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Coordination in networks of linear impulsive

agents

Irinel-Constantin Morărescu, Samuel Martin, Antoine Girard, Aurélie

Muller-Gueudin

Abstract

Consensus in heterogeneous networks containing both linear and linear impulsive dynamics is

considered in this paper. The model applies for networks of interconnected dynamical systems, called

agents, that are partitioned into several clusters. Most of the agents can only update their state in a

continuous way using only inner-cluster agent states. On top of this, few agents also have the peculiarity

to update their states in a discrete way by reseting it using states from agents outside their clusters.

Our main result gives sufficient conditions for consensus in these networks. We firstly analyze the case

when the reset sequence verifies some explicit time conditions. Secondly we consider the case when

the reset instants are event-triggered, i.e.defined by the occurrence of specific events. Finally, we treat

the case when the reset instants arrive stochastically following a Poisson renewal process.

Index Terms

Multiagent systems; consensus; reset systems.

I. INTRODUCTION

The problem of consensus or synchronization is motivated by different applications as com-

munication networks, power and transport grids, decentralized computing networks, and social
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networks. Throughout the paper, the network is modeled as a graph with nodes and edges

representing the agents and their interconnections, respectively. The connectivity of the network,

persistence of links and interactions reciprocity influence the convergence speed [1], [2] and the

achievement of consensus wether the dynamics is linear [3], [4], [5], [6], [7], or nonlinear [8],

[9], [10]. For this reason, most of the studies assume connectivity over bounded or unbounded

time intervals. However, there also exist analysis and control designs for network connectivity

preservation [11], [12], [13] as well as studies of networks that loose connectivity property [14],

[15].

Our point of view is that real networks are partitioned in several clusters inside which the inter-

actions take place often and can be seen as continuous while, due to communication constraints

(harsh environment, energy optimization or opinion preferences for instance), the inter-cluster

interactions are rare, thus discrete. In social networks, the opinion of each individual evolves

by taking into account the opinions of the members belonging to its community. Nevertheless,

one or several individuals can change its opinion by interacting with individuals outside its

community. These inter-cluster interactions can be seen as resets of the opinions. This leads us

to a network dynamics that is expressed in term of reset systems (see [16], [17], [18] for details).

In [19] the authors assumed that each cluster has a leader and all the leaders nearly-periodically

reset their state by taking into account the state of their neighboring leaders. However, generally

we can have several agents in the same cluster that interact in a discrete manner with agents in

other clusters and, more importantly, we cannot synchronize the inter-cluster interactions in a

decentralized way. Therefore, in this paper we address the more general and realistic problem

of decentralized synchronization in heterogeneous networks containing both linear and linear

impulsive dynamics. Unlike the preliminary work [20], we consider here also the possibility

that reset instants are triggered by some events or, they arrive stochastically following a Poisson

renewal process.

The main contribution of this work is to provide sufficient conditions for consensus in networks

of linear systems subject to impulses associated with point-wise activation of some intercon-

nections. The results assumes the presence of a spanning tree in the communication structure

although communication strength may vary in time. Our proof is based on the fact that the global

diameter of the network decreases by a uniform rate over some fixed period of time in the worst

case. Therefore, the global diameter of the network undergoes an exponential decrease.
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The rest of the paper is organized as follows. In Section II we introduce the concepts

necessary for the problem formulation. Section III contains the working assumptions on the

network structure and system dynamics. We also provide there a prerequisite reset property of

the fundamental matrix associated with the dynamics defined by a time varying Laplacian matrix.

The main results concerning the convergence analysis are presented in Section IV. Section V

considers the case where the reset instants are imposed by some events while Section VI deals

with reset instants that follow a probability law. Before conclusions we illustrate numerically

the behavior of the network under consideration.

Notation. The following standard notation will be used throughout the paper. The sets of non-

negative integers, real and nonnegative real numbers are denoted by N, R and R+, respectively.

For a vector x we denote by ‖x‖ its Euclidian norm. By In we denote the n×n identity matrix.

1n and 0n are the column vectors of size n having all the components equal 1 and 0, respectively.

We also use 0n×n to denote the square matrix of dimension n having all the components equal

0. Finally, for a left continuous function x(·) we use x(t−k ) = lim
t→tk,t<tk

x(t).

II. PROBLEM FORMULATION

A. Graph theory prerequisites

We consider a network of n agents described by the digraph (i.e. directed graph) G = (V , E)

where the vertex set V represents the set of agents and the edge set E ⊂ V × V represents the

interactions.

Definition 1: A directed path of length p in a given digraph G = (V , E) is a union of directed

edges
⋃p
k=1(ik, jk) such that ik+1 = jk, ∀k ∈ {1, . . . , p−1}. The node j is connected with node

i in a digraph G = (V , E) if there exists at least a directed path in G from i to j (i.e. i1 = i and

jp = j). A strongly connected digraph is such that any two distinct elements are connected. A

strongly connected component of a digraph is a maximal subset of V such that any of its two

distinct nodes are connected. We say node i is a parent of node j in the digraph G = (V , E) if

(i, j) ∈ E . A directed tree is a directed subgraph in which there exists a single node without

parents called root while all the others have exactly one parent. The length of a directed tree

is the length of its longest path. A directed spanning tree of a digraph is a directed tree that

connects all the nodes of the graph. For a given graph G = (V , E), the subgraph induced by a

subset of nodes U ⊆ V is the graph
(
U , E ∩

(
U × U

))
.
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In the sequel, we consider that the vertex set V is partitioned in m clusters C1, . . . , Cm. We

denote by ni the cardinality of each cluster Ci. For the sake of simplicity we reorder the nodes

to obtain, for i ∈ {1, . . . , n},

Ci = {mi−1 + 1, . . . ,mi}, (1)

where m0 = 0, mi ≥ mi−1 + 1, mm = n, and thus,

ni = mi −mi−1.

Let us also introduce the intra-cluster graph GL = (V , EL) containing only the edges of G that

connect agents belonging to the same cluster. That is

EL = {(i, j) ∈ E | ∃k ∈ {1, . . . ,m} such that i, j ∈ Ck}.

B. System dynamics

The state of each agent evolves continuously by taking into account the states of other agents

belonging to their cluster. Doing so, the agents approach local agreements which can be different

from one cluster to another. In order to reach the consensus in the entire network every inter-

cluster connection is activated at some discrete instants. When the inter-cluster link (j, i) ∈ E\EL
is activated, the state of agent i is reset to a weighted average of the states of i and j. If several

links arriving at i are activated simultaneously, all the source states of these edges are considered

in the weighted average. In order to keep the presentation simple each agent will have a scalar

state denoted by xi. We also introduce the vectors x = (x1, . . . , xn)> ∈ Rn collecting the states

of all the agents and xCi = (xmi−1+1, . . . , xmi)
> ∈ Rni , i ∈ {1, . . . ,m} collecting the states of

the agents belonging to cluster i, respectively.

The previous discussion is formally described by the linear reset system defining the overall

network dynamics: 
ẋ(t) = −L(t)x(t), ∀t ∈ R+ \ T

x(tk) = P (tk)x(t−k ) ∀k ∈ N

x(0) = x0

(2)

where x0 ∈ Rn, T is the countable set of reset instants which are described by the diverging and

increasing sequence (tk)k, L(t) ∈ Rn×n is a weighted time-varying Laplacian matrix associated

to the intra-cluster graph GL and P (tk) ∈ Rn×n is a stochastic matrix associated to the inter-

cluster graph GP (tk) = (V , EP (tk)) where EP (tk) 6= ∅ is the set of inter-cluster links activated at
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time tk, so that EP (tk) ⊆ E \ EL. Precisely, the entries of L(t) and P (tk) satisfy the following

relations: 

Li,j(t) = 0, if (j, i) /∈ EL

Li,j(t) < 0, if (j, i) ∈ EL, i 6= j

Li,i(t) = −
n∑

j 6=i, j=1

Li,j(t),∀i ∈ {1, . . . , n},

(3)



Pi,j(tk) = 0, if (j, i) /∈ EP (tk), i 6= j

Pi,i(tk) > 0, ∀i = {1, . . . , n}

Pi,j(tk) > 0, if (j, i) ∈ EP (tk), i 6= j

n∑
j=1

Pi,j(tk) = 1,∀i ∈ {1, . . . , n}.

