∫ ∞
0

uk∗

(
1− δk∗(uk∗)

γk∗

)
exp(−µk∗t)dt

(12)
with R̃k∗(u1, u2) − Rk∗(u1, u2) = O(ε). Thus results in (7)
for all cases with a clear winner and half of this expression in
case of a tie.

Indeed, it is clear that when the two malware do not co-exist
on the same host, the analysis is much simpler as the only
stable equilibrium is that of the one with the smaller recovery
rate for the reduced-order dynamics. On the other hand, when
both malware may co-exist, there are two (locally) stable equi-
libria for the reduced-order dynamics and thus the equilibrium
reached depends a lot on the initial conditions as will be
demonstrated in Section V.D. Since I1(0), I2(0) are assumed
to be non-controllable, we consider that I1(0) = I2(0) when
we evaluate the revenue during a “tie” (both malware have the
same ratio between their recovery and spreading rates). Next,
we study the game G when the revenue function is given by
the results in Theorem 1.

IV. NON-COOPERATIVE GAME ANALYSIS

In this section, we characterize the NE of the non-
cooperative game G defined in Section II. The results from



Theorem 1 provide a closed-form expression for the utility
functions, and this allows us to write the best response of
player k to an action u−k by the other player as

BRk(u−k) = arg max
U

{(
1− δk(uk)

γk

)
uk

µk(uk)
φk(u1, u2)

}
Next, we characterize the NE of the game G as stated in

the following.

A. Existence of pure NE

The existence of pure NE is usually not guaranteed in non-
cooperative games, whereas in our setting we have the proof of
its existence. Additionally, for some cases, the non-cooperative
game may have several pure NE.

Proposition 1. The game G admits at least one pure NE given
by

1) (umin, umin) if δ1(umin)
γ1

= δ2(umin)
γ2

,
2) All (BR1(umin), u2) with u2 ∈ U such that

k∗(BR1(umin), u2) = 1, when δ1(umin)
γ1

< δ2(umin)
γ2

,
3) All (u1, BR2(umin)) with u1 ∈ U such that

k∗(umin, BR2(umin)) = 2 otherwise.

Furthermore, any additional NE (u1, u2) if they exist, must
satisfy δ1(u1)

γ1(u1) = δ2(u2)
γ2(u2) .

Proof. We prove this case by case. First, if δ1(umin)
γ1

= δ2(umin)
γ2

we have that δk(uk)
γk

> δ−k(umin)
γ−k

for any uk > umin as δk is
a strictly increasing function. This implies that Rk(uk;u−k =
umin) = 0 for all uk > umin, proving that (umin, umin) is a
NE for this case.

In the second case, player 1 is playing its best response to
player 2 and so by definition can not improve his utility by
deviating. On the other hand, player 2 is losing and has 0
revenue for all u2 ∈ U as umin is already the smallest action
playable. Thus, it can not improve its utility either. Thus,
(BR1(umin), umin) is a NE if k∗(BR1(umin), umin) = 1.
Similar arguments hold for case 3.

Next, consider that there exists some NE (u1, u2) such
that δ1(u1)

γ1(u1) 6=
δ2(u2)
γ2(u2) . This excludes the additional NE case

mentioned in the proposition statement. Without loss of gen-
erality let’s say δ1(u1)

γ1(u1) > δ2(u2)
γ2(u2) . This means that player 2

is the winner of the epidemic and thus R1(u1, u2) = 0. If,
u1 = umin, then BR2(umin) is by definition the best choice
for player 2 and so all the NE are fully captured by case 3).

Otherwise, if u1 > umin and u2 /∈ BR2(umin), and (u1, u2)
is an NE, then u2 ∈ BR(u1) by definition of the NE and the
best response. This implies that δ1(umin)

γ1
< δ2(u2)

γ2
as the best

responses must match otherwise. Then player 1 can deviate to
umin and improve his utility as u2 6= BR2(umin), and (u1, u2)
is therefore not an NE by contradiction.

The previous proposition shows the existence of at least
one pure NE, but non-cooperative games generally allow for
multiple Nash equilibria [14]. In next section, we are able
to determine them explicitly by assuming linear recovery and
protection rates.

