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Abstract

This paper addresses the problem of consensus in networks structured in several clusters. The clusters are represented by fixed, directed
and strongly connected graphs. They are composed by a number of agents which are able to interact only with other agents belonging
to the same cluster. To every agent we associate a scalar real value representing its state. The states continuously evolve following a
linear consensus protocol and approach local agreements specific to each cluster. In order to enforce a global agreement over the whole
network, we consider that each cluster contains an agent that can be exogenously controlled. The state of this agent, called leader, will
be quasi-periodically reseted by a local master controller that receives information from some neighboring leaders. In order to control
the consensus value we have to firstly characterize it. Precisely we show that it depends only on the initial condition and the interaction
topologies. Secondly, we provide sufficient Linear Matrix Inequality (LMI) conditions for the global uniform exponential stability of the
consensus in presence of a quasi-periodic reset rule. The study of the network behavior is completed by a decay rate analysis. Finally we
design the interaction network of the leaders which allows to reach a prescribed consensus value. Numerical implementation strategy is
provided before illustrating the results by some simulations.
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1 Introduction

Networks appear naturally in diverse areas of science
and engineering as biology (Reynolds 2001, Ratmann
et al. 2009, Pavlopoulos et al. 2011), physics (Gfeller &
Rios 2008) and sociology (Hegselmann & Krause 2002,
Lorenz 2005) as well as robotics (Bullo et al. 2009) and
communication (Pastor-Satorras & Vespignani 2004). Stud-
ies concerning real networks revealed that the topology of
interactions in communication, social or biological systems
presents a cluster/community structure (Pastor-Satorras &
Vespignani 2004, Boccaletti et al. 2006, Hanski 1998). In
order to detect these communities, different algorithms are
available in the literature (Newman & Girvan 2004, Lam-
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biotte et al. 2009, Morărescu & Girard 2011). A conse-
quence of the presence of decoupled clusters in the net-
work is that consensus/synchronization cannot be reached
and different local agreements are obtained (Morărescu &
Girard 2011, Touri & Nedic 2012). To overcome this prob-
lem, we propose a quasi-periodic discrete controller meant
to force the consensus in this type of clustered networks.
As in many works in the literature, in this paper we call
agents the constitutive elements of the network and their
number will define the network dimension. The consensus of
the agents attracted a lot of interest in the last decade and it
was studied in different frameworks: directed or undirected
interactions, fixed or time-varying interaction graph, delayed
or un-delayed, synchronized or desynchronized interactions,
linear or nonlinear, continuous or discrete agent dynamics
(Jadbabaie et al. 2003, Olfati-Saber & Murray 2004, Ren
& Beard 2005, Moreau 2005, Morărescu et al. 2012). The
agreement speed in various frameworks has also been quan-
tified (see for instance (Xiao & Boyd 2004, Olshevsky &
Tsitsiklis 2009)). In order to guarantee the global coordi-
nation in networks with dynamic topologies, some works
proposed controller designs that are able to maintain the
network connectivity (Zavlanos & Pappas 2008, Fiacchini
& Morărescu 2014).
A major concern in the last decade has been the control
over networks with communication constraints (Anta &
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Tabuada 2010, Postoyan et al. 2011, Heemels et al. 2012).
The focus was on the control of one system over a commu-
nication network by limiting the interactions between the
controller and the plant. In this paper, only the exogenous
control actions are constrained. We assume the network
topology is known and the network is partitioned in several
clusters. The agents continuously evolve by interacting with
some other agents belonging to the same cluster. The global
behavior of one cluster can be exogenously controlled by
acting on the state of only one agent called leader. Due
to communication constraint we assume that the exoge-
nous actions take place at specific isolated instants that,
for practical reasons, will be defined in the next section as
a nearly/quasi periodic sequence. This strategy can be ap-
plied to control fleets of robots that are spatially clustered
(Mahacek et al. 2011). The robots belonging to one cluster
continuously interact but due to energy and communication
constraint long distance interactions occurs discretely.
As mentioned in (Bragagnolo et al. 2014), this model can
be interpreted in terms of opinion dynamics. Each agent has
an opinion that continuously evolves towards a local agree-
ment representing the opinion of the community in which
it lies. At specific instants, the leaders of the communities
interact and they reset their opinion taking into account the
ones of other leaders. The new opinions of the leaders will
reset the values of the local agreements in each community.
Iterating this process all the opinions will tend to a common
value that depends only on the initial conditions and the
network topology.
All the clusters are represented by fixed, strongly connected
directed graphs. In order to enforce consensus the discrete
control action of the leaders will be designed in a decen-
tralized manner by taking into account only informations
provided by some other leaders. In other words, we address
the problem of consensus for agents subject to both contin-
uous and discrete dynamics.
The aim of the paper is to control the consensus behavior
in the network. A first contribution is related to the charac-
terization of the consensus value in the framework under
consideration. This is an important step that has to be done
before imposing the consensus value. We note that the
consensus value depends only on the initial conditions and
the topologies of the involved networks (i.e the networks
associated with the clusters and that associated with the
leaders). It is noteworthy that the consensus value does not
depend on the reset sequence used for the leaders’ state.
In order to study the stability of consensus we propose a
LMI based condition that can be adapted for further goals
of the paper encompassing the design of resets that allows
reaching some network performances. The analysis of the
network behavior finishes with the characterization of the
convergence speed.
Another contribution of the paper is related to the design
of the reset strategy of the leaders’ state. In this part we
design the interaction topology between leaders allowing
to reach an a priori specified consensus value. In this part
the network topology continue to be considered fixed and
known for each cluster. The objective is to modify the con-
sensus value of the whole network by changing the weights

