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Abstract

This work presents a novel decentralized control strategy with a guaranteed cost for bilinear multi-agent systems subjected
to products between the state and the control input, state constraints, and limitations on the amplitude and total energy of
the control action, which can prevent the consensus from reaching the desired value. We propose state feedback and switching
control laws to deal with these restrictions. The main objectives of the work are twofold: i) to design control laws that ensure
stability and guaranteed cost bounds under constraints, and ii) to determine an estimation of the domain of attraction (DOA)
as large as possible characterized by a polyhedral and an ellipsoidal invariant region contained in the space defined by the state
constraints. We adopt a convex optimization procedure based on linear matrix inequalities (LMI) to address these objectives. An
original approach employing Lyapunov sets is proposed to deal with control energy and state constraints, and positive system
properties are used to estimate the DOA in only one orthant of state space. Through numerical examples, we demonstrate the
effectiveness of the proposed Lyapunov-based approach, showing its ability to handle complex constraints and large networks.

Key words: Multi-agent systems; Consensus; Bilinear systems; Constrained states; Linear matrix inequalities; Guaranteed
cost control; Saturated control.

1 Introduction

Multi-agent systems (MAS) consist of several indepen-
dent but interconnected systems with a specific com-
mon goal, while every agent has a local view of the net-
work. The flexibility given by the decentralized coordi-
nation control makes MAS popular in several applica-
tions like opinion dynamics, robotics, and power grids.
The coherent behavior of the MAS is often described
in terms of consensus, i.e., the agreement of the au-
tonomous agents on a value of interest (Olfati-Saber &
Murray 2004), through their operations and interactions
with other agents present in the network. The coordina-
tion of MAS can face several challenges, like input sat-
uration and constraints on the state variables and the
total control energy.
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Saturation of the control signal is a well-known issue in
dynamic systems that has received much attention in
the literature (see Tarbouriech et al. (2011) and refer-
ences therein), in particular in the context of Adaptive
Dynamic Programming (ADP) (Dong et al. 2017, Shi
& Zhou 2022). Notably, the problem becomes more in-
tricate if the saturation is associated with the consen-
sus problems in MAS. The presence of saturation can
yield nonlinear closed-loop dynamics and may also pre-
vent reaching a consensus. Some works dealing with con-
sensus under input saturation consider integrator sys-
tems (Yang et al. 2014), event-triggered ADP methods
(Shi & Zhou 2022), and only a few are related to the
global coordination of high-order agents subject to input
saturation (Su et al. 2013, Col et al. 2019). Addition-
ally, control effort may be subject to finite energy, in-
terpreted as a budget constraint in some applications of
MAS, such as viral marketing (VM) over social networks
(SN). In this context, agents’ opinions are influenced by
advertiser and individual interactions (Morărescu et al.
2020, Alkhorshid et al. 2022). Several approaches exist
to deal with the lack of resources. For example, one can
cite using the maximum possible investment as soon as
possible to maximize the convergence of the trajectories
(Morărescu et al. 2020). Constraints in the states repre-
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sent practical situations due to physical limitations (e.g.,
level of tanks) or safety requirements. These additional
constraints can induce nonlinear behaviors andmake the
control protocol particularly difficult to design.

This paper considers the problem of designing a decen-
tralized protocol for the consensus of a class of bilinear
agents subject to state constraints and energy and mag-
nitude limitations in the exogenous control action. The
protocol design is formulated as a convex optimization
problem considering a global cost function as the perfor-
mance criteria. A fixed topology connects the agents in
the network. Since the model representing the agent dy-
namics is bilinear, the control input is saturated, and the
states are constrained, we propose polyhedral and ellip-
soidal invariant regions as an estimation of the domain of
attraction (DOA) of the origin based on quadratic Lya-
punov functions (Genesio et al. 1985). However, as the
states are restricted to the positive or negative orthants,
obtaining invariant ellipsoidal level sets is a challenging
problem (Tarbouriech et al. 2011). Then, we propose
LMI conditions exploiting properties of positive systems
to maximize the invariant region where the state trajec-
tories must belong. To deal with the state dependency
in the design of state feedback controllers, we adopt the
parametrization of the states as norm-bounded uncer-
tainties. This approach is more appropriate than the
polytopic approximation of the bilinear term (Amato
et al. 2009) when dealing with high-order systems (many
agents).

The paper presents original control approaches, further
extending the preliminary results announced by Alkhor-
shid et al. (2022) by considering a polyhedral invariant
region as an estimation for DOA and a switched control
action that mitigates the influence of the bilinear term
in the protocol design procedure. Consequently, the esti-
mation for the DOA is improved to be the entire domain
of the states, and we can apply the proposed technique to
large networks. Furthermore, the switching mechanism
is designed considering the energy constraint in the con-
trol action that usually prevents the agents from reach-
ing the desired value. The work also presents a contribu-
tion in the context of opinion dynamics. The proposed
approach is directly applied to this class of dynamics
where the states represent opinions (normalized between
0 and 1) as a case study. An external action tries to sway
the agreement value toward a desired one by a limited
budget/energy continuously spent over time.

Notation.The set of real matrices with dimension n×m
is denoted byRn×m; if the entries are non-negative (non-
positive), the set is denoted by Rn×m

+ (Rn×m
− ). For a

matrix X, XT and X⊥ denote the transpose of X and
any matrix whose columns form a basis for the null space
of X, respectively. X(i) denotes the i−th row and X(ij)

the entry (i, j) of X. If X is square, X−1 denotes the
inverse of X; He {X} stands for X + XT ; and X > 0

(X < 0) indicates that matrix X is positive (negative)
definite and X ≽ 0 (X ≼ 0) indicates that all the com-
ponents of matrix X are nonnegative (nonpositive). For
a vector v ∈ Rn, diag(v1, . . . , vn) is a diagonal matrix
composed with the elements of v, and for matrices Xi,
i = 1, . . . , n, diag(X1, . . . , Xn) denotes a block diagonal
matrix with diagonal blocks X1, . . . , Xn. The In, 0m,n

and 1 denote identity n × n matrix, null m × n matrix
(or simply I and 0 if no confusion arises) and vector of
ones, respectively; the symbols ⋆ and ⊗ denote symmet-
ric blocks and Kronecker product respectively.