(4)

In order to guarantee that system (2) admits a unique solution we further impose that for all

i, j ∈ {1, . . . , n} the functions Li,j are measurable functions of time (see Theorem 54 in [21]).

According to (4), given some i, if Pi,j(tk) = 0 for all j 6= i then Pi,i(tk) = 1, meaning that no

jump occurs on the state of the agent i at time tk. The values Li,j(t) and Pi,j(tk) represent the

weight of the state of the agent j in the updating process of the state of agent i when using

the continuous and discrete dynamics, respectively. The matrices L(t) and P (tk) describe the

level of influence of each agent inside its cluster and outside it, respectively. So, L and P vary

in time depending on which agents update their state. The weight of influence Pi,j or Li,j may

also vary in time for a given pair (j, i).

It is worth noting that L(t) has the following block diagonal structure

L(t) =


L1(t)

. . .

Lm(t)

 , Li(t) ∈ Rni (5)

with Li(t)1ni = 0ni and P (tk)1n = 1n.

III. PRELIMINARIES

A. Framework assumptions

In order to prove that the reset algorithm (2) guarantees asymptotic consensus for every initial

condition x0 we have to impose some standard assumptions. The first one concerns a minimal
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connectivity property of the whole network and of each cluster.

Assumption 1 (Network structure): The graph G = (V , E) is such that

1a) For each cluster Ci, the induced graph
(
Ci, EL ∩

(
Ci × Ci

))
contains a spanning tree,

1b) If needed one can reorder the clusters such that: for all i ≥ 2 there exist j < i, li ∈ Cj and

ri a root of a spanning tree of Ci such that (li, ri) ∈ E . We denote by

ET = {(li, ri)|i ∈ {2, . . . ,m}}

the set of these m− 1 such edges.

The previous assumption implies that G contains a spanning tree having the root in C1 (formed

by the union of the spanning trees in each cluster together with the edges in ET ). The assumption

is satisfied if the induced graph of each cluster is strongly connected and so is G. It also holds

if we replace (1b) by the requirement that the graph induced by the set of roots of all clusters

contains a spanning tree. We note that Assumption 1 implies that 0 is a simple eigenvalue of

each Li, ∀i ∈ {1, . . . ,m} (see [22]). The first part of Assumption 1 has a direct consequence on

the continuous dynamics since equation (3) imposes Li,j < 0 when (j, i) ∈ EL. The second part

of Assumption 1 guarantees the existence of the inter-cluster interaction structure formed by ET .

The next hypothesis of this work is standard in the literature (see [23]) and it ensures a

minimal influence of the states implicated in the reset process of the agents.

Assumption 2 (Minimal influence): There exists a constant α′ ∈ (0, 1) such that, for all reset

times tk, Pi,i(tk) ≥ α′ and, if Pi,j(tk) 6= 0 and (i, j) ∈ ET then Pi,j(tk) ≥ α′.

Remark 1: Assumption 2 guarantees a minimal influence of one cluster on the root of some

other at the reset time.

We also need to bound the non-zero influence occuring during the continuous dynamics.

Assumption 3 (Bounded continuous influence): The components of the Laplacian matrix L(t)

satisfy the following two constraints :

• influence weights are uniformly upper bounded i.e., there exists α > 0 a finite real number

such that |Li,j(t)| ≤ α, ∀i, j ∈ {1, . . . , n} and t ≥ 0,

• non-zero influence weights are uniformly lower bounded i.e., there exists α > 0 a finite

real number such that |Li,j(t)| > 0⇒ |Li,j(t)| ≥ α, ∀i, j ∈ {1, . . . , n}.

The first item is necessary to ensure that during the continuous dynamics, the agents do not

approach one to another indefinitely fast, oscillations may otherwise prevent consensus to take
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place. We can notice that, in practice, this assumption is very natural and is almost always

satisfied. The second item makes sure that enough interaction takes place within clusters, as

Assumption 2 does for interactions between clusters.

We use an extraction function φi to emphasize that an agent belonging to the cluster Ci resets

its state at time tk. This function selects the instants tk ∈ T corresponding to a reset of an agent

in cluster Ci. Precisely, for any h ∈ N we denote by tφi(h) the h-th time an agent in cluster Ci
resets its state meaning that

φi(h) = min{k > φi(h− 1)|∃j ∈ Ci, ` ∈ V \ Ci, Pj,`(tk) > 0},

where for consistency, we imposed φi(−1) = −1 and tφi(−1) = 0, for all i ∈ {1, . . . ,m}. We do

not disregard the situation in which agents from different clusters reset their state simultaneously.

Therefore, we may have φi(k) = φj(h) for i 6= j and k, h ∈ N.

While in discrete time, a minimal influence is guaranted by Assumption 2, in continuous time,

a minimal influence can be ensured using a dwell time. This will be shown in Proposition 3

below.

Assumption 4 (Dwell time): There exists a positive constant δ > 0 such that

tφi(k+1) − tφi(k) ≥ δ, ∀i ∈ {1, . . . ,m}.

In other words, there exists a lower bound for the period between the consecutive reset instants

on the state of agents belonging to the same cluster. Notice that according to Assumptions 1

and 5 below, all clusters in {2, . . . ,m} reset an infinite number of times, so that for these clusters,

φi is well defined. Cluster C1 may not reset an infinite number of times. In this case, tφ1(k)

is only defined for k smaller than some finite bound, and should still satisfy Assumption 4 for

these k. This has no impact on the results of the paper.

Remark 2: A simple manner to ensure Assumption 4 in a decentralized way is for each cluster

Ci, to allow only one agent to interact outside Ci. Then, this one agent has full control of tφi(k)

and can reset respecting the dwell time condition without the need for further communication.

Otherwise, since Assumption 4 concerns the resets of all agents in a cluster (unlike Assump-

tion 5), these agents should have a way to communicate the last reset time which occured in the

cluster.

The next assumption establishes the relationship between ET and the reset dynamics.
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Assumption 5 (Recurrent activation of inter-cluster links): There exists a positive constant δmax >

δ satisfying the following: for all (l, r) ∈ ET ,

• there exists k ∈ N such that tk ≤ δmax and (l, r) ∈ EP (tk),

• if (l, r) ∈ EP (tk) there exists τ ∈ [tk, tk + δmax] such that (l, r) ∈ EP (τ).

Remark 3: Assumption 5 can be easily imposed in a decentralized way since it concerns

inter-cluster links one by one in a decoupled manner. This assumption bears only on the few

links in ET which connect a node in a parent cluster to a root in a child cluster of the structure

defined in Assumption 1. Other links may appear in EP (tk) but these are not constrained by

Assumption 5. Notice that Assumption 5 ensures that edges in ET reset an infinite number of

times. We emphasize that a time-invariant δmax is only required to ensure convergence with a

geometric rate (see Theorem 10). This can be relaxed to time-varying but sufficiently slowly

growing δmax (see Remark 8).

To justify Assumption 5 we provide an example where consensus is not reached when only

Assumptions 1-4 hold.

Example 1: Consider a 3-agent system where each agent is considered as a cluster, so the

continuous dynamics is constant. Initially, x1(0) = 1 and x2(0) = x3(0) = 0. Recursively define

sequence (τk)k∈N such that τ0 = 0, and for k ≥ 0,

τ2k+1 = τ2k + 2k + 2, τ2k+2 = τ2k+1 + 2k + 2.

The system undergoes resets for all integer times as follows: first, agent 1 attracts agent 2 at the

discrete time instants h ∈ {τ2k, . . . , τ2k+1 − 2},

P2,1(h) = P2,2(h) =
1

2
, (6)

and then agent 2 attracts agent 1 during one reset only :

P1,2(τ2k+1 − 1) = P1,1(τ2k+1 − 1) =
1

2
.