in the network of leaders. The set of consensus values that
can be reached is contained in the interval defined by the
minimum and maximum initial local agreements.
The paper is organized as follows. In Section 2 we for-
mulate the problem under consideration. The agreement
behavior and the possible consensus value are studied in
Section 3. Sufficient conditions for the global uniform ex-
ponential stability of the consensus are provided in Section
4. These conditions are given in the form of a parametric
LMI. Complementary results concerning the design of the
network of interactions between the leaders allowing to
reach a prescribed consensus value and the convergence
speed are presented in Section 5. The problem of numerical
implementation of the proposed developments is consid-
ered in Section 6. Precisely we show how the parametric
LMI can be replaced by a finite number of LMIs. Section
7 is dedicated to numerical simulations which illustrate the
results. Some conclusions and perspectives are presented at
the end of the paper.
Notation. The following standard notation will be used
throughout the paper. The sets of nonnegative integers, real
and nonnegative real numbers are denoted by N, R and
R+, respectively. For a vector x we denote by ‖x‖ its Eu-
clidian norm. The transpose of a matrix A is denoted by
A>. Given a symmetric matrix A ∈ Rn×n, notation A > 0
(A ≥ 0) means that A is positive (semi-)definite. By Ik we
denote the k× k identity matrix. 1k and 0k are the column
vectors of size k having all the components equal 1 and 0,
respectively. We also use x(t−k ) = lim

t→tk,t≤tk
x(t). Through-

out the paper we say that the LMI: A > 0 is satisfied on the
subspace K if and only if x>Ax > 0 for all x ∈ K.

2 Problem formulation

We consider a network of n agents described by the digraph
(i.e. directed graph) G = (V, E) where the vertex set V
represents the set of agents and the edge set E ⊂ V × V
represents the interactions.

Definition 1 A path in a given digraph G = (V, E) is
a union of directed edges

⋃p
k=1(ik, jk) such that ik+1 =

jk, ∀k ∈ {1, . . . , p− 1}.
Two nodes i, j are connected in a digraph G = (V, E) if
there exists at least a path in G joining i and j (i.e. i1 = i
and jp = j).
A strongly connected digraph is such that any two distinct
nodes are connected. A strongly connected component of
a digraph is a maximal subset of the vertex set such that any
of its two distinct elements are connected.

In the sequel, we consider that the agent set V is partitioned
in m strongly connected clusters/communities C1, . . . , Cm
and no link between agents belonging to different com-
munities exists. Each community possesses one particular
agent called leader and denoted in the following by li ∈
Ci, ∀i ∈ {1, . . . ,m}. The set of leaders will be referred to
as L = {l1, . . . , lm}. At specific time instants tk, k ≥ 1,
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called reset times, the leaders interact between them follow-
ing a predefined interaction map El ⊂ L× L. We also sup-
pose that Gl = (L, El) is strongly connected. The rest of the
agents will be called followers and denoted by fj . For the
sake of clarity we consider that the leader is the first element
of its community:

Ci = {li, fmi−1+2, . . . , fmi
}, ∀i ∈ {1, . . . ,m} (1)

where m0 = 0, mm = n and the cardinality of Ci is given
by

|Ci| , ni = mi −mi−1,∀i ≥ 1.

Example 1 To illustrate the notation (1) we consider a sim-
ple network of 6 agents partitioned in 2 clusters having 3
elements. Then C1 = {l1, f2, f3} and C2 = {l2, f5, f6}.