2 Preliminaries

2.1 Problem formulation

Consider the following continuous-time system

ẋ(t) = Ax(t) +B(x(t))u(t), (1)

where x ∈ Rn is the state, u ∈ Rn is the control input,
A ∈ Rn×n is a Metzler matrix, and B(·) : Rn → Rn×n

being a function defined by B(x) = diag(x1, x2, . . . , xn).
The external control action is bounded as ui ∈ [−ū, ū],
ū ∈ (0, 1) and has a finite amount of energy, and the
states are constrained as xi ∈ [−d, 1− d], i = 1, . . . , n,
d ∈ {0, 1}. The parameter d defines the constraint of
the states, and the origin is an equilibrium point. As we
will discuss further, parameter d can also represent the
desired consensus value in the framework of MAS.

Observe that (1) is a constrained bilinear system with
a decoupled control input and normalized states. For
d = 0, the states are constrained to [0, 1]n, and the sys-
tem is positive. Many applications employ normalized
states, and one can cite, for instance, the per-unit system
in power systems, among many others. We can also con-
sider the case where the states are restricted to belong
to the negative orthant by adopting d = 1. The bilinear
product between the states and the control input can be
found in many physical phenomena, such as biological
processes. Decoupled control actions are mainly found in
decentralized or distributed control schemes where each
control algorithm acts locally (Ge et al. 2017). Although
most of the techniques presented in the paper can be
adapted for a more general class of bilinear systems, we
will explore the properties of positive systems and de-
coupled control actions to deal with the state constraint.
In the following, we describe a multi-agent system as the
main motivation for studying (1).

Consider a set of n systems interconnected over a net-
work represented by the graph G(V, E ,A). We associate
a vertex in V = {v1, . . . , vn} to each system. The inter-
connection between systems i and j is represented by
the edge (vi, vj) whose weight is the component aij of
the adjacency matrix A. Thus, A = [aij ] with aij > 0 if
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(vi, vj) ∈ E and aij = 0 otherwise. The Laplacian ma-
trix associated with the graph G(V, E ,A) is defined by
L = [lij ] with lii :=

∑n
j=1 aij and lij := −aij , for i ̸= j.

A neighbor of node vi is every node vj for which aij > 0;
and the neighborhood of node vi is described by the set
Ni := {vj ∈ V : (vj , vi) ∈ E}.

Assumption 1 We consider the graph G as weakly con-
nected, i.e., it contains at least one directed spanning tree.

Lemma 2 Under Assumption 1, the Laplacian matrix
L has a simple eigenvalue equal to 0 associated with the
right eigenvector 1 ∈ Rn, meaning L1 = 0. The other
n− 1 eigenvalues of matrix L have positive real parts.

In the sequel, the interconnected systems are referred
to as agents. We define the state of agent i by a scalar
value ξi normalized between 0 and 1. The dynamics in
the network evolve with respect to two different aspects:
an external control action that aims to sway the network
consensus toward a desired value d ∈ {0, 1}, and the
interactions between neighboring agents. The following
dynamic model characterizes the evolution of the states
through time

ξ̇i(t) =

n∑
j=1

aij(ξj(t)− ξi(t)) + (ξi(t)− d)ui(t), (2)

∀i ∈ {1, . . . , n}, where ui(t) ∈ [−ū, ū], ū ∈ (0, 1), is
a bounded external control action with finite amount
of energy and ξ ∈ [0, 1]n. The first part of the expres-
sion (2) represents the disagreement between the states
of neighboring agents considering their respective con-
nection weight. The second part considers the disagree-
ment between the state of an agent and the desired goal
d considering a local control input. In this context, if
the agents are far from the desired value d, the exter-
nal action has a stronger effect on the dynamics. For
instance, in opinion dynamics, this term expresses an
increasing resistance of individuals while approaching
the advertised state (Morărescu et al. 2020). Suppose
ξ(t) = (ξ1(t), . . . , ξn(t))

T and u(t) = (u1(t), . . . , un(t))
T

are the vectors collecting agents’ states and control in-
puts, respectively. The collective dynamics of the system
is expressed by

ξ̇(t) = −Lξ(t) +B(ξ(t)− 1d)u(t), (3)

where B(·) is a function as defined in (1). Let us define
xi(t) = ξi(t) − d, i = 1, . . . , n. Thanks to Lemma 2,
system (3) is rewritten as (1) with A = −L:

ẋ(t) = −Lx(t) +B(x(t))u(t), (4)

where x(t) ∈ X , X = {x ∈ Rn : xi ∈ [−d, 1− d]}. The
following problem describes the main challenge we aim
to tackle in this work.

Problem 3 Design the control input u considering to
the following optimization problem:

min
u(t)

Jx, Jx =

∫ ∞

0

x(t)TRx(t) dt (5)

subject to

x(t) ∈ X (6)

|ui(t)| ≤ ū (7)

Ju =

∫ ∞

0

u(t)TQu(t) dt ≤ µ (8)

where Jx is the global cost associated with (4) and con-
sidered as performance criteria, Ju is the total energy of
u limited by µ, and R and Q are positive definite matri-
ces used to balance the agent’s convergence and energy
required for synchronization, respectively.