Then, agent 3 attracts agent 2 at h ∈ {τ2k+1, . . . , τ2k+2 − 2},

P2,3(h) = P2,2(h) =
1

2
, (7)

and then agent 2 attracts agent 3 during one reset only :

P3,2(τ2k+2 − 1) = P3,3(τ2k+2 − 1) =
1

2
.
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The interaction weights of matrices P (h), h ≥ 0 which have not been explicitly defined are equal

to 0. Notice that in this example the reset sequence is precisely defined and no uncertainty exist

on the activation instant of one specific link. Let us denote by δmax(τ2k+1) the maximum period

between the activations of the same link before the instant τ2k+2. This system corresponds to a

maximum inactivation time which grows exponentially fast with δmax(τ2k+1) ≥ 2k+1, due to the

inactivation times of links (2, 3) or (2, 1).

Under this configuration, we show that agent 2 oscillates between agents 1 and 3 without agents

1 and 3 ever converging towards each other.

Proposition 2: The distance between agents 1 and 3 is lower bounded as follows : for all

k ∈ N,

x1(τ2k+2)− x3(τ2k+2) ≥
(

1− 1

2k

)
(x1(τ2k)− x3(τ2k)),

and

lim
t→∞

(x1(t)− x3(t)) > 0.

Proof: Notice that we clearly have, the following invariant property :

∀t ≥ 0, x1(t) ≥ x2(t) ≥ x3(t).

Let k ∈ N. The dynamics of agents 1 and 2 satisfies

x1(τ2k+2) = x1(τ2k+1) ≥ x2(τ2k+1) ≥ x2(τ2k+1 − 1),

and using equation (6),

x2(τ2k+1 − 1) =
1

2k+1
x2(τ2k) +

(
1− 1

2k+1

)
x1(τ2k)

≥ 1

2k+1
x3(τ2k) +

(
1− 1

2k+1

)
x1(τ2k).

Combining the two previous equations leads to

x1(τ2k+2) ≥ 1

2k+1
x3(τ2k) +

(
1− 1

2k+1

)
x1(τ2k). (8)

We now turn to the second part of the dynamics involving interactions between agents 2 and 3.

We have

x3(τ2k+2) ≤ x2(τ2k+2) ≤ x2(τ2k+2 − 1),
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and using equation (7),

x2(τ2k+2 − 1) =
1

2k+1
x2(τ2k+1) +

(
1− 1

2k+1

)
x3(τ2k+1)

≤ 1

2k+1
x1(τ2k+1) +

(
1− 1

2k+1

)
x3(τ2k)

=
1

2k+1
x1(τ2k) +

(
1− 1

2k+1

)
x3(τ2k).

The two previous equations yields

x3(τ2k+2) ≤ 1

2k+1
x1(τ2k) +

(
1− 1

2k+1

)
x3(τ2k). (9)

Taking the difference between (8) and (9) provides a proof for the first equation of Proposition 2.

Finally, recalling that for a sequence of numbers βk ∈ [0, 1], k ∈ N,
∏∞

k=1(1 − βk) > 0 if∑∞
k=1 βk <∞, we have

∞∏
k=1

(
1− 1

2k

)
> 0,

so

lim
t→∞

(x1(t)− x3(t)) > 0,

which ends the proof of the Proposition and Example 1.

Remark 4: Notice that Assumption 5 implies that for all cluster i ∈ {2, . . . ,m} and for all

k ∈ N,

tφi(k+1) − tφi(k) ≤ δmax.

Denote by Φ(t, T ) the fundamental matrix over time interval [t, T ] of the global linear dynam-

ics ẋ(t) = −L(t)x(t), for any T ≥ t ≥ 0, which is uniquely defined [24] by x(T ) = Φ(t, T )x(t).

Denote ΦCi(t, T ) the fundamental matrix of the linear dynamics ẋCi(t) = −Li(t)xCi(t) within

cluster Ci. It is important to mention that dynamics (2) leads to the collective state trajectory x(t) = Φ(tk, t)P (tk)x(t−k ), ∀k ∈ N and ∀t ∈ [tk, tk+1)

x(0) = x0

(10)

but a jump occurs in xCi only at times tφi(k), which involves edges with sink in cluster i. This

can be formalized as 
xCi(t) = ΦCi(tφi(k), t)PCi(tφi(k))x(t−φi(k)),

∀k ∈ N and ∀t ∈ [tφi(k), tφi(k+1))

x(0) = x0

(11)
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where PCi(tφi(k)) contains only the rows of P (tφi(k)) corresponding to the cluster Ci (i.e. the

rows mi−1 + 1, . . . ,mi of P (tφi(k))).

B. Matrix prerequisite properties

In this subsection we provide an instrumental result concerning the matrices defining the state-

trajectory associated with the dynamics (2). With the graph Ḡ = (V̄ , Ē) we associate a time-

varying weighted adjacency matrix A(t) which is a matrix with non-negative entries satisfying

Ai,j(t) > 0 ⇔ (i, j) ∈ Ē for all t ≥ 0. The corresponding degree matrix D(t) is diagonal

and Di,i(t) =
n∑
j=1

Ai,j(t) where n is the size of A(t) which is equal to the cardinality of V̄ .

The weighted Laplacian matrix associated with A(t) is simply defined as L̄(t) = D(t)− A(t).

Moreover, we suppose that L̄(t) satisfies Assumption 3 which implies the fact that there exist

ᾱ > 0 and
¯
α > 0 such that

¯
α ≤ Ai,j(t) ≤ ᾱ for all (i, j) ∈ Ē and for all t ≥ 0. Finally, denote by

Φ̄(t, T ) the fundamental matrix over time interval [t, T ] of the linear dynamics ẏ(t) = −L̄(t)y(t),

for any T ≥ t ≥ 0, which is uniquely defined by

y(T ) = Φ̄(t, T )y(t).

Proposition 3: Let Ḡ be a directed graph without self loops with n vertices containing a

spanning tree and A(t) a weighted adjacency matrix associated with it. Denote r the root of

a spanning tree in Ḡ. Let D(t) and L̄(t) the corresponding degree and weighted Laplacian

matrices. Then the fundamental matrix Φ̄(t, T ) is a stochastic matrix. Futhermore, if L̄ satisfies

Assumption 3, then there holds

∀δ > 0, ∀t ≥ 0, ∀T ≥ t+ δ, ∀i ∈ {1, . . . , n}, (Φ̄(t, T ))i,r ≥ γn,

(Φ̄(t, T ))i,i ≥ γn

(12)

with

γ = (n
¯
α)−1

¯
αe−2ᾱδ(1− e−¯

αδ). (13)

To prove Proposition 3, we need the following intermediate lemma.
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Lemma 4: Let (j, i) ∈ Ē and t, t′ ≥ 0 such that t′ ≥ t. Then, there holds (Φ̄(t, t′))i,j ≥ γ′,

(Φ̄(t, t′))i,i ≥ γ′,

with γ′ = (nᾱ)−1

¯
αe−2nᾱ(t′−t)(1− e−nᾱ(t′−t)).