B. Special cases for the recovery and protection rates

Consider two adjacent elements of U (recall that U is a
finite discrete set), i.e., any U1, U2 ∈ U with U1 < U2 such
that there exists no other U ∈ U such that U1 < U < U2.
Now, we say that the action set is dense with order α > 1 if
U2 ≤ αU1 for all U1, U2 adjacent.

Assumption 2.
δk(uk) := ak + bkuk (13)

and µk(uk) = εδk(uk) with ak, bk ∈ R≥0, ε ∈ (0, 1) and
small.

Since ε is taken to be small, Assumption 2 automatically
implies that Assumption 1 is satisfied. Now, we have the
following result for the uniqueness of the NE.

Proposition 2. Under Assumption 2, the only pure NE for
game G are the ones stated in Proposition 1 items (1)-(3) if
U is of order α ≤ 2.

Proof. Consider that there exists some NE (u1, u2) other
than the ones described in Proposition 1 items 1)-3). That
is consider that (u1, u2) is an NE with δ1(u1)

γ1(u1) = δ2(u2)
γ2(u2) . Due

to there being no winner, the utility for player 1 is given by

R1(u1, u2) = (1− a1 + b1u1

γ1
)

u1

2ε(a1 + b1u1)
(14)

Now, consider that player 1 deviates his strategy to u′1 = u1−
∆. His new utility is given by

R1(u1 −∆, u2) = (1− a1 + b1u1 −∆

γ1
)

u1 −∆

ε(a1 + b1u1 − b1∆)
(15)

as he wins. We have

R1(u1 −∆, u2)−R1(u1, u2) >

C
(

u1−∆
(a1+b1u1−b1∆) − 0.5 u1

(a1+b1u1)

)
>

C
(

u1−∆
(a1+b1u1) − 0.5 u1

(a1+b1u1)

) (16)

where C = ε−1
(

1− a1+b1u1−∆
γ1

)
which is positive if ∆ ≤

u1/2. Since u1 ≤ 2u′1 for any u1, u
′
1 adjacent, (u1, u2) can

not be an NE, resulting in a contradiction.

V. NUMERICAL PERFORMANCE ANALYSIS

A. Validity of TSS approximation

First, we demonstrate that (1) is well approximated by the
TSS done in Theorem 1. For this purpose, we take γ1 = γ2 =
0.1, δ1(u1) = 0.01 + 0.05u1, δ2(u2) = 0.01 + 0.03u2 with
u1 = u2 = 1. We then take µk(uk) = 0.1δk(uk) in the first
figure and µk(uk) = 0.02δk(uk) in the second figure, i.e., the
TSS factor ε = 0.1 and 0.02 respectively to represent relatively
higher and lower protection rates.

In the simulation for Figure 2, we compute that
R1(u1, u2) = 10.5 and R2(u1, u2) = 134 versus
R̂2(u1, u2) = 150, where R̂ denotes the TSS approxima-
tion from Theorem 1. This indicates a relative error, i.e.
R̂2(u1,u2)−R2(u1,u2)

R̂2(u1,u2)
of 11%. On the other hand, in Figure

3, we observe R1(u1, u2) = 13 and R2(u1, u2) = 727
with the TSS approximation R̂2(u1, u2) = 750 indicating a
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Fig. 2. The first malware is seen to die out faster than the second but still
gains some revenue due to ε being not so small.
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Fig. 3. The first malware dies out rapidly and gains very little revenue and
the TSS approximation is quite good for the infected population of the second
malware.

relative error of around 3%. Simulations with other values of
ε ∈ {0.005, 0.01, 0.05, 0.2} suggest that the relative error is
of the order of ε.

B. NE analysis of the game G
Next, we will take γ1 = γ2 = 0.1, δ1 = δ2 = 0.01+0.03u1,

µk = 0.02δk(uk), U = {0.1, 0.2, .., 1} and plot all the feasible
utilities in Figure 4, with the NE marked in red. Note that
these rate functions satisfy Assumption 2. Indeed, as proven
in Proposition 1, (umin, umin) is a NE and is in fact the only
NE as proven in 2 for this case as U is of order 2.
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Fig. 4. All the feasible utilities with the NE marked in red.