In order to keep the presentation simple and making
an abuse of notation, each agent will have a scalar
state denoted also by li for the leader li and fj for
the follower fj . We also introduce the vectors x =
(l1, f2, . . . , fm1

, . . . , lm, . . . , fmm
= fn)> ∈ Rn and

xl = (l1, l2, . . . , lm)> ∈ Rm collecting all the states of the
agents and all the leaders’ states, respectively.
We are ready now to introduce the linear reset system
describing the overall network dynamics:


ẋ(t) = −Lx(t), ∀t ∈ R+ \ T
xl(tk) = Plxl(t

−
k ) ∀tk ∈ T

x(0) = x0

(2)

where T = {tk ∈ R+ | tk < tk+1, ∀k ∈ N, tk reset time},
L ∈ Rn×n is a generalized Laplacian matrix associated to
the graph G and Pl ∈ Rm×m is a row stochastic (Perron)
matrix associated to the graph Gl = (L, El). Precisely, the
entries of L and Pl satisfies the following relations:


L(i,j) = 0, if (i, j) /∈ E
L(i,j) < 0, if (i, j) ∈ E , i 6= j

L(i,i) = −
∑
j 6=i

Li,j ,∀i = 1, . . . , n
, (3)


Pl(i,j) = 0, if (i, j) /∈ El
Pl(i,j) > 0, if (i, j) ∈ El, i 6= j
m∑
j=1

Pl(i,j) = 1,∀i = 1, . . . ,m

. (4)

The values L(i,j) and Pl(i,j) represent the weight of the
state of the agent j in the updating process of the state of
agent i when using the continuous and discrete dynamics,
respectively.

In particular, L has the following block diagonal structure

L =


L1

. . .

Lm

 , Li ∈ Rni (5)

with Li1ni
= 0ni

and Pl1m = 1m. Due to strong connec-
tivity of Ci, i = 1, . . . ,m and Gl, 0 is simple eigenvalue of
each Li and 1 is simple eigenvalue of Pl.

3 Agreement behavior

In this section we assume that system (2) achieves consen-
sus and we characterize its possible values. Firstly, we show
that each agent tracks a local agreement function which is
piecewise constant. In the second subsection we prove that
the vector of local agreements lies in a subspace defined by
the system’s dynamics and initial condition. Therefore, if
the consensus is achieved and the corresponding consensus
value is x∗ then x∗1m belongs to the same subspace. More-
over, this value is determined only by the initial condition
of the network and by the interconnection structure.
As we have noticed 1ni

is the right eigenvector of Li as-
sociated with the eigenvalue 0 and 1m is the right eigen-
vector of Pl associated with the eigenvalue 1. In the se-
quel, we denote by wi the left eigenvector of Li associated
with the eigenvalue 0 such that w>i 1ni

= 1. Similarly, let
v = (v1, . . . , vm)> be the left eigenvector of Pl associated
with the eigenvalue 1 such that v>1m = 1. Due to the struc-
ture (1) of the communities, we emphasize that each vector
wi can be decomposed in its first component wi,l and the
rest of its components grouped in the vector wi,f .

3.1 Local agreements

Let us first recall a well known result concerning the con-
sensus in networks of agents with continuous time dynamics
(see (Olfati-Saber & Murray 2004) for instance).

Lemma 2 Let G be a strongly connected digraph and L
the corresponding Laplacian matrix. Consider a network of
agents whose collective dynamics is described by ẋ(t) =
−Lx(t). Let us also consider L1 = 0, ω>L = 0 and
ω>1 = 1. Then, the agents asymptotically reach a consensus
and the consensus value is given by x∗ = ω>x(0). Moreover,
the vector ω defines an invariant subspace for the collective
dynamics: ω>x(t) = ω>x(0),∀t ≥ 0

Remark 1 When dynamics (2) is considered, Lemma 2 im-
plies that between two consecutive reset instants tk and
tk+1, the agents belonging to the same community try to
approach a local agreement defined by x∗i (k) = w>i xCi(tk)
where xCi(·) is the vector collecting the states of the agents
belonging to the cluster Ci. Nevertheless, at the reset times
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the value of the local agreement can change. Thus,

w>i xCi(t) = w>i xCi(tk), ∀t ∈ (tk, tk+1) and possibly

w>i xCi(t) 6= w>i xCi(tk), for t /∈ (tk, tk+1)

Therefore, the agents whose collective dynamics is described
by the hybrid system (2), may reach a consensus only if the
local agreements converge one to each other.

3.2 Consensus value

Before presenting our next result, let us introduce the fol-
lowing vectors:

x∗(t) = (x∗1(t), x∗2(t), ..., x∗m(t))> ∈ Rm

u = (v1/w1,l, v2/w2,l, ..., vm/wm,l)
> ∈ Rm

(6)

where x∗i (·) represents the local agreement of the cluster Ci
and v ∈ Rm and wi ∈ Rni are defined at the beginning of
the section as left eigenvectors associated with the matrices
describing the reset dynamics of the leaders and the continu-
ous dynamics of each cluster, respectively. Let us also intro-
duce the matrix of the left eigenvectors of the communities:

W =


w>1 0 · · · 0

0 w>2 · · · 0
...

...
. . .

...