Proof: The proof relies on ideas from [25], and is very similar to the first part of the proof

of [25, Proposition 7] (although here we prove the lower bound on one element (Φ̄(t, t′))i,j rather

than on a sum of elements, this is possible thanks to Assumption 3). For the first inequality, we

set artificial states yj(t) = 1 and yk(t) = 0 for k 6= j. We then have

(Φ̄(t, t′))i,j = yi(t
′),

as given in [25, equation (15)]. We now show that yi(t′) is lower-bounded by γ′. Denote M =

ᾱ(t′ − t). Using [25, equation (17)], we have

yj(τ) ≥ e−nM ,∀τ ∈ [t, t′]. (14)

As a first case, assume that ∀τ ∈ [t, t′], yi(τ) ≤ e−nM . Then,

ẏi(τ) = Ai,j(τ)(yj(τ)− yi(τ))

+
∑
k 6=i,j

Ai,h(τ)(yh(τ)− yi(τ))

≥
¯
α(e−nM − yi(τ))− (n− 2)ᾱyi(τ)

≥
¯
αe−nM − nᾱyi(τ)

≥ −nᾱ
(
yi(τ)− (nᾱ)−1

¯
αe−nM

)
,

where we have used yh(τ) ≥ 0 and Assumption 3. It follows then from Gronwall’s inequality

that

yi(t
′) ≥ (nᾱ)−1

¯
αe−nM + e−nM

(
yi(t)− (nᾱ)−1

¯
αe−nM

)
≥ (nᾱ)−1

¯
αe−nᾱ(t′−t)

(
1− e−nᾱ(t′−t)

)
≥ (nᾱ)−1

¯
αe−2nᾱ(t′−t)

(
1− e−nᾱ(t′−t)

)
.
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In the alternative case, denote τ the first time yi(τ) = e−nM . Let s ∈ [τ, t′]. Using a similar

reasoning as in the first case, since yh ≥ 0, h ∈ N,

ẏi(s) =
∑
k 6=i

Ai,h(s)(yh(s)− yi(s))

≥ −nᾱyi(s),

which by integration over time interval [τ, t′] yields

yi(t
′) ≥ e−2nᾱ(t′−t) ≥ γ′.

We turn to the second inequality. A direct consequence of equation (14) with j := i is that

(Φ̄(t, t′))i,i ≥ e−nᾱ(t′−t) ≥ γ′.

Proof of Proposition 3: The stochasticity of the fundamental matrix Φ̄(t, T ) was proven

in [25, Lemma 6]. We first prove the first item of equation (12) when T = t + δ. Let i ∈

{1, . . . , n}. Since r is a root of a spanning tree in the graph, i is connected to r by a directed

path (i0, . . . , id) with i0 = r and id = i. Denote τh = t+ h δ
n

for h ∈ {0, . . . , n− 1}. We have

Φ̄(t, t+ δ) =
0∏

h=n−1

Φ̄(τh, τh+1),

so that

(Φ̄(t, t+ δ))i,r

≥
d∏

h=n−1

(Φ̄(τh, τh+1))i,i

0∏
h=d−1

(Φ̄(τh, τh+1))ih+1,ih

≥ γn,

where we used both the first and second inequalities in Lemma 4. Then, we have

(Φ̄(t, T ))i,r =
n∑
k=1

(Φ̄(t+ δ, T ))i,k(Φ̄(t, t+ δ))k,r

≥
n∑
k=1

(Φ̄(t+ δ, T ))i,kγ
n ≥ γn,

where we have used the stochasticity of Φ̄(t+δ, T ) for the last inequality. The fact that the second

item of equation (12) holds can be shown similarly using the second inequality of Lemma 4

applied n times.
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Remark 5: Notice that (see (11)) the matrix ΦCi(tφi(k), t) defines the state trajectory of the

cluster Ci between two reset instants. Moreover, the graph associated with any cluster satisfies the

hypothesis of Proposition 3 and the time interval between consecutive reset instants is bounded.

Thus, Proposition 3 shows that Assumption 4 (Dwell time) is the corresponding of Assumption

2 (Minimal influence) for the continuous dynamics defined by Li.

Remark 6: We can apply Proposition 3 to the continuous dynamics in each cluster defined in

section II. For given δ and δmax > δ, Proposition 3 states that for all i ∈ {1, . . . ,m} ΦCi(tφi(k), t)

satisfies (12) for all t ∈ [δ, δmax]. As a consequence, we can define a lower bound on both the

impulsive attraction strengths and the attraction strengths resulting from the continuous dynamics

as

α = min(α′, γn),

where α′ is defined in Assumption 2 and γ is defined in equation (13).

IV. CONVERGENCE ANALYSIS

This part contains the main results of the paper concerning fully decentralized reset rules.

The resets of clusters are not synchronized and the intervals (tφi(k), tφi(k+1)) and (tφj(h), tφj(h+1))

may overlap for distinct i and j. This means, tk+1− tk can be arbitrarily small and the existing

results in the literature are not applicable. Assumption 4 (Dwell time) only ensures a dwell

time on the resets of the same cluster. In this section, we assume that Assumptions 1- 4, are

satisfied. Under such assumptions, we will show that all agents eventually converge toward the

same consensus state at exponential speed (Theorem 10). Prior to stating the main result we

provide the necessary intermediate ingredients.

For all time t ∈ R+, we define the global diameter of the group as

∆(t) = x̄(t)−
¯
x(t)

with

x̄(t) = max
i∈{1,...,n}

xi(t) and
¯
x(t) = min

i∈{1,...,n}
xi(t).

Our goal in the sequel is to show that ∆(t) approaches 0 when t increases. This requires some

intermediate results presented as lemmas in the sequel. All of them are written in terms of

minimum
¯
x(t) but they can be easily transformed in terms of maximum x̄(t).

Summary
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• In Lemma 5 we prove that: if an agent resets its state by taking into account a state bigger

than
¯
x(t), then its state after reset will be bigger than

¯
x(t).

• In Lemma 6 we complement Lemma 5 by proving that, if all the states in the cluster Ci
are bigger than

¯
x(t) at some time, they will remain bigger than

¯
x(t) after a finite number

of resets.

• In Lemma 7 we prove that during the continuous dynamics the root of a cluster will pull all

the states of the corresponding cluster far from the minimum value. Before the next reset

concerning this cluster, all its agents are at a strictly positive distance from the minimum

¯
x(t).

• In Lemma 8 we show that, the distances between the agents of an arbitrarily fixed cluster Cw
and

¯
x(t) are uniformly lower bounded by a strictly positive value. This is done by induction

on a sequence of clusters going from C1 to Cw chosen along the spanning tree in G (see

Assumption 1). Combining Lemma 5 and Lemma 7 provides the induction step.

• Finally, in Theorem 10 we use the lemmas to prove the geometric decrease of the diameter

∆(t).

Lemma 5 (Reset): Let i ∈ {1, . . . ,m} and t ≥ 0 fixed. Let k ∈ N such that tφi(k) > t the first

reset instant of cluster i after t. Assume that there are some ` ∈ V , some bound X ∈ R+, some

j ∈ Ci and some bound α ∈ (0, 1) such that

x`(t
−
φi(k))− ¯

x(t) ≥ X and Pj,`(tφi(k)) ≥ α.

Then, we have

xj(tφi(k))−
¯
x(t) ≥ αX.

Proof: Using the stochasticity of P (tk), one obtains 1 =
∑

h∈V,h 6=`

Pj,h(tφi(k)) + Pj,`(tφi(k)),

thus, by equation (2),

xj(tφi(k)))−
¯
x(t) =

∑
h∈V,h6=`

Pj,h(tφi(k))(xh(t
−
φi(k))− ¯

x(t))

+ Pj,`(tφi(k))(x`(t
−
φi(k))− ¯

x(t)) ≥ αX.

The last inequality follows from the fact that P (tφi(k)) ≥ 0n×n, Pj,`(tφi(k)) ≥ α and xh(t−φi(k)) ≥

¯
x(t) since

¯
x is non-decreasing (i.e.

¯
x(t) ≤

¯
x(t−φi(k))).

Considering x̄Ci(t) = maxj∈Ci xj(t), ¯
xCi(t) = minj∈Ci xj(t), the previous lemma can be com-

plemented as follows.

October 7, 2015 DRAFT



16

Lemma 6 (Reset): Let i ∈ {1, . . . ,m} and t ≥ 0 fixed. Let tφi(k) > t be some reset instant.

Assume that there is some bound X ∈ R+, such that

¯
xCi(t

−
φi(k))− ¯

x(t) ≥ X.

Then, for all h ∈ N, for all τ ∈ [t−φi(k), tφi(k+h)],

¯
xCi(τ)−

¯
x(t) ≥ αh+1X.