The afforded energy µ in (8) gives an upper bound on
the total energy cost we accept to pay to change the
final agreement value in the network toward the de-
sired value d. Note that functions Jx and Ju defined by∫∞
0
z(t)T z(t) dt and

∫∞
0
y(t)T y(t) dt, can be rewritten in

a more convenient form for design conditions as

z(t) = R
1
2x(t), y(t) = Q

1
2u(t). (9)

Remark 4 It is possible to consider that only a subset of
agents can access to the desired consensus value d, which
can be seen as a virtual leader reference. In this case,
(2) becomes ξ̇i(t) =

∑n
j=1 aij(ξj(t) − ξi(t)) + gi(ξi(t) −

d)ui(t), where gi ≥ 0, i = 1, . . . , n, are pinning gains
such that if there is path between the leader (reference
value) and the i-th agent, gi > 0, otherwise gi = 0. The
design conditions can be adjusted by replacing B(x) by
GB(x) in (4), with G = diag(g1, . . . , gn), as long as at
least one gain gi is different from zero.

Remark 5 Problem 3 with respect to (2) can model a
problem of opinion dynamics in social networks where
the edges represent the interactions between individuals
and the state assigned to each node is a normalized opin-
ion. The control action corresponds to a campaign of viral
marketing, which, in practical applications, is limited by
an available budget µ. Moreover, d embodies the desired
goal of the campaign (for instance, consume/ not con-
sume). Hence, a campaign aims to persuade a network
toward a desired opinion minimizing (5) with respect to
(6) using a bounded and limited control effort (7)–(8).

Remark 6 Note that (8) might hamper x from reach-
ing the origin (or, equivalently, ξi(t) from reaching the
desired value d), then Jx becomes infinity. For the cases
where we want to converge as close as possible to 0 in
a limited amount of time T , we replace Jx in (5) by

Jx =
∫ T

0
x(t)TRx(t)dt. In the absence of external action,
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the system dynamics become ẋ(t) = −Lx(t), which has
a global exponentially stable attractor set xi = xj ,∀i, j.
Therefore, when the external control action is active for
a period T such that the transient response of the closed-
loop system vanishes, xi(T ) is a good approximation of
lim
t→∞

xi(t).

2.2 Representation of the bilinear terms and saturation
model

The amplitude bound restriction in (7) is represented in
the system dynamics using the decentralized saturation
function u(ℓ) = sat(v(ℓ)) = sign(v(ℓ))min(|v(ℓ)|, ū), ℓ =
1, . . . , n, where v represents the unbounded control input
to be designed. Thus, system (4) with u = sat(v) is
rewritten with respect to the decentralized dead-zone
nonlinearity ψ(v) = v − sat(v) as

ẋ(t) = −Lx(t) +B(x(t))v(t)−B(x(t))ψ(v(t)). (10)

To assess the stability of the closed-loop system under
the saturation of the control signal, the following lemma
is applied to allow the use of a sector condition valid in
a compact set of the state space (Gomes da Silva Jr. &
Tarbouriech 2005).

Lemma 7 Let G ∈ Rn×n be a matrix related to the re-
gion

Π = {x ∈ Rn : |vi −Gix| ≤ ū, i = 1, . . . , n} . (11)

If x ∈ Π, the following condition holds

ψ(v)TT (ψ(v)−Gx) ≤ 0 (12)

for any diagonal and positive definite matrix T ∈ Rn×n.

Let us present the termB(x), for x ∈ X , as the following
norm-bounded uncertainty model

B(x) = B0 +B1∆(t), (13)

whereB0 = (0.5−d)I,B1 = 0.5I, ∆(t) = diag(δ1(t), . . . ,
δn(t)) ∈ Rn×n, and δi(t) is a bounded Lebesgue mea-
surable uncertainty associated with the set D = {δ ∈
R : δT δ ≤ 1}. We will rewrite Problem 3 in the frame-
work of positive systems to establish an invariant re-
gion where the initial conditions will belong. First, we
present some basic results associated with positive sys-
tems and some instrumental lemmas useful for further
development.

Definition 1 (Kaczorek (2002)) System ẋ(t) =
Ax(t) is called positive if for any x(0) ∈ Rn

+, one has
x(t) ∈ Rn

+ for t ≥ 0.

Lemma 8 (Kaczorek (2002)) System ẋ(t) = Ax(t)
is positive if and only if A is a Metzler matrix (i.e., ∀i ̸=
j : A(ij) ≥ 0).

Lemma 9 (Petersen (1987)) Consider G = GT ∈
Rn×n, M ∈ Rn×p, and N ∈ Rq×n as pre-defined matri-
ces. For all∆ ∈ Rp×q such that∆T∆ ≤ I, the inequality

G+M∆N +NT∆TMT ≤ 0

holds if and only if there exists a scalar value λ > 0 such
that

G+ λMMT +
1

λ
NTN ≤ 0.

Lemma 10 (Boyd et al. (1994)) Consider w ∈ Rn,
M = MT ∈ Rn×n,B ∈ Rm×n with rank(B) < n and
B⊥ a basis of B nullspace (BB⊥ = 0). The following
statements are equivalent:
(i) wTMw < 0,∀w ̸= 0, Bw = 0.
(ii) BT

⊥MB⊥ < 0.
(iii) ∃N ∈ Rn×m :M +NB +BTNT < 0.

Lemma 11 (Bitsoris (1991)) The polyhedral set {x ∈
Rn : Ωx ≼ 1}, with Ω ∈ Rm×n, rank(Ω) = m, 1 ∈ Rm,
is a positively invariant set of system ẋ(t) = Ax(t) if and
only if there exist a Metzler matrix H ∈ Rm×m such that
ΩA = HΩ and H1 ≼ 0.