0 0 · · · w>m

 ∈ Rm×n. (7)

It is noteworthy that x∗(t) is time-varying but piecewise
constant: x∗(t) = x∗(k) ∀t ∈ (tk, tk+1).

Proposition 3 Consider the system (2) with L and Pl de-
fined by (3) and (4), respectively. Then,

u>x∗(t) = u>x∗(0), ∀t ∈ R+. (8)

PROOF. The following relation holds:

x∗(t) = Wx(t) ∀t ∈ R+ \ T (9)

Since wi = (wil, wif ), we define a permutation matrix T
such that WT> = U = (U1, U2). The matrix U1 is a diag-
onal matrix corresponding to the leaders’ components wi,l,
while U2 is a block diagonal matrix corresponding to the
followers’ components wi,f . In other terms

U1 =


w1,l 0 · · · 0

0 w2,l · · · 0
...

...
. . .

...

0 0 · · · wm,l

 ∈ Rm×m (10)

U2 =


w1,f 0 · · · 0

0 w2,f · · · 0
...

...
. . .

...

0 0 · · · wm,f

 ∈ Rm×(n−m). (11)

Finally, we can rewrite equation (9) as:

x∗(t) = WT>x(t) = U · (xl(t), xf (t)). (12)

Note that at the reset time tk one has xf (tk) = xf (t−k ). This
yields

x∗(tk)− x∗(t−k ) = U · (xl(tk)− xl(t−k ), xf (tk)− xf (t−k ))

= U · (xl(tk)− xl(t−k ), 0) = U1 · (xl(tk)− xl(t−k )) + U2 · 0
= U1(xl(tk)− xl(t−k )).

Thus,

x∗(tk) = x∗(t−k ) + U1 · (Pl − Im)xl(t
−
k ). (13)

Multiplying equation (13) by u> and using u>U1 = v> as
well as v>Pl = v> one obtains

u>x∗(tk) = u>x∗(t−k ) + u>U1(Pl − Im)xl(t
−
k )

= u>x∗(t−k ) + v>(Pl − Im)xl(t
−
k ) (14)

= u>x∗(t−k ) + v>xl(t
−
k )− v>xl(t−k ) = u>x∗(t−k )

According to Remark 1, x∗(t) remains constant for all t ∈
(tk, tk+1) leading to

u>x∗(t) = u>x∗(0) ∀t ∈ R+. (15)

Corollary 1 Consider the system (2) with L and Pl defined
by (3) and (4), respectively. Assuming the agents of this
system reach a consensus, the consensus value is

x∗ =
u>Wx(0)∑m

i=1 ui
. (16)

PROOF. Let x∗ be the consensus value reached by the sys-
tem (2). It means that x(t) → x∗1n. Thus, when t goes to
∞ in (15) one obtains

u>x∗1n = u>x∗(0) = u>Wx(0)

leading to (16).

In order to simplify the presentation and without loss of
generality, in what follows, we consider that

∑m
i=1 ui = 1.

Remark 2 It is important to note that the consensus value
depends only on the system matrices L, Pl and does not
depend on the reset sequence T .
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A trivial result which may be seen as a consequence of
Corollary 1 is the following.

Corollary 2 If the matrices L,Pl are symmetric (i.e. ith
agent takes into account the state of jth agent as far as jth
takes into account the ith one and they give the same im-
portance one to another) the consensus value is the average
of the initial states.

PROOF. In this case wi = 1
ni
1ni

and v = 1
m1m which

leads to u = (n1

m ,
n2

m , . . . ,
nm

m ). The result follows from (16).

4 Stability analysis

In this section, the stability analysis of the equilibrium point
x∗ will be given by means of some LMI conditions. Basi-
cally we are searching a quadratic Lyapunov function that
ensures stability. Even if the method introduces a certain
conservatism it can be adapted for the computation and con-
trol of the convergence speed as well as for the design of
the reset matrix that guarantees the convergence towards a
prescribed consensus value.
It is important to note that the consensus problem for the
dynamics (2) can be rewritten in term of consensus of dis-
crete dynamics with switching topology studied for instance
in (Ren & Beard 2005). Although sufficient conditions for
stability exist in the literature, the existing tools cannot pro-
vide the consensus value and they cannot be used for the de-
sign of the network allowing to reach prescribed consensus
value with prescribed convergence speed. Thus, it is impor-
tant to introduce our tool for the simpler problem of stability
before going further and complexify it for network design
purposes. It is noteworthy that, the convergence towards a
prescribed consensus value can be interpreted as the control
of the network through the design of few interconnection
weights defined by the matrix Pl.