Proof: Using Assumption 2 (Minimal influence) and equation (4), we have Pj,j(tφi(k+h)) ≥ α

for all h ∈ N and j ∈ Ci. Thus we can apply Lemma 5 with l := j for all j ∈ Ci. Also,
¯
xCi

is non-decreasing between two consecutive reset instants, thus the bound from Lemma 5 is

preserved until the next reset of the cluster. This allows us to iterate on h to conclude.

Lemma 7 (Continuous dynamics): Let i ∈ {1, . . . ,m} and t ≥ 0 fixed. Let k ∈ N such that

tφi(k) > t and denote for conciseness the matrix R = ΦCi(tφi(k), tφi(k+1)). Assume that for the

root ri of one spanning tree of the cluster Ci, there exist some bounds Y ∈ R+ and α ∈ [0, 1]

such that

xri(tφi(k))−
¯
x(t) ≥ Y and ∀j ∈ Ci, Rj,ri ≥ α.

Then, we have

¯
xCi(t

−
φi(k+1))− ¯

x(t) ≥ αY.

Proof: Since xCi(t
−
φi(k+1)) = RxCi(tφi(k)) with R stochastic, the proof is the same as the one

in Lemma 5. The difference is that ∀j ∈ Ci, Rj,ri ≥ α. The proof can be applied for all j ∈ Ci
and a minimum can be taken at the end.

Before giving the next result, let us introduce some notation that will simplify the presentation.

Let Cw be some cluster. According to Assumption 1, there is a sequence of clusters (K1, . . . , Kq)

with q ≤ m connecting Cw to C1, meaning that K1 = C1, Kq = Cw and for each intermediate

cluster h ∈ {1, . . . , q− 1}, there is a node l ∈ Kh and a root r of a spanning tree of Kh+1 with

(l, r) ∈ ET .

Let t ≥ 0 be fixed. We define a sequence of integers

t ≤ f1 < s1 < f2 < s2 < . . . < fq < sq (15)

such that
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• f1 is the first reset instant after t of a root of a spanning tree of cluster K1, if a root reseting

its state exists in K1. This may not be the case since K1 may not be influenced by the other

clusters (according to Assumption 1), then f1 = t and s1 = t+ δ.

• For all h ∈ {2, . . . , q}, we define sh the first instant after fh when an agent of Kh resets

its state.

• For all h ∈ {1, . . . , q − 1} we define fh+1 as the first reset instant of a root of a spanning

tree of cluster Kh+1 after time sh.

It is noteworthy that, thanks to Assumption 5,

fh+1 − sh ≤ δmax and sh − fh ≤ δmax. (16)

This also gives

sq − f1 ≤ (2q − 1)δmax ≤ (2m− 1)δmax. (17)

Let also introduce

µ = bδmax/δc (18)

where byc denotes the biggest integer smaller than y.

Remark 7: Due to Assumptions 5 (Maximum inactivation time) and 4 (Dwell time), we have

at most µ resets of a root of cluster Kh between sh and fh+1.

In the sequel, iteratively applying Lemmas 5 and 7, we will show in Theorem 10 that ∆(sq)

geometrically decreases. For the next result we assume that a root r1 of a spanning tree of

K1 = C1 satisfies

xr1(f1)−
¯
x(f−1 ) ≥ ∆(f−1 )/2.

If it is not the case, we instead consider the system where all the states have been reversed:

xi := −xi and apply the same reasoning. In other words we relate the reasoning to the maximum

instead of the minimum. In the sequel, we use
¯
xKh(t) = mini∈Kh xi(t).

Lemma 8 (Path of clusters): For all h ∈ {1, . . . , q}, we have

¯
xKh(s−h )−

¯
x(f−1 ) ≥ α(µ+3)(h−1)+1∆(f−1 )

2
. (19)

where µ is given in equation (18).
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Proof: We show the lemma by induction. Due to Assumptions 4 (Dwell time) and 5

(Maximum inactivation time), one has δmax ≥ s1 − f1 ≥ δ, so that Proposition 3 applies to

R = ΦCi1 (f1, s1). The value α is chosen as in Remark 6. As a consequence we can apply

previous lemmas with the same α. Lemma 7 yields

¯
xK1

(s−1 )−
¯
x(f−1 ) ≥ α∆(f−1 )

2
,

which shows equation (19) for h = 1. Assume the proposition is true for some h ∈ {1, . . . , p}

where p ≤ q−1 and we prove the same for h = p+ 1. As mentioned in Remark 7, there will be

at most µ resets of cluster Kp over (sp, fp+1). Thus, denoting ` such that tφp(`) = sp, we have

fp+1 ≤ tφp(`+µ). We can apply Lemma 6 so that

¯
xKp(fp+1)−

¯
x(f−1 ) ≥ αµ+1 · α

(µ+3)(p−1)+1∆(f−1 )

2
.

At time fp+1, cluster Kp+1 resets. A root rp+1 of Kp+1 receives influence from at least one agent

j in cluster Kp. Because of Assumption 2, Prp+1,j(fp+1) ≥ α. So, we apply Lemma 5 on Kp+1

to get

xrp+1(fp+1)−
¯
x(f−1 ) ≥ αµ+2 · α

(µ+3)(p−1)+1∆(f−1 )

2
.

To conclude, we apply Lemma 7 on Cp+1 with R = ΦCp+1(fp+1, sp+1) and we get

¯
xKp+1

(s−p+1)−
¯
x(f−1 ) ≥ α(µ+3)p+1∆(f−1 )

2
.

A corollary of Lemma 8 is the following proposition.

Proposition 9: We have

¯
x((2m− 1)δmax + f1)−

¯
x(f−1 ) ≥ αν+1α

(µ+3)(m−1)+1∆(f−1 )

2
(20)

with ν = b(2m− 1)δmax/δc.

Proof: Taking h = q in Lemma 8 gives a lower bound on the minimum of Cw = Kq. This

is true for any cluster Cw. Using h ≤ m in equation (19), the bound can be replaced by

α(µ+3)(m−1)+1∆(f−1 )

2
.
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Then, equation (17) guarantees that there is no more than ν resets of cluster Cw over [f−1 , (2m−

1)δmax + f−1 ], thus Lemma 6 gives that for all cluster Cw,

¯
xCw((2m− 1)δmax + f1)−

¯
x(f−1 )

≥ αν+1α
(µ+3)(m−1)+1∆(f−1 )

2
.

In other words, equation (20) holds.

Once Proposition 9 is given, the exponential decay of the network diameter comes easily.

Theorem 10: Denote ν = b(2m − 1)δmax/δc and µ = bδmax/δc and let us define β = (1 −

αν+1 α(µ+3)(m−1)+1

2
) ∈ [0, 1) with α = min(γn, α) where α′ is defined in Assumption 2 and γ is

defined in equation (13). Then, for all t ∈ R+,

∆(2(m+ 1)δmax + t) ≤ β∆(t).

Remark 8: From the definition of β in Theorem 10 one can see that, considering a time-

varying δmax leads to a time-varying β. The consensus is still guaranteed as far as δmax is not

growing too fast i.e. for all t ∈ R+ one has

lim
k→∞

k∏
i=1

β(t+ 2(m+ 1)
i∑

j=1

δimax) = 0, (21)

where (δimax)i≥1 denotes the sequence of upper bounds of the time intervals between consecutive

activations of inter-clusters links. When δmax grows sufficiently fast to make the limit in (21)

strictly positive, the consensus is no longer guaranteed as proven in Example 1.

Proof: Let t ≥ 0 be fixed and define f1 as in (15). It follows that

t ≤ f1 < f1 + (2m− 1)δmax ≤ t+ 2(m+ 1)δmax.