Next, we remove some of the elements of the action set
and demonstrate that when the order of the set is higher than
two, multiple NE may exist. First, we look at all the resulting
utilities with U = {0.1, 0.2, 0.7} in Table I, which allows

exactly one pure NE at (0.1, 0.1). However, removing the
element 0.2 from the action set results in multiple NE as can
be seen from Table II with (0.7, 0.7) being an additional NE.
The two tables above highlight an effect similar to the famous
Braess’ Paradox, allowing additional options results in a poor
NE for both players. In the second case, if both malware play
uk = 1 they don’t gain anything by deviating. On the other
hand, allowing the action 0.2 as in Table I allows either player
to deviate and improve their utility.

TABLE I
(REVENUE 1, REVENUE 2) WITH SEVERAL CHOICES OF ACTIONS. THE

ONLY PURE NE STRATEGY IS (0.1, 0.1).

Actions u1 = 0.1 u1 = 0.2 u1 = 0.7
u2 = 0.1 (167,167) (0,334) (0,334)
u2 = 0.2 (334,0) (262,262) (0,525)
u2 = 0.7 (334,0) (525,0) (390,390)

TABLE II
(REVENUE 1, REVENUE 2) FOR A SMALLER SET OF ACTIONS.

Actions u1 = 0.1 u1 = 0.7
u2 = 0.1 (167,167) (0,334)
u2 = 0.7 (334,0) (390,390)

C. Interpretation and discussion

Typically in game theory, the “social optimum” is defined
as the strategy profile maximizing the sum of the individual
utilities. Then, the price of anarchy compares the sum of the
utilities at the NE to that at the social optimum. However,
in this context, where the players are malicious entities, the
objective of the network and of the public, in general, is to
minimize the profits earned by the malware. In this sense,
anarchy is something desired.

In the example studied in Table I, (0.7, 0.7) is the strategy
maximizing the sum utility of the two players which results
in R1 = R2 = 390. However, due to the competition between
the malware, the only NE is one with R1 = R2 = 167. In
a broader sense, the implication here is that when multiple
malware or viruses compete on a common network, the one
utilizing the least resources “wins” as it is harder to detect
or is not worth it for the users to be protected against. If the
software or hardware allows for a much smaller umin and
the malware can be tuned well (U is of sufficiently small
order), the NE will be correspondingly worse. For example,
if U = {0.05, 0.1, 0.2, 0.7} the NE utility becomes 96 for
both players. Therefore, allowing malware more freedom in
their choice of creating codes that utilize a smaller value of
resources may result in intensifying the competition between
the malware, resulting in them earning smaller profits, conse-
quently improving the end-user welfare.

D. Alternate virus model

The model (1) assumes that the two malware can not co-
exist on the same computer. This kind of epidemiological
model is perfectly suited for certain virus strains but may not
always be suitable for computer viruses and malware. Thus,



we will also provide a brief analysis of the two non-interacting
virus SISP model written as follows.
Ṡ = −γ1SI1 − γ2SI2 + δ1(u1)I1 + δ2(u2)I2

+δM (u1, u2)IM
İ1 = +γ1SI1 − γ2I1I2 − δ1(u1)I1 − µ1(u1)I1
İ2 = +γ2SI2 − γ1I1I2 − δ2(u2)I2 − µ2(u2)I2
İM = (γ1 + γ2)I1I2 − (δ1(u1) + δ2(u2))IM

−(µ1(u1) + µ2(u2))IM
Ṗ = µ1(u1)I1 + µ2(u2)I2 + µM (u1, u2)IM

(17)

This model allows for both malware to co-exist on the same
computer, however, the presence of the two malware will
imply a higher recovery and protection rate as the user will
easily detect the presence of malware. The TSS approximation
for (17) can be done in a similar fashion as in Theorem 1 to
obtain the fast dynamics