4.1 Prerequisites

Since the consensus value is computed in the previous sec-
tion we can first define the disagreement vector y = x −
x∗1n. We also introduce an extended stochastic matrix Pex
as follows:

Pex = T>

[
Pl 0

0 In−m

]
T (17)

where T is the permutation matrix used in the proof of
Proposition 3. It is noteworthy that L1n = 0n and Pex1n =
1n. Thus, the disagreement dynamics is exactly the same as
the system one:

ẏ(t) = −Ly(t), ∀t ∈ R+ \ T
y(tk) = Pexy(t−k ) ∀tk ∈ T
y(0) = y0

. (18)

Due to uncertainties that affect the reset instant in practice,
instead of considering a periodic reset sequence, we consider
a nearly periodic one defined by tk+1−tk = δ+δ′ where δ ∈
R+ is the fixed period and δ′ ∈ ∆ is a jitter belonging to the
compact set ∆ ⊂ R+. Thus the set of reset times T belongs
to the set of all admissible reset sequences associated with
∆:

Φ(∆) ,
{
{tk}k∈N, tk+1 − tk = δ + δ′k, δ

′
k ∈ ∆,∀k ∈ N

}
(19)

where we always consider t0 = 0.

Remark 3 • We note that in practice periodic events are
difficult to ensure while nearly periodic is simple. In the case
of social network periodic meetings can be impossible while
quasi periodic ones are more realistic. Thus, quasi-periodic
reset sequences increase the accuracy of the model with re-
spect to practical applications.
• The case δ′k = 0,∀k ∈ N recovers the purely periodic
reset strategy. In this situation system (2) rewrites as a dis-
crete dynamics x(tk+1) = Pexe

−Lδx(tk). The stability is-
sue in this case can be solved without using the LMI based
criterium presented below. Indeed, in order to guarantee the
consensus, we can use the strong connectivity of the clusters
and of the graph of leaders in order to prove that Pexe−Lδ
is not only stochastic but also primitive (i.e. irreducible and
aperiodic). This is a necessary and sufficient condition to
reach consensus starting from any initial condition.

We recall that for any T ∈ Φ(∆) and any initial condition
x0 the system (2) has a unique solution denoted by ϕ(t, x0).

Definition 4 We say that the equilibrium y∗ = 0n of the
system (18) is Globally Uniformly Exponentially Stable
(GUES) with respect to the set of reset sequences Φ(∆) if
there exist positive scalars c, λ such that for any T ∈ Φ(∆),
any y0 ∈ Rn, and any t ≥ 0

‖ϕ(t, y0)‖ ≤ ce−λt‖y0‖ (20)

The following theorem is instrumental:

Theorem 5 (Theorem 1 in (Hetel et al. 2013)) Consider
the system (18) with the set of reset times T ∈ Φ(∆). The
equilibrium y∗ = 0n is GUES if and only if there exists
S[·] : Rn 7→ Rn×n, S[y] = S>[y] = S[ay] > 0, ∀x 6= 0, a ∈
R, a 6= 0 defining a positive function V : Rn 7→ R+ strictly
convex,

V (y) = y>S[y]y,

homogeneous (of second order), V (0) = 0, such that
V (y(tk)) > V (y(tk+1)) for all y(tk) 6= 0, k ∈ N and any
of the possible reset sequences T ∈ Φ(∆).

4.2 Periodic reset case

In order to fix the ideas and provide a simpler version of
our stability result we start by briefly discussing the case
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∆ = {0} i.e. the resets take place periodically with the
period δ.

Proposition 6 The consensus x∗1n is GUES for (2) if and
only if there exists a positive definite matrix S such that the
LMI(

In − 1nu>W
)>
S
(
In − 1nu>W

)
−(

Y (δ)− 1nu>W
)>
S
(
Y (δ)− 1nu>W

)
> 0,

Y (δ) , Pexe
−L(δ)

(21)

is satisfied on span{1n}⊥. Moreover, the stability is charac-
terized by the quadratic Lyapunov function V (t) = (x(t)−
x∗1n)>S(x(t)− x∗1n) satisfying V (tk) > V (tk+1).

PROOF. The stability of x∗1n is equivalent to the
existence of a quadratic Lyapunov function V (t) =
(x(t)−x∗1n)>S(x(t)−x∗1n) satisfying V (tk) > V (tk+1),
∀x(tk) /∈ span{1n}. Therefore, x∗1n is GUES for (2) if
and only if(

x(tk)− 1nx∗
)>
S
(
x(tk)− 1nx∗

)
>(

x(tk+1)− 1nx∗
)>
S
(
x(tk+1)− 1nx∗

)
,

∀ x(tk) /∈ span{1n}

Consequently, using u>Wx(tk) = x∗ and x(tk+1) =
Y (δ)x(tk) one gets that x∗1n is GUES for (2) if and only if

x(tk)>
(
In − 1nu>W

)>
S
(
In − 1nu>W

)
x(tk) >

x(tk)>
(
Y (δ)− 1nu>W

)>
S
(
Y (δ)− 1nu>W

)
x(tk),

∀ x(tk) /∈ span{1n} (22)