3 Main results

This section presents two approaches for solving Prob-
lem 3: state feedback and on-off control laws. Due to the
bilinear nature of the dynamics, the results hold locally,
and we provide an estimate of the region of stability of
the closed-loop system.We propose methods to compute
ellipsoidal and polyhedral estimates of the DOA as large
as possible.

3.1 Consensus based on state feedback controllers

In this section, we discuss a solution to Problem 3 using
the following state feedback control law in (10)

v(t) = Kx(t), K = diag(k1, . . . , kn) ∈ Rn×n, (14)

where ki ∈ R, i = 1, . . . , n, are gains to be designed.
A diagonal structure for K is assumed to assure the lo-
cal action of the control law, i.e., agents do not have
access to the state of their neighbors. This scenario is
more challenging than considering the availability of the
neighboring states. Considering (9), (10) and (14), the
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closed-loop system is given by

ẋ(t) = (−L+ (B0 +B1∆(t))K)x(t)

− (B0 +B1∆(t))ψ(Kx(t)) (15a)

z(t) = R
1
2x(t) (15b)

y(t) = Q
1
2Kx(t) +Q

1
2ψ(Kx(t)). (15c)

Remark 12 Observe that the controllability matrix
of (−L,B(x)) loses rank for x = 0, a stable equilib-
rium point. Therefore, synthesis conditions based on
the closed-loop system (15) with B0 = (0.5 − d)I and
B1 = 0.5I are not feasible for all ∆(t) ∈ D. We can
circumvent this problem modeling B(x) for the interval
xi ∈ [ε−(1+2ε)d, 1+ε−(1+2ε)d], where ε > 0 is an ar-
bitrarily small scalar, yieldingB0 = (0.5−d+(1−2d)ε)I.
Therefore, we assess the stability of the closed-loop sys-
tem (15) for x ∈ X \Bε, where Bε = {x ∈ S : xTx ≤ ε}.
This implies that we can only guarantee the convergence
of the system’s trajectories to Bε. However, as long as ε
is sufficiently small, this has no significant practical im-
plications since constraint (8) usually prevents xi from
reaching the origin (or, equivalently, ξi(t) from reaching
d).

In the following, we propose design conditions based
on the generalized sector condition (12), valid in region
Π, to deal with the saturation of the control input and
the constraint x ∈ X . To ensure the trajectories of the
closed-loop system remain in X ∩ Π, the following re-
gion S is defined for d = 0 such that for all x(0) ∈ S,
x(t) ∈ X ∩Π, ∀t ≥ 0:

S =
{
x ∈ Rn

+ : xTW−1x ≤ 1, W =WT > 0
}
, (16)

whereW is a positive definite matrix to be designed. For
d = 1, the set S is defined as (16) with domain x ∈ Rn

−.
Note that the set S is restricted to the positive (d = 0)
or negative (d = 1) orthants, and therefore it is not a
region completely defined by a level set of the Lyapunov
function V (t) = x(t)TW−1x(t). Moreover, conditions
that guarantee S ⊂ X are not easy to obtain. We first
introduce the following level sets, and then we show that
S is an invariant set and an estimate for the domain of
attraction of the closed-loop system:

Sa =
{
x ∈ Rn : xTW−1x ≤ 1, W =WT > 0

}
, (17)

Xa =
{
x ∈ Rn : Ωx ≼ 1

}
, (18)

where Ω = In⊗[1 −1]T ∈ R2n×n and Xa is a polyhedral
region representing xi ∈ [−1, 1]. Figure 1 depicts the
sets Π, X , Xa, S, Sa and a trajectory of x(t) for d = 0.

The approach used to assure S ⊂ X ∩ Π, with S be-
ing an estimation of DOA of the origin for the closed-
loop system (15), is to obtain conditions that guarantee

Fig. 1. Sets Π (green box), Xa (black dashed box), X (red
box), S (region in gray), Sa (blue ellipsoid), and a trajectory
of x(t) (bold blue line) for d = 0.

Sa ⊂ Xa∩Π, and next to demonstrate that S = Sa∩Rn
+

is an invariant region. By construction, −L is a Metzler
matrix. Thus, the presented approach relies on the prop-
erty that the closed-loop system (15) remains positive
(see Definition 1 and Lemma 8). Constraint (8) may pre-
vent the trajectories belonging to S from reaching the
origin in practical applications. For instance, in opinion
dynamics, the bounded budget investment usually dic-
tates the convergence of opinions only to a neighboring
value of d. Thus, we establish an invariant region Su ⊆ S
such that ∀x(0) ∈ Su the agents’ states converge to the
origin respecting the constraint (8). Additionally, for ini-
tial conditions x(0) ∈ S \ Su, we propose a mechanism
to restrict the control action when the energy constraint
(8) is violated. Problem 3 can be rewritten as follows.

Problem 13 Design the state feedback gain matrix K
such that the closed-loop system (15) is asymptotically
stable and find

(I) an estimate S ⊆ (X ∩Π) for the DOA of the origin
such that ∀x(0) ∈ S, the trajectories of (15) con-
verge asymptotically to the origin with guaranteed
cost for Jx, ∀δi(t) ∈ D and |ui(t)| ≤ ū;

(II) an estimate of an invariant region Su ⊆ S such
that ∀x(0) ∈ Su the trajectories of (15) converge
asymptotically to the origin with guaranteed cost
Ju < µ, ∀δi(t) ∈ D and |ui(t)| ≤ ū;

(III) a mechanism to turn off the control action (u = 0)
when Ju ≥ µ, ∀x(0) ∈ S \ Su.