Since x̄ is non-increasing and
¯
x is non-decreasing, one has

∆(t+ 2(m+ 1)δmax) ≤ ∆((2m− 1)δmax + f1),

∆(f−1 ) ≤ ∆(t).
(22)
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On the other hand, using Proposition 9, we have

∆((2m− 1)δmax + f1) =

= x̄((2m− 1)δmax + f1)−
¯
x((2m− 1)δmax + f1)

≤ x̄(f−1 )−
¯
x(f−1 )− αν+1α

(µ+3)(m−1)+1∆(f−1 )

2

≤ (1− αν+1α
(µ+3)(m−1)+1

2
)∆(f−1 ).

The proof ends by combining this with (22).

V. EVENT TRIGGERED RESET RULE

The dynamics (2) can be used for consensus in fleets of robots that are partitioned in clusters.

The robots that are relatively close one to another continuously interact and form a cluster.

Inter-cluster interactions need supplementary energy associated to long distance communications

between clusters and consequently, they have to be activated only if needed. In order to avoid

unnecessary inter-cluster communications we can define the reset sequence using an event-

based strategy. One example of such strategy is analyzed in this section. Precisely, we consider

the asynchronous resets case and suppose Assumptions 1 (Network structure) and 2 (Minimal

influence) are satisfied. We will show that under the event triggered reset rule, Assumption 4

and 5 are satisfied so that Theorem 10 applies and the consensus occurs.

Definition 11: The diameter of the cluster Ci is defined as ∆i(t) = x̄Ci(t)− ¯
xCi(t). The reset

sequence (tk)k∈N associated with the dynamics (2) is defined as follows: for all i ∈ {1, . . . ,m}

and for all k ≥ 0,

• if ∆i(tφi(k−1)) = 0, tφi(k) = tφi(k−1) + δ with δ = mini∈{1,...,m}
1

2niα
ln(ai),

• otherwise tφi(k) = min
t≥tφi(k−1)

{
∆i(t) ≤

∆i(tφi(k−1))

ai

}
,

where the ai > 1 are design parameters fixed a priori. (We recall that for consistency, we denote

tφi(−1) = 0).

Notice that the first point of the definition is required to avoid zeno-type behavior. The objective

of this section is to prove that the reset sequence defined above satisfies Assumptions 5 (Recurrent

activation of inter-cluster links) and 4 (Dwell time). Once this objective is accomplished, we can

apply the results stated in Section IV to ensure the coordination of all agents in the network.

Remark 9:
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1) It is noteworthy that the reset rule is centralized at the cluster level. In other words, in

each cluster exists a central entity that is able to compute the diameter of the cluster and

transmit it continuously to the reseting agents. The resets of the agents belonging to the

same cluster are synchronized. For the sake of simplicity, in the following, we assume that

each cluster possesses only one agent (a root of a spanning tree of the graph representing

the cluster) that resets its state and this agent can continuously compute the diameter of

the cluster.

2) The parameters ai > 1, i ∈ {1, . . . ,m} in Definition 11 can be chosen all equal but

they can be also designed as functions of the decreasing speed of ∆i. The later requires

supplementary knowledge but it can be used, if needed, to homogenize the reset intervals

from one cluster to another. We do not focus on this issue and in our numerical illustrations:

we consider ai = 2,∀i ∈ {1, . . . ,m}.

Theorem 12: Let us consider the dynamics (2) under Assumptions 1 (Network structure), 2

(Minimal influence) and 3 (Maximal influence). Then, the associated reset sequence introduced

in Definition 11 satisfies the Assumptions 5 (Recurrent activation of inter-cluster links) and 4

(Dwell time).

Proof:

•We start by proving that Assumption 4 holds. If ∆i(tφi(k)) = 0, the first point in Definition 11

applies and Assumption 4 holds. Otherwise, the second point applies and for a fixed cluster

Ci, i ∈ {1, . . . ,m} we have to show that ∆i does not decrease infinitely fast. This means, a

dwell time δ exists between a reset time tφi(k) and the first time t such that when ∆i(t) ≤
∆i(tφi(k))

ai
.

Let t ∈ (tφi(k), tφi(k+1)). First, recall that (see [7]) for almost all t ≥ 0, there exist mi(t) ∈

argminj∈Ci(xj(t)) and Mi(t) ∈ argmaxj∈Ci(xj(t)) such that:

˙
¯
xCi(t) = ẋmi(t)(t) = −

∑
j∈Ci

Lmi(t),j(xj(t)− xmi(t)),

˙̄xCi(t) = ẋMi(t)(t) = −
∑
j∈Ci

LMi(t),j(xj(t)− xMi(t)).

Thus, using Assumption 3, one obtains that between two reset instants the following holds:

˙
¯
xCi(t) ≤ niα∆i(t), ˙̄xCi(t) ≥ −niα∆i(t),

yielding

∆̇i(t) ≥ −2niα∆i(t).
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In other words, one has

∆i(t) ≥ e−2niα(t−tφi(k))∆i(tφi(k)).

Thus, since ∆i(tφi(k)) > 0, ∆i(t) ≤
∆i(tφi(k))

ai
implies 2niα(t− tφi(k)) ≥ ln(ai) that is equivalent

to

t− tφi(k) ≥
1

2niα
ln(ai)

and Assumptions 4 holds for

δ = min
i∈{1,...,m}

1

2niα
ln(ai).

• Now, let us prove that Assumption 5 holds. Since we consider only one agent per cluster

can reset its state, this is equivalent to the existence of δmax > 0 finite, such that for all ∀k ≥ 0,

for all i ∈ {1, . . . ,m} one has tφi(k) − tφi(k−1) ≤ δmax.

Let t ∈ (tφi(k−1), tφi(k)). Let us recall that ni represents the cardinality of Ci. Let us also

introduce ρi > 0 a bound on the convergence speed in the cluster Ci over an interval where Ci
does not reset. Mainly we consider an overestimation of the second Lyapunov exponent of the

continuous dynamics describing the behavior of Ci (see [1], [2], [26]), yielding

‖xCi(t)− x∗i (tφi(k−1))‖2 ≤

e−ρi(t−tφi(k−1))‖xCi(tφi(k−1))− x∗i (tφi(k−1))‖2

(23)

where we denote

x∗i (tφi(k−1)) = lim
t→∞

ΦCi(tφi(k−1), t)xCi(tφi(k−1))

the agreement of the cluster Ci if no reset occurs in its state after the instant tφi(k−1).

One can proove that

∆i(t) ≤ ‖xCi(t)− x∗i (tφi(k−1))‖1

≤
√
ni‖xCi(t)− x∗i (tφi(k−1))‖2

and
√
ni∆i(tφi(k−1)) ≥ ‖xCi(tφi(k−1))− x∗i (tφi(k−1))‖1

≥ ‖xCi(tφi(k−1))− x∗i (tφi(k−1))‖2,

where we successively used the triangle inequality, the 1-2 norm inequality, the fact that, since

ΦCi(tφi(k−1), t) is stochastic, x∗i (tφi(k−1)) remains in the convex hull of {xj(tφi(k−1))|j ∈ Ci}, and
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once again, the 1-2 norm inequality. Combining the two previous inequalities with equation (23),

gives

∆i(t) ≤ e−ρi(t−tφi(k−1))ni∆i(tφi(k−1)),

so that taking t ≥ tφi(k−1) + ln(aini)/ρi leads to ∆i(t) ≤ ∆i(tφi(k−1))/ai. As a conclusion,

δmax = max
i∈{1,...,m}

ln(aini)

ρi

is a suitable upper bound on the duration between two resets.

The following result is a straightforward consequence of Theorem 10. We only need to observe

that Theorem 12 provides the assumptions required for the application of Theorem 10.

Corollary 1: Let us consider the dynamics (2) with the reset rule introduced in Definition 11.

If Assumptions 1 (Network structure), 2 (Maximal influence) and 3 (Minimal influence) hold,

there exists some positive decay rate β ∈ [0, 1) such that for all t ∈ R+,

∆(2mδmax + t) ≤ β∆(t).