Let us note that any x(tk) ∈ Rn can be decomposed as
x(tk) = x̄(tk) + x̃(tk) with x̄(tk) ∈ span{1n}⊥ and
x̃(tk) ∈ span{1n}. Moreover,(
In − 1nu>W

)
x̃(tk) = 0,

(
Y (δ)− 1nu>W

)
x̃(tk) = 0

hence(
In − 1nu>W

)
x(tk) =

(
In − 1nu>W

)
x̄(tk),(

Y (δ)− 1nu>W
)
x(tk) =

(
Y (δ)− 1nu>W

)
x̄(tk)

Therefore (22) means that LMI-simple is satisfied on
span{1n}⊥.

Remark 4 From theoretical point of view Proposition (6)
is equivalent to the stability of the consensus value x∗. In

practice, solving (21) may not a simple task in the case of
very large networks. Indeed, existing LMI solvers may fail to
solve LMI problems involving a large number of variables.
Nevertheless, we can say that our method provides numer-
ically tractable necessary and sufficient conditions for sta-
bility of x∗.

Throughout the rest of the paper the admissible reset se-
quences are quasi-periodic, i.e. defined by (19). As explained
in Remark 3 this increases the accuracy of the model but also
its complexity. Since the matrix exponential is not mono-
tone we cannot consider that the worst case scenario occurs
for the maximum tk+1 − tk allowed by (19). Therefore, we
cannot reduce the stability of system (2) to stability analysis
of the discrete time linear time invariant system defined by
Pexe

−L(δ+δmax) . Consequently, the results will be formu-
lated in terms of parametric LMIs. Nevertheless, we propose
to use convex embedding techniques to transform these in-
finite dimensional inequalities into more tractable LMIs at
the expense of introducing some conservatism.

4.3 Parametric LMI condition

In the sequel, we define a quasi-quadratic Lyapunov func-
tion satisfying Theorem 5 by means of some LMI. There-
fore, the following result gives sufficient conditions for the
stability of the equilibrium point y∗ = 0n for the system
(18) or equivalently of x∗1n for the system (2). Even if other
sufficient condition for GUES can be given, we present the
following result since it will be useful in the next section.

Theorem 7 Consider the system (2) with T in the admis-
sible reset sequences Φ(∆). If there exist matrices S(δ′),
S(·) : ∆ 7→ Rn×n continuous with respect to δ′, S(δ′) =
S>(δ′) > 0, δ′ ∈ ∆ such that the LMI

(
In − 1nu>W

)>
S(δa)

(
In − 1nu>W

)
−(

Y (δa)− 1nu>W
)>
S(δb)

(
Y (δa)− 1nu>W

)
> 0,

Y (δa) , Pexe
−L(δ+δa) (23)

is satisfied on span{1n}⊥ for all δa, δb ∈ ∆, then x∗ is
GUES for (2). Moreover, the stability is characterized by
the quasi-quadratic Lyapunov function V (t) = V (x(t)) ,
max
δ′∈∆

(x(t)−x∗1n)>S(δ′)(x(t)−x∗1n) satisfying V (tk) >

V (tk+1).

PROOF. Using the disagreement vector y(t) = x(t)−x∗1n
and supposing that there exist matrices S(δ′) satisfying (23)
for all δa, δb ∈ ∆ we define the Lyapunov matrix

S[y] = S(δ∗(y)) with δ∗(y) = arg max
δ′∈∆

y>S(δ′)y (24)
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Following (Hetel et al. 2013) the Lyapunov function

V (y) = y>S[y]y = max
δ′∈∆

y>S(δ′)y,

is convex and homogeneous of the second order.
Let us show now that S(·) solution of (23) ensures that V (·)
defined above satisfies Theorem 5.
Following the proof of Proposition 6, the LMI (23) yields(
x(tk)− 1nx∗

)>
S(δa)

(
x(tk)− 1nx∗

)
>(

Y (δa)x(tk)− 1nx∗
)>
S(δb)

(
Y (δa)x(tk)− 1nx∗

)
,

∀δa, δb ∈ ∆, x(tk) ∈ span{1n}⊥ (25)

For any {tk}k∈N ∈ Φ(∆) we have x(tk+1) = Y (δ′k)x(tk)
with some δ′k ∈ ∆. Thus, for δa = δ′k, (25) rewrites as:(

x(tk)− x∗1n
)>
S(δ′k)

(
x(tk)− x∗1n

)
>(

x(tk+1)− x∗1n
)>
S(δb)

(
x(tk+1)− x∗1n

)
∀δ′k, δb ∈ ∆, x(tk) ∈ span{1n}⊥

or equivalently

y(tk)>S(δ′k)y(tk) > y(tk+1)>S(δb)y(tk+1) ∀δ′k, δb ∈ ∆

Taking δb = δ∗(y(tk+1)), defined by (24) one obtains

V (y(tk)) > y(tk)>S(δ′k)y(tk) > V (y(tk+1))

for all y(tk), which ends the proof.