Following ideas presented in (Morărescu et al. 2020,
Proposition 4.1), where the maximum possible invest-
ment is used as soon as possible to minimize a cost func-
tion related to the convergence of x, we propose a solu-
tion to Problem 13 such that, first, we minimize Jx con-
sidering constraints (6)-(7). After that, we present con-
ditions to estimate the set Su solving Problems 13 (II)
and (III).

Remark 14 Since L is a Metzler matrix, following
Lemma 8, the open-loop system ẋ(t) = −Lx(t) is
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positive. Furthermore, since B(x)K is diagonal, the
closed-loop system without saturation is positive once
−L+B(x)K is Metzler. Using, for instance, a polytopic
model for the saturation term (Tarbouriech et al. 2011),
it is possible to show that the closed-loop dynamic matrix
remains Metzler in the presence of saturation.

Theorem 15 If there exist diagonal positive definite
matricesW ∈ Rn×n and S ∈ Rn×n, a matrix Y ∈ Rn×n,
a diagonal matrix Z ∈ Rn×n, and a scalar λ > 0, such
that the following inequalities are satisfied


He {−LW +B0Z}+ λI ⋆ ⋆ ⋆

SBT
0 + Y −2S ⋆ ⋆

W 0 −R−1 ⋆

Z S 0 −4λI

 < 0,

(19)[
W ⋆

Ω(i)W 1

]
≥ 0, ∀i = 1, . . . , 2n (20)

[
W ⋆

Z(i) − Y(i) ū
2

]
≥ 0, ∀i = 1, . . . , n, (21)

then the state feedback gain K = ZW−1 makes the
closed-loop system (15a) exponential stable with guaran-
teed cost Jx ≤ x(0)TW−1x(0), and S is an invariant set
estimate for the DOA of the origin such that S ⊆ X ∩Π.

PROOF. Consider the quadratic Lyapunov function
V (t) = x(t)TW−1x(t) and the closed-loop system (15).
The integral from 0 to ∞ of

V̇ (t) + z(t)T z(t) < 0, ∀x ∈ X , (22)

yields Jx < V (0), where z(t) is defined in (9). Observe

that V̇ (t) < −cx(t)Tx(t) is equivalent to (22), where c
represents the maximum eigenvalue of matrix R. Thus,
the exponential stability of the origin is verified. By using
Lemma 7, if V̇ (t) + z(t)T z(t)− 2ψ(v(t))TTψ(v(t))
+ 2ψ(v(t))TTGx(t) < 0, then (22) holds with G the
matrix related to the region (11). Considering (13) and
(15), this last inequality can be stated as[

He
{
−W−1L+W−1B(x)K

}
+R ⋆

B(x)TW−1 + TG −2T

]
< 0,

and, pre- and post-multiplying it by diag(W,T−1) and
its transpose, respectively, one has[

He {−LW +B(x)Z}+WTRW ⋆

SB(x)T + Y −2S

]
< 0,

where Y = GW , S = T−1, and Z = KW . Using the
Schur complement in the above inequality, one has

He {−LW +B(x)Z} ⋆ ⋆

SB(x)T + Y −2S ⋆

W 0 −R−1

 < 0.

Replacing B(x) in the previous inequality by (13) for all
x ∈ X yields

He {−LW +B0Z} ⋆ ⋆

SBT
0 + Y −2S ⋆

W 0 −R−1



+He



∆

0

0

 0.5
[
Z S 0

] < 0.

Applying Lemma 9 for ∆ = diag(δ1, . . . , δn), δi ∈ D,
and the Schur Complement, we recover (19). Note that
pre- and post-multiplying (20) by diag(W−1, I), one has[

W−1 ⋆

Ω(i) 1

]
≥ 0

which certifies Sa ⊆ Xa (Boyd et al. 1994). Finally,
by pre-and-post multiplying the inequality (21) with
diag(W−1, I), one has[

W−1 ⋆

K(i) −G(i) ū
2

]
≥ 0.

Considering the set Π in Lemma 7 and Sa in (17), the
above inequality verifies Sa ⊆ Π (Gomes da Silva Jr. &
Tarbouriech 2005) and, consequently, S ⊆ Π. Since the
closed-loop system (15) is positive (Remark 14) and (19)

implies V̇ ≤ 0, Sa defined in (17) is an invariant region
(Boyd et al. 1994) and we can conclude that S = Sa∩Rn

+
is invariant and contractive (Blanchini & Miani 2015).
2

Theorem 15 provides a solution for Problem 13 (I), that
is, sufficient conditions to guarantee the exponential sta-
bility of the closed-loop system (15) and the estimate
S for the DOA such that (6) and (7) hold. Next theo-
rem presents a solution for Problems 13 (II) and (III)
taking into account constraint (8) and using the gain K
designed in Theorem 15.

Theorem 16 Let K be a stabilizing state feedback gain
for the closed-loop system (15a). If there exist diagonal
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positive definite matrices P ∈ Rn×n and S ∈ Rn×n, a
matrix Y ∈ Rn×n, and a scalar λ > 0, such that the
following inequality is satisfied

He {−LP +B0KP}+ λI ⋆ ⋆ ⋆

SBT
0 + Y −2S ⋆ ⋆

KP S −Q−1 ⋆

KP S 0 −4λI

 < 0,

(23)
then

• the closed-loop system (15a) has guaranteed cost Ju ≤
x(0)TP−1x(0);

• the set of all initial conditions such that x(t) → 0 as
t → ∞ satisfying the energy bound Ju ≤ µ, is defined
by Su = {x ∈ Rn

+ : xTP−1x ≤ µ};
• the control mechanism

u(t) =


sat(Kx), x(t)TP−1x(t) ≥

x(0)TP−1x(0)− µ,

0, otherwise,

(24)

ensures Ju ≤ µ for all x(0) ∈ S \ Su.