Ṡ = −γ1SI1 − γ2SI2 + δ1(u1)I1 + δ2(u2)I2 + δMIM
İ1 = +γ1SI1 − δ1(u1)I1 − γ2I1I2
İ2 = +γ2SI2 − δ2(u2)I2 − γ1I1I2
İM = (γ1 + γ2)I1I2 − (δ1 + δ2)IM
Ṗ = 0

(18)
First, note that S = δk

γk
, Ik = 1 − S, I−k = 0, IM = 0 are

two equilibria for this dynamics. However, unlike the previous
system, when δk

γk
< 1 for both the malware, the two endemic

equilibria are locally stable as seen from the phase portrait
in Figure 5 obtained by setting IM → 0. While this is not
the main focus of the paper, it is interesting to note that even
in the case where both malware may co-exist in the same
computer, there is still a clear “winner takes all” behavior,
with the winner being decided by both the epidemiological
parameters as well as the initial conditions.
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Fig. 5. Phase portrait of (17) with γ1 = γ2 = 0.1, δ1 = 0.05, δ2 = 0.03
and µ1 = µ2 = 0.

Thus, to simplify, we assume that I1(0) = I2(0). Now, if
δ1
γ1
< δ2

γ2
, for any I1 ≥ I2, I1 < 1− δ1

γ1
, we have

İ1 − İ2 = +γ1SI1 − δ1(u1)I1 − (γ2SI2 − δ2(u2)I2) (19)

which is positive as I1(t) ≥ I2(t) inductively and δ1
γ1
< δ2

γ2
.

Therefore, the equilibrium with I1 = 0 is never reached

and since the only other stable equilibrium is the one with
S = δ1

γ1
, I1 = 1 − S, I2 = 0, this equilibrium is reached.

Similar arguments hold for the winner being player 2 when
δ1
γ1
> δ2

γ2
. Thus, the results of this case correspond with that

of Theorem 1 when the initial conditions are symmetric and
maybe obtained in a similar fashion following the proof of
Theorem 1.

VI. CONCLUSION

In this paper, we study a game model which characterizes
the competition between two malware trying to take over a
network. We use an epidemiological model to characterize
the spread of each malware as a function of their resource
utilization rate and then provide a closed-form expression for
the malware revenue using time-scale separation. We are then
able to characterize the Nash equilibrium for the resulting
game under the assumption that both malware starts with
the same number of infected nodes. Numerical simulations
demonstrate the validity of the time-scale approximation and
the features of the game such as the price of anarchy. In
future works, we would like to consider several regions or
clusters in the network with a given interaction graph between
these regions to have a more realistic model of the network
as studied in [8].

REFERENCES

[1] R. Kemmerer and G. Vigna, “Intrusion detection: a brief history and
overview,” Computer, vol. 35, no. 4, pp. supl27–supl30, 2002.

[2] S. Peng, S. Yu, and A. Yang, “Smartphone malware and its propaga-
tion modeling: A survey,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 2, pp. 925–941, 2013.

[3] S. Yu, G. Gu, A. Barnawi, S. Guo, and I. Stojmenovic, “Malware
propagation in large-scale networks,” IEEE Transactions on Knowledge
and data engineering, vol. 27, no. 1, pp. 170–179, 2014.

[4] T. Spyridopoulos, G. Oikonomou, T. Tryfonas, and M. Ge, “Game
theoretic approach for cost-benefit analysis of malware proliferation
prevention,” in IFIP International Information Security Conference.
Springer, 2013, pp. 28–41.

[5] Y. Hayel, S. Trajanovski, E. Altman, H. Wang, and V. M.P., “Complete
game-theoretic characterization of sis epidemics protection strategies,”
in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
1179–1184.

[6] A. R. Hota and S. Sundaram, “Game-theoretic vaccination against
networked sis epidemics and impacts of human decision-making,” IEEE
Transactions on Control of Network Systems, vol. 6, no. 4, pp. 1461–
1472, 2019.

[7] B. A. Prakash, A. Beutel, R. Rosenfeld, and C. Faloutsos, “Winner takes
all: competing viruses or ideas on fair-play networks,” in Proceedings
of the 21st International Conference on World Wide Web, 2012, pp.
1037–1046.
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