VI. STOCHASTIC RESET RULE

In some settings, the resets of agent states are the result of uncertain events. In this case, we

model the sequences of resets as a stochastic process. In the present section, we show that even

under uncertainty, suitable conditions on the probability law governing the sequence of resets

lead to consensus with probability one. To prove this fact, we need to show that, at any time,

the diameter decay provided in Theorem 10 occurs with positive probability. Throughout this

section we denote P(X) the probability of the event X and P(X | Y ) the probability of X

conditioned by Y .

Theorem 13: Consider dynamics (2). Suppose that Assumptions 1 (Network structure) and 2

(Minimal influence) are satisfied. Also, suppose that no more than one agent in each cluster Ci
resets its state and this agent is the one described as ri in Assumption 1. Finally, assume that

these sequences of resets follow independent Poisson renewal processes. Then, there exists some

positive decay rate β ∈ [0, 1) and some positive constant bound p > 0 such that for all t ∈ R+,

P
(

∆(2mδmax + t) ≤ β∆(t)
)
≥ p.

Moreover, consensus occurs with probability one.
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In what follows, we suppose that the assumptions required in Theorem 13 are satisfied. The

Poisson renewal processes implies that the increments between two consecutive reset instants

are independent and stationary. Theorem 13 is a consequence of the following lemma and

Theorem 10:

Lemma 14: Let δmax > δ > 0. Then, for all t arbitrarily fixed in R+, Assumptions 5 (Recurrent

activation of inter-cluster links) and 4 (Dwell time) hold for all the reset instants belonging to

[t, t+ 2mδmax] with a certain strictly positive probability (independent of t).

Proof of Theorem 13: Using Lemma 14, we know that Assumptions 5 and 4 hold for all

the reset instants belonging to [t, t+ 2mδmax] with some probability p, for all t ∈ R+. Thus we

can apply Theorem 10 restricted to the interval [t, t+ 2mδmax] to obtain that there exists some

positive decay rate β ∈ [0, 1), independent of t, such that for all t ∈ R+,

P (∆(2mδmax + t) ≤ β∆(t)) ≥ p.

So, using the fact that ∆ is non-increasing, we can bound the expectation of ∆:

E (∆(2mδmax + t)|∆(t)) ≤ pβ∆(t) + (1− p)∆(t),

and then,

E(∆(2mδmax + t)) ≤ (1− (1− β)p)E(∆(t)),

which shows that E(∆) exponentially converges to 0. Moreover, since ∆ is almost surely non-

increasing and non-negative, it converges almost surely. Denote l its limit which is also non-

negative. By continuity of E one has limt→∞ E(∆) = E(l). Thus, E(l) = 0 and since l is

non-negative, we get l = 0. Concluding, consensus occurs with probability one.

There remains to prove Lemma 14. Notice that, since only one agent per cluster resets its

state, Assumption 5 reduces to

tφi(k) − tφi(k−1) ≤ δmax, ∀i ∈ {2, . . . ,m},∀k ∈ N,

so the conjunction of Assumption 5 and Assumption 4 is equivalent to

tφi(k) − tφi(k−1) ∈ [δ, δmax], ∀i ∈ {2, . . . ,m},∀k ∈ N. (24)

We highlight that the reset instants of one cluster are independent of the ones related to other

clusters. So, the probability of statement (24) is the product of the probabilities for each cluster.
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Thus, we can decouple the analysis of reset sequences concerning different clusters. Before

proving Lemma 14, we describe some necessary probabilistic notation and an intermediate result.

The occurrence of the reset tφi(k) for k ≥ 0 is described by the random variable Tφi(k) and the

duration between Tφi(k−1) and Tφi(k) is given by the random variable Sφi(k). Using these notations,

the Poisson renewal process corresponds to the case where the reset instants occurs randomly

in time and Nt is the number of reset occurrences in [0, t] (Nt depends on the cluster index i

but for simplicity of notation we do not display it explicitly):

Nt =
∞∑
k=0

χ(Tφi(k)≤t)
,

where χΩ denote the indicator function of the set Ω. In other words, Tφi(k−1) ≤ t ⇔ Nt ≥ k,

Tφi(k−1) > t ⇔ Nt < k.
(25)

We recall here some important properties of the Poisson renewal process (see for instance [27]).

Remark 10: The process Nt has independent and stationary increments:

• for all 0 ≤ t0 < t1 < . . . < tn the random variables Nt1 − Nt0 , . . . , Ntn − Ntn−1 are

independent,

• for all t, s ∈ R+, Nt+s − Nt and Nt follow the same distribution: a Poisson distribution

with parameter λis.

Moreover, the Sφi(k), k ≥ 0 are independent and identically distributed (i.i.d.) following an

exponential distribution with parameter λi > 0. In particular, for any b1 < b2 ∈ R+ one has

P(Sφi(k) ∈ [b1, b2]) > 0.

The next lemma is instrumental since it allows us to reduce the analysis to the interval

[0, 2mδmax]. Precisely, we show that the sequence of reset instants higher than t is described by

the same probability distribution as the sequence of resets that starts at 0. Let i be some cluster

index and Λ denote the event {Nt = k,Nt+ξ = k + `}

Lemma 15: Let t, ξ be arbitrarily fixed in R+. Then for all k, ` ∈ N, the distributions of(
Tφi(0), . . . , Tφi(`−1)

)
|{Nξ = `} and

(
Tφi(k) − t, . . . , Tφi(k+`−1) − t

)
|Λ are equal.

Proof: First, it is a well known fact that given Nξ = `, the ` arrival times
(
Tφi(0), . . . , Tφi(`−1)

)
are distributed as the order statistics corresponding to ` independent random variables uni-

formly distributed on the interval [0, ξ] (see for instance [27]). The density is then given by:

f(x0, . . . , x`−1|`) = `!
ξ`
χ(0<x0<...<x`−1<ξ).
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Secondly, let the following real terms t < xk ≤ xk + hk < xk+1 ≤ xk+1 + hk+1 < . . . <

xk+`−1 ≤ xk+`−1 + hk+`−1 ≤ t+ ξ. The two followings events:

Γ =
{
Nt = k,Nt+ξ = k + `− 1, Tφi(k) ∈ [xk, xk + hk], . . . ,

Tφi(k+`−1) ∈ [xk+`−1, xk+`−1 + hk+`−1]
}

and{
Nt = k,Nxk −Nt = 0, Nxk+hk −Nxk = 1, . . . ,

Nxk+`−1+hk+`−1
−Nxk+`−1

= 1, Nt+ξ −Nxk+`−1+hk+`−1
= 0
}

are equal.

Then, by using the Remark 10, we have:

P (Γ) = e−λit
(λit)

k

k!
· e−λi(xk−t) · e−λihkλihk · . . . ·

e−λihk+`−1λihk+`−1 · e−λi(t+ξ−xk+`−1−hk+`−1)

=
(λit)

k

k!
e−λite−λiξλ`ihk . . . hk+`−1.

By Remark 10, we also have:

P(Λ) = P(Nt+ξ −Nt = `,Nt = k) = P(Nξ = `)P(Nt = k) (26)

then

P
(
∀j ∈ {k, . . . , k + `− 1}, Tφi(j) ∈ [xj, xj + hj]|Λ

)
=
`!

ξ`
hk . . . hk+`−1.

Dividing by hk . . . hk+`−1 and making succesively hk, . . . , hk+`−1 tending to 0, we obtain

(see [28]) the density of
(
Tφi(k), . . . , Tφi(k+`−1)

)
|Λ is defined by

f(xk, . . . , xk+`−1|`) =
`!

ξ`
χ(t<xk<...<xk+`−1<t+ξ).