PROOF. Consider V (t) = x(t)TP−1x(t) as Lyapunov
function. Following the same lines of the proof of The-
orem 15, condition (23) implies V̇ (t) + y(t)T y(t) −
2ψ(v(t))TT (ψ(v(t)) + Gx(t)) < 0, with y(t) defined in

(9), and, by Lemma 7, V̇ (t) + y(t)T y(t) < 0. The in-
tegral from 0 to ∞ of the last inequality yields Ju <
V (0) = x(0)TP−1x(0). From Ju < V (0), it is evident
that for all x ∈ Su, Ju ≤ µ, the trajectories can reach
asymptotically the origin. Finally, if x(0) ∈ S \ Su, one

cannot ensure Ju ≤ µ, and

∫ T

0

V̇ (t) + y(t)T y(t) dt < 0

yields

∫ T

0

u(t)TQu(t) dt ≤ µ, where T is such that

V (T ) = V (0) − µ. The control mechanism (24) implies
that the control action becomes zero when V (t) = V (T ),

then

∫ ∞

T

u(t)TQu(t) dt = 0 and, therefore, Ju ≤ µ.

2

The following remarks present optimization problems to
maximize S and minimize Jx.

Remark 17 To indirectly minimize Jx and maximize
the set S in (16) simultaneously, one can maximize the
trace of W (see Boyd et al. (1994)). Thus, the following
optimization problem is proposed:

max Trace(W) (25)

subject to (19)–(21). To achieve a more accurate estima-
tion for the upper bound of cost Ju in Theorem 16, one

can solve the optimization problem:

max Trace(P) (26)

subject to (23).

Remark 18 If the initial conditions x(0) are known, the
following optimization problem minimizes Jx:

min τ (27)

subject to (19)–(21), and[
τ ⋆

x(0) W

]
> 0.

3.2 Consensus conditions based on on-off control law

In this section, we present an on-off control approach
using the control law

ui(t) =

{
ki, t ≤ T

0, t > T,
(28)

where |ki| < ū, i = 1, ..., n, are gains to be designed,
and T is found regarding energy constraint (8) by the
relation

Ju =

∫ T

0

1TKQK1dt = 1TKQK1T ≤ µ, (29)

where K = diag(k1, ..., kn) ∈ Rn×n. Then, T =
µ/1TKQK1 yields the maximum usage of the afforded
energy (budget) µ. The closed-loop system with respect
to (28) is given by

ẋ(t) =

{
−Lx(t) +B(x(t))K1 = (−L+K)x(t), t ≤ T,

−Lx(t), t > T.
(30)

Control law (28) avoids bilinear terms in the closed-loop
system, thus handling control input saturation indepen-
dently of initial conditions. The following theorems aim
to solve Problem 3 by designing (28).

Theorem 19 If there exist a diagonal positive definite
matrix W ∈ Rn×n and a diagonal matrix Z ∈ Rn×n

such that the following inequalities hold[
He{−LW + Z} ⋆

W −R−1

]
< 0, (31)

[
W ⋆

Ω(i)W 1

]
≥ 0, ∀i = 1, · · · , n, (32)
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[
W(ii) ⋆

Z(ii) ū
2W(ii)

]
≥ 0, ∀i = 1, · · · , n, (33)

then the control law (28) with K = ZW−1 guarantees
limt→∞ xi(t) = 1Tx(T )/n, where x(T ) = exp((−L +
K)T )x(0), T = µ/(1TKQK1), for the closed-loop sys-
tem (30), for all x(0) ∈ S ⊆ X , with guaranteed cost
Ju ≤ µ.

PROOF. Considering the quadratic Lyapunov func-
tion V (t) = x(t)TW−1x(t) and the closed-loop system

(30), from V̇ + x′Rx < 0, one has

He{−LW +KW}+WRW < 0.

By applying the Schur complement and considering Z =
KW , we obtain (31) that guarantees the asymptotic sta-
bility of (30) and therefore S = Sa∩Rn

+ is invariant and
contractive for t ≤ T . After t > T , the dynamics be-
come ẋ(t) = −Lx(t) with initial condition x(T ), where
x(T ) = exp((−L+K)T )x(0). FromOlfati-Saber &Mur-
ray (2004), one has limt→∞ xi(t) = 1

Tx(T )/n, and from
(29), T = µ/(1TKQK1) that guarantees Ju ≤ µ. Fol-
lowing the same reasoning of (20)-(21), we have that by
pre- and post-multiplying (32) by diag(W−1, I) and its
transpose, one can obtain the inequality that guarantees
Sa ⊆ Xa. Additionally, if we pre- and post-multiply (33)
by diag(W−1

(ii), I), we obtain[
W−1

(ii) ⋆

ki ū2W(ii)

]
≥ 0

with K = ZW−1. This is equivalent to |ki| ≤ ū. 2

Theorem 19 uses the ellipsoidal level set S ⊆ X to obtain
an estimation of theDOA.Remarks 17 and 18 can also be
applied to enlarge S and minimize Jx. Although ∀x ∈ S,
limt→∞ xi(t) = 1Tx(T )/n ∈ X , one disadvantage of
Theorem 20 is that we can assure the set S is invariant
only for t ≤ T . However, for an adequately large energy
constraint µ, we verify in practice that the trajectories
remain in S. To improve the estimation of the DOA, we
propose conditions to certify region X as a contractive
invariant set such that all initial conditions inside X
converge exponentially to the origin.