4.4 Decay rate analysis

Once the global uniform exponential stability of x∗ is en-
sured by Theorem 7 we can compute the convergence speed
of the state of system (2). In other words, we are searching
to evaluate λ in (20). Straightforward computation shows

that λ =
lnλd

δ + δmax
where δmax = max

δ′∈∆
δ′ and λd defined

as the decay rate of the linear difference inclusion (LDI)

x(tk+1) ∈ F(x(tk)), k ∈ N (26)

where
F(x) =

{
Pexe

−L(δ+δ′), δ′ ∈ ∆
}
.

Precisely, for the LDI (26) there exist M > 0 and ξ ∈ [0, 1]
such that

‖x(tk)− x∗1n‖ ≤Mξk‖x(0)− x∗1n‖, ∀k ∈ N (27)

and λd is defined as the smallest ξ satisfying (27).
Thus, in order to quantify the convergence speed of system

(2), we only have to evaluate λd. Let us denote again y =
x − x∗1n and note that V (y) defined by Theorem 7 is a
norm. That implies there exist α, β > 0 such that

α‖y‖2 ≤ V (y) ≤ β‖y‖2.

Consequently, one obtains that the decay rate λd coincides
with the decay rate of V . Thus, the following result can be
derived directly from Theorem 7.

Proposition 8 Assume there exist α > 0, β > 0, ξ ∈ (0, 1]
and the matrices S(δ′) = S>(δ′) > 0, δ′ ∈ ∆ defined by
S(·) : ∆ 7→ Rn×n continuous with respect to δ′, fulfilling
the following constraints

αIn ≤ S(δ′) ≤ βIn, ∀δ′ ∈ ∆

ξ2
(
In − 1nu>W

)>
S(δa)

(
In − 1nu>W

)
−(

Y (δa)− 1nu>W
)>
S(δb)

(
Y (δa)− 1nu>W

)
> 0,

Y (δa) , Pexe
−L(δ+δa). (28)

on span{1n}⊥ for all δa, δb ∈ ∆. Then, the decay rate is
defined as

λd = min
ξ satisfies (28)

ξ

and

‖x(tk)− x∗1n‖ ≤
β

α
(λd)

k‖x(0)− x∗1n‖, ∀k ∈ N.

Remark 5 It is noteworthy that 0 < λd ≤ 1 and for a priori
fixed values of α, β we can use the bisection algorithm to
approach as close as we want the value of λd.

Remark 6 To complete the decay rate analysis, we can con-
sider that Pex, L and λd are fixed and perform a line search
to find the nominal reset period δ that ensures the conver-
gence speed constraint. In other words, we check if (28) has
solutions for ξ = λd and δ heuristically sweeping the pos-
itive real axis. Moreover, we can progressively decrease λd
and re-iterate the line search in order to find the smaller
reachable decay rate.

5 Convergence toward a prescribed value

In what follows we assume that the value x∗ is a priori
fixed and at least a vector u satisfying (16) exists. Under
this assumption we are wondering if there exists a matrix
Pl that allows system (2) to reach the consensus value x∗.
It is worth noting that the network topology is considered
fixed and known for each cluster. Under these assumptions,
a consensus value is imposed by a certain choice of v such
that v>1m = 1 and v left eigenvector of Pl associated with
the eigenvalue 1. In other words we arrive to a joint design of
Pl and the Lyapunov function V guaranteeing the trajectory
of (2) ends up on x∗.
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Theorem 9 Let us consider the system (2) with T in the
admissible reset sequences Φ(∆) and let x∗ be a priori
fixed by a certain choice of v. If there exist matrices R(δ′),
R(·) : ∆ 7→ Rn×n continuous with respect to δ′, R(δ′) =
R>(δ′) > 0, δ′ ∈ ∆ and Pl stochastic such that the LMI Z(δa)

(
Y (δa)− 1nu>W

)>(
Y (δa)− 1nu>W

)
R(δb)

 > 0,

Y (δa) , Pexe
−L(δ+δa) (29)

Z(δa) ,
(
In − 1nu>W

)>
+
(
In − 1nu>W

)
−R(δa)

with the constraint
v>Pl = v>

is satisfied on span{1n}⊥ for all δa, δb ∈ ∆, then x∗ is
GUES for (2). Moreover, the stability is characterized by
the quasi-quadratic Lyapunov function V (t) = V (x(t)) =
max
δ′∈∆

(x(t) − x∗1n)>R(δ′)−1(x(t) − x∗1n) satisfying

V (tk) > V (tk+1).