It is the distribution of the order statistics corresponding to ` independent random variables

uniformly distributed on the interval [t, t + ξ]. By a translation of −t, we have proven the

lemma.
Proof of Lemma 14: Using the notation described above and using statement (24), we have

to uniformly bound below the following probability:

P
( m⋂
i=2

(
∀j ∈ {Nt + 1, . . . , Nt+2mδmax − 1}, Sφi(j) ∈ [δ, δmax]

))
,

for all t ≥ 0. Since the reset sequences associated with different clusters are independent, it is
clear that this probability is equal to

m∏
i=2

P
(
∀j ∈ {Nt + 1, . . . , Nt+2mδmax − 1}, Sφi(j) ∈ [δ, δmax]

)
.
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As discussed above, Lemma 15 allows us to prove the result only on the interval [0, 2mδmax]. In-
deed, we can map (Tφi(k)−t, . . . , Tφi(k+`−1)−t) to (Sφi(k+1), . . . , Sφi(k+`−1)) and (Tφi(0), . . . , Tφi(`−1))

to (Sφi(1), . . . , Sφi(`−1)) by the same operation. Denoting ξ = 2mδmax and using (26), we have:

P
(
∀j ∈ {Nt + 1, . . . , Nt+ξ − 1}, Sφi(j) ∈ [δ, δmax]

)
=∑

k,`∈N
P
(
∀j ∈ {k + 1, . . . , k + `− 1}, Sφi(j) ∈ [δ, δmax]|Λ

)
P (Λ)

=
∑
k,`∈N

P
(
∀j ∈ {1, . . . , `− 1}, Sφi(j) ∈ [δ, δmax]|Nξ = `

)
·

P (Nt = k)P (Nξ = `)

= P
(
∀j ∈ {1, . . . , Nξ − 1}, Sφi(j) ∈ [δ, δmax]

)
Thus, it is sufficient to prove that

P
(
∀j ∈ {0, . . . , N2mδmax}, Sφi(j) ∈ [δ, δmax]

)
> 0.

We denote by pi this probability. Let us note that

pi =

∞∑
l=1

P
(

(∀j ∈ {0, . . . , l}, Sφi(j) ∈ [δ, δmax]) ∩ (N2mδmax
= l)

)
≥ P

(
(∀j ∈ {0, . . . , 2m}, Sφi(j) ∈ [δ, δmax]) ∩ (N2mδmax

= 2m)
)
.

By denoting with gS the probability density describing the random variable S one obtains

pi ≥
∫ δmax

δ

. . .

∫ δmax

δ

χ(tφi(2m−1)≤2mδmax<tφi(2m))g(b)db,

where g(b)db , gSφi(0)(b0) . . . gSφi(2m)
(b2m)db0 . . . db2m and tφi(2m) ,

∑2m
k=0 bk. Next, we remark

that χ(tφi(2m−1)≤2mδmax<tφi(2m)) = 1 if bk ∈ [δmin, δmax], ∀k ∈ {0, . . . , 2m} where δmin =

max{δ, 2mδmax
2m+1

}. This yields

pi ≥
∫ δmax

δmin

. . .

∫ δmax

δmin

gSφi(0)(b0) . . . gSφi(2m)
(b2m)db0 . . . db2m

=
2m∏
k=0

P
(
Sφi(k) ∈ [δmin, δmax]

)
> 0

The last inequality follows from the last part of Remark 10.

VII. NUMERICAL EXAMPLES

In this section, we illustrate our main result (Theorem 10) using two examples. The first

example is based on a 5-agent system with two clusters and help to clarify the dynamics of the

reset system presented in section II. In the second example, we take a more elaborate 30-agent

system to illustrate the various network topologies that our framework enables.
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A. 5-agent system

In the following we consider a network of five agents grouped in two clusters. The network

structure satisfies Assumption 1 and is described by the following Laplacian matrix:

L =



3 0 −3 0 0

−1 1 0 0 0

−2 0 2 0 0

0 0 0 0 0

0 0 0 −1 1


which has a block diagonal structure corresponding to the two clusters. Each cluster contains

only one node able to interact with agents outside its own cluster (node 1 in the first cluster and

node 4 in the second cluster). The weights of the inter-cluster interactions are chosen as follows

P =



0.7 0 0 0.3 0

0 1 0 0 0

0 0 1 0 0

0.25 0 0 0.75 0

0 0 0 0 1


,

such that Assumption 2 holds. We point out that at reset times tk either only one or both nodes

1 and 4 reset their state. Therefore, the matrices P (tk) are either equal to P or obtained by

replacing the first or forth line of P by (1, 0, 0, 0, 0) or (0, 0, 0, 1, 0), respectively. Assumptions

4 and 5 are guaranteed by the choice of δ = 4 and δmax = 8.

In Figure 1 we firstly emphasize the agreement of all five agents. A zoom-in allows to point

out that each impulsive agent resets its state in its own rythme and it may happen that one of

them resets twice between the reset times of the other.

B. 30-agent system

We now consider networks of 30 agents grouped in 3 clusters of similar size. We initialize

the agents’ state so as to enable visual distinction of the 3 clusters. The intra-cluster network is

randomly constructed to ensure that each cluster contains a spanning tree (not necessarily unique).

Potentially, several agents of the cluster are roots of spanning trees. In a similar way, a network

of inter-cluster links between the roots of the clusters is constructed to ensure that a spanning tree
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Fig. 1. Top: Consensus of the five agents grouped in 2 clusters. Bottom: Zoom in pointing out that the resets are not synchronized.

connects at least one of these roots to all others. This guarantees that Assumption 1 is satisfied.

For simplicity, the intra-cluster weights in L and inter-cluster weights in P are chosen constant.

Also, we assume that all resets in a given cluster occur synchronously but resets in different

clusters may happen asynchronously. We set the mininmum and maximum inter-activation reset

threshold to δ = 10 and δmax = 20, respectively. In Figure 2 and 3 are displayed the trajectories

of the 30-agent system for two disctinct topologies. In Figure 2, none of the agents in the top

initial cluster (in blue) is influenced by outer agents so that local consensus is quickly reached

in this cluster. The top cluster influences the bottom cluster (in red) which in turn influences
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the middle cluster (in green). Thus, the overall interaction network is not strongly connected.

The zoom-in view presented in the bottom figure shows that several agents reset their states in

each cluster. The exponential decrease of the global diameter takes place, as expected thanks to

Theorem 10. By contrast, Figure 3 presents a case where the interaction network between the 3

clusters is strongly connected : the top (blue) cluster is influenced by the bottom (red) cluster,

the bottom (red) cluster is influenced by the middle (green) cluster and the middle (green) is

itself influenced by the top (blue) cluster. So, the overall interaction network between clusters

is a cycle. Once again, the diameter exponentially converges to 0.

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

time (s)

x(
t)

Fig. 2. Trajectory of the reset system (2) with 30 agents grouped in 3 clusters. The overall interaction network topology among

cluster is a tree. The top (blue) cluster influences the bottom (red) clusters which influences the middle (green) cluster.

VIII. CONCLUSIONS

In this paper we have studied the consensus in heterogeneous network containing both linear

and linear impulsive dynamics. Under appropriate assumptions, we have proven that all subsys-

tems agree and we have bounded above the convergence speed. One requirement is related to a

minimal dwell-time separating two consecutive reset instants of the same cluster. It is noteworthy

that the reset instants of different clusters are not synchronized, meaning that no global dwell-time

is imposed between two consecutive reset instants in the network. The consensus problem has

been solved under different strategies defining the reset sequence. Firstly we considered a time-

triggering strategy which imposes sufficient assumptions for consensus. Secondly, we designed an

October 7, 2015 DRAFT



31

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

time (s)

x(
t)

64 66 68 70 72 74

54.5

55

55.5

56

56.5

57

57.5

58

58.5

59

59.5

time (s)

x(
t)

Fig. 3. Top : Trajectory of the reset system (2) with 30 agents grouped in 3 clusters. The overall interaction network topology

among cluster is a cycle. The top (blue) cluster influences the middle (green) clusters which influences the bottom (red) cluster

which influences the top (blue) cluster. Bottom : zoom-in of the trajectory.

event-triggering reset rule and we proved that the proposed sufficient assumptions for consensus

are satisfied. Finally, we proved that the reset sequence defined by a Poisson renewal process also

satisfies the proposed sufficient assumptions for consensus. Some numerical examples illustrates

the validity of the main result ensuring consensus in the heterogeneous network under study.
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