Theorem 20 If there exist a diagonal positive definite
matrix W ∈ Rn×n, a Metzler matrix H ∈ R2n×2n, a
diagonal matrixK ∈ Rn×n, scalars λ > 0 and 0 < ϵ≪ 1,
such that the following inequalities are satisfied

He{−LW −W} ⋆ ⋆

λW +K + I −2λI ⋆

W 0 −R−1

 < 0, (34)

(1− 2d)(Θ(−L+K)−HΘ) ≼ 0,

H1 ≼ 0,
(35)[

1 ⋆

ki ū
2

]
≥ 0, ∀i = 1, · · · , n, (36)

whereΘ = In⊗[(1−2d) (2d−1)ϵ−1]T ∈ R2n×n, then the
state feedback gainK ensures limt→∞ xi(t) = 1

Tx(T )/n,
with x(T ) = exp((−L+K)T )x(0), T = µ/(1TKQK1),
for the closed-loop system (30), for all x(0) ∈ X , with
guaranteed cost Ju ≤ µ.

PROOF. Considering the quadratic Lyapunov func-
tion V (t) = x(t)TW−1x(t) and the closed-loop system

(30), from V̇ + x′Rx < 0, one has He{−LW +KW}+
WRW < 0. By employing the Schur complement, we
obtain the left side of the following inequality, one gets[

He{−LW +KW} ⋆

W −R−1

]
=


I 0

W 0

0 I


T

︸ ︷︷ ︸
BT

⊥


He{−LW} ⋆ ⋆

KT 0 ⋆

W 0 −R−1


︸ ︷︷ ︸

M


I 0

W 0

0 I


︸ ︷︷ ︸

B⊥

< 0.

Considering the equivalence of conditions (ii) and (iii)
in Lemma 10, we have BB⊥ = 0 for B = [W − I 0] and
M = [−I λI 0]. Then, the expressionM +NB+BTNT

recovers (34). Note that, (36) is equivalent to |ki| ≤ ū.
For the proof of (35) first, define the sets XI = {x ∈
Rn : −Idx ≼ 0}, Id = (1 − 2d)I, and Xϵ = {x ∈ Rn :
Θx ≼ 1}. Then, one has X = Xϵ ∩ XI = {x ∈ Rn :
[Θ − Id]

Tx ≼ [1 0]T }. Regarding Lemma 11, the set
X represents a positive (d = 0) or negative (d = 1)
polyhedron invariant set for the closed-loop system (30)
in the form ẋ(t) = Aclx(t), Acl = −L +K, if and only
if there exist two Metzler matrices H1 ∈ R2n×2n and
H4 ∈ Rn×n, and two nonnegative matrices H2 ∈ R2n×n

and H3 ∈ Rn×2n, such that[
Θ

−Id

]
Acl =

[
H1 H2

H3 H4

][
Θ

−Id

]
,

[
H1 H2

H3 H4

][
1

0

]
≼ 0.

Without losing generality, one can replace H3 = 0 and
H4 = Acl, yielding{

ΘAcl = H1Θ− IdH2

H11 ≼ 0
⇒

{
Id(ΘAcl −H1Θ) ≼ 0

H11 ≼ 0.

(37)
From (37), we recover (35) for H1 being Metzler (Du
et al. 2020). 2
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Theorem 20 offers a larger estimation for the DOA com-
pared to Theorems 15–16 since S ⊆ X . The following re-
mark is presented for minimizing cost Jx in Theorem 20.

Remark 21 To minimize Jx when the initial conditions
x(0) are known, one can solve the following optimization
problem

min ατ1 + (1− α)τ2, (38)

for a given scalar α ∈ [0, 1], with respect to (34)-(36), and[
τ1 ⋆

x(0) W

]
> 0,

[
τ2 ⋆

K1 Q−1

]
> 0.

Observe that

Jx =

∫ ∞

0

x(t)TRx(t) dt =

∫ T

0

x(t)TRx(t) dt︸ ︷︷ ︸
Jx1

+ lim
Tf→∞

(Tf − µ/(1TKQK1))x̄TRx̄︸ ︷︷ ︸
Jx2

with x̄ = x(T ) = exp

(
µ(−L+K)

1TKQK1

)
x(0). The mini-

mization of τ2 implies the minimization of Jx2
, that is,

V (T ) ≈ 0 with T = µ/1TKQK1. Additionally, the min-
imization of τ1 implies the minimization of Jx1

, that can
be interpreted to Jx1

≤ x(0)TW−1x(0) according to (34).

4 Numerical examples

In this section, we present numerical experiments to
show the effectiveness of the proposed conditions for
small and large networks. The algorithms are imple-
mented employingYALMIP (Lofberg 2004) and SeDuMi
(Sturm 1999). The comparison of the numerical com-
plexity of the proposed LMIs is verified by the number
of LMI rows and scalar variables concerning the network
with n agents, as shown in the following table.

Scalar variables LMI rows

Theorem 15 n2 + 3n+ 1 3n2 + 7n

Theorem 16 n2 + 2n+ 1 4n

Theorem 19 2n n2 + 5n

Theorem 20 4n2 + 2n 9n

Table 1
Numerical complexities of different approaches.

Example 22 (5 agents case) We consider a con-
nected network with a directed graph G with n = 5
agents depicted in Fig. 2. We aim to compare the state
feedback control law (14) with the on-off controller
(28). We adopt the following specifications for Prob-
lem 3: d = 1, Q = 10−1I, µ = 0.86, and ū = 0.85.

Fig. 2. Network with 5 agents in a connected directed graph
for Example 22.

It should be noted that the parameter R is adjusted
in each case to enhance the convergence of the tra-
jectories. The state feedback control law (14) is de-
signed with Theorems 15 and 16 with R = 10−1I and
ε = 0.1, yielding K = diag(1.29, 1.34, 1.36, 1.40, 1.40).
Using Remark 17 in Theorems 15 and 16, we ob-
tain the guaranteed cost of Ju as 0.8849 for x(0) =
(−0.1,−0.15,−0.3,−0.47,−0.8) ∈ ∂S, higher than the
specification µ = 0.86, implying that the control ac-
tion needs to be cut off before reaching the origin. The
trajectories of (2), with ξ(0) = x(0) + 1d, and the con-
trol signal given by (24) of the agents are illustrated
in Fig. 3a. Note that the saturation on the control sig-
nal is allowed (u5 saturates in the initial instant due
to the constraint |ui| < 0.85), and around t = 7.41s,
the external action vanishes according to (24). The
approximate final consensus value of the agents is
limt→∞ ξi(t) ≈ 0.9209, i = 1, . . . , n. Furthermore, we

(a) (b)

Fig. 3. Trajectories and control inputs of the agents with re-
spect to (3) using (a) state feedback controller with mecha-
nism (24) and (b) Theorem 20 and Remark 21 with α = 0.3
for the case d = 1.

apply Theorem 20 with Remark 21 considering R = I,
yielding K = diag(−0.34,−0.42,−0.55,−0.63,−0.65)
and T = 6.08 for α = 0.3. The trajectories are illustrated
in Fig. 3b. Table 2 summarizes the results of Exam-
ple 22 showing the consensus value, that is, limt→∞ ξ(t),
obtained from the simulations and the volume of the
estimation of the DOA. We observe that Theorem 20
with α = 0.3 provided the consensus value closest to
d = 1 compared to the other results. Moreover, the poly-
hedral region obtained as an estimation of the DOA by
Theorem 20 is larger than the ellipsoidal regions given
by Theorems 15 and 19, illustrating the advantage of a
polyhedral estimation over ellipsoidal ones when consid-
ering states restricted to positive or negative orthants of
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the state space.

Method ξi(∞) Volume

Th. 15 with Rema. 17 0.9209 0.1645

Th. 19 with Rema. 18 0.9780 0.1645

Th. 20 with Rema. 21 (α = 0.3) 0.9857 1

Table 2
Results of Example 22 showing the consensus value ξi(∞) =
limt→∞ ξi(t), i = 1, . . . , n, obtained from the simulations and
the volume of the estimation of DOA obtained by numerical
integration.

Example 23 (3 agents case) In this example, we
present a comparison with Alkhorshid et al. (2022). Let
a connected undirected graph G from Ben Rejeb et al.
(2018), Alkhorshid et al. (2022) describe a communica-
tion network with n = 3 agents and a Laplacian matrix
defined as L = [3,−1,−2;−1, 3,−2;−2,−2, 4], with
Q = 10−1I, R = 10−1I, d = 0, µ = 0.675, and ū = 0.9.
Theorem 20 is implemented with Remark 21 as the op-
timization criterion. Using α = 0.3 and α = 0.5, one
has T = 5.74 and T = 3.19, respectively. As shown in
Fig. 4a, using α = 0.3 leads to a slower convergence rate
and a smaller consensus value (0.01477) than the case
α = 0.5 (that provides 0.03688). Thus, the parameter
α offers a trade-off between faster convergence and a
smaller final consensus value. Additionally, Fig. 4b il-
lustrates the trajectories for initial conditions placed on
the edge of the polyhedral region X that is the obtained
estimation of DOA, showing asymptotic convergence to
the origin. It is noteworthy that the guaranteed cost re-
lated to the control action obtained with Theorem 20 and
Remark 21 (Ju = 0.675) is very close to the real value
obtained from the trajectories in Fig. 4a (Ju = 0.6744 for
α = 0.3 and Ju = 0.6738 for α = 0.5), concluding that
Theorem 20 with Remark 21 provides accurate bounds
on the costs to guarantee Ju ≤ µ. Compared with the re-
sults in (Alkhorshid et al. 2022), we can observe that the
new approach achieved a better final consensus value and
convergence rate, along with a larger estimation of DOA.

(a) (b)

Fig. 4. Agents’ trajectories and respective control inputs for
Example 23 with (a) α = 0.3 (solid lines) and α = 0.5
(dashed lines) and (b) state trajectories for initial conditions
on the edge of the polyhedral estimation of DOA (using
α = 0.3) in Example 23.

Example 24 (100 agents case) This example illus-
trates the advantage of Theorem 20 to deal with large net-

works. The connected direct graph with n = 100 agents
is depicted in Fig. 5a. Problem 3 is solved considering
d = 0, R = I, Q = 10−1I, µ = 12, and ū = 0.9. Theo-
rem 20 certificates the entire domain X as an estimation
of the DOA of the origin. To illustrate the performance,
we placed seventy percent of the state’s initial conditions
between 0.51 to 1 and the rest belonging to the interval
[0.2, 0.5]. In Fig. 5b, the highest value among the agents’
states equals 0.1089 as t→ ∞, close to the desired value
d = 0.

(a) (b)

Fig. 5. (a) Network with 100 agents in a connected directed
graph and (b) Agents’ trajectories for the controller designed
with Theorem 20 for Example 24.

5 Conclusion

The paper provides LMI-based conditions to address the
consensus problem of bilinear MAS subject to simulta-
neous constraints on the states, magnitude, and energy
of the control input. Using the notion of polytopic in-
variant sets, we have maximized the DOA of the closed-
loop system. Moreover, we proposed a switching mech-
anism to circumvent the bilinear product in the closed-
loop system, providing suitable conditions to deal with
larger networks. Finally, we have employed numerical ex-
periments to illustrate the performance of the proposed
results.
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