Remark 7 To obtain the results in the periodic resets frame-
work, one has to replace δa = δb = 0 in (29). Doing so
one obtain an LMI instead of a parametric LMI. The same
remark holds for Theorem 10.

PROOF of Theorem 9. First notice that(
(In − 1nu>W )>S(δa)− In

)
S(δa)−1×(

S(δa)(In − 1nu>W )− In
)
≥ 0

leads to

(In − 1nu>W )>S(δa)(In − 1nu>W ) ≥
(In − 1nu>W )> + (In − 1nu>W )− S(δa)−1

Thus, once the solution to the LMI problem (29) is obtained
we can define S(δa) = R(δa)−1 and S(δb) = R(δb)

−1.
Then: Z(δa)

(
Y (δa)− 1nu>W

)>(
Y (δa)− 1nu>W

)
S(δb)

−1

 > 0

where

Z(δa) = (In − 1nu>W )> + (In − 1nu>W )− S(δa)−1

and hence Z̄(δa)
(
Y (δa)− 1nu>W

)>(
Y (δa)− 1nu>W

)
S(δb)

−1

 > 0

where

Z̄(δa) = (In − 1nu>W )>S(δa)(In − 1nu>W ).

By Schur complement, the last LMI is nothing than (23) in
Theorem 7. Moreover, the constraints v>Pl = v>, Pl1m =
1m and the coefficients of Pl positive ensure the matrix Pl
is stochastic and the consensus value is exactly x∗.

5.1 Convergence toward a prescribed value with a pre-
scribed decay rate

Combining the results of Proposition 8 and Theorem 9 we
can design the matrix Pl that allows to reach an a priori
given consensus value x∗ with a decay rate inferior to an a
priori fixed value. Precisely, the following result holds.

Theorem 10 Let us consider the system (2) with T in the
admissible reset sequences Φ(∆) and let x∗ be a priori fixed
by a certain choice of v. Let us also consider λ̄ ∈ (0, 1) a
priori fixed. If there exist matrices R(δ′), R(·) : ∆ 7→ Rn×n
continuous with respect to δ′, R(δ′) = R>(δ′) > 0, δ′ ∈ ∆
and Pl row stochastic such that the LMI Z(δa)

(
Y (δa)− 1nu>W

)>(
Y (δa)− 1nu>W

)
λ̄2R(δb)

 > 0,

Y (δa) , Pexe
−L(δ+δa) (30)

Z(δa) ,
(
In − 1nu>W

)>
+
(
In − 1nu>W

)
−R(δa)

with the constraint
v>Pl = v>

is satisfied on span{1n}⊥ for all δa, δb ∈ ∆, then x∗ is
GUES for (2) and (27) is satisfied for ξ = λ̄ and M = β/α
where β and α are the minimum and the maximum eigen-
value of R(δ′), δ′ ∈ ∆, respectively.

PROOF. If (30) holds, following the proof of Theorem 9
one obtains that x∗ is GUES for (2) and (28) is satisfied for
ξ = λ̄ and S(δ′) = R(δ′)−1, δ′ ∈ ∆. Thus from Proposition
8 one concludes that λd ≤ λ̄.

Remark 8 It is noteworthy that LMI (30) implies LMI (28)
but they are not equivalent. Therefore, the decay rate λd is
smaller than λ̄.

6 Numerical implementation

In order to render this paper self-contained, in this section
we consider the problem of approximation of the paramet-
ric LMI (23) by a finite number of conditions using poly-
topic embeddings. Obviously this approximation introduces
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a supplementary conservatism that can be reduced increas-
ing the number of vertices of the polytope. On the other
hand, as we will see in the following, increasing the number
of vertices increases the computational load.

As in (Hetel et al. 2013) the matrix exponential e−Lδa is ap-

proximated by its hth- order Taylor expansion
h∑
i=0

(−L)i

i!
δia.

Thus the set {X ∈ Rn×n | X = e−Lδa , δa ∈ ∆} can
be embedded into the polytopic set defined by the vertices
Z1, . . . , Zh+1 where

Z1 = In

Zi =

i−1∑
l=0

(−L)l

l!
δlmax, ∀i ∈ {2, . . . , h+ 1}

with δmax = max
δ′∈∆

δ′, (−L)0 = In and 0! = 1. Then, The-

orem 7 can be replaced by the following more conservative
but numerically tractable result.

Theorem 11 Consider the system (2) with T in the admis-
sible reset sequences Φ(∆). If there exist symmetric positive
definite matrices Si, 1 ≤ i ≤ h+ 1 such that the LMI

(
In − 1nu>W

)>
Si

(
In − 1nu>W

)
−(

Y (δ)Zi − 1nu>W
)>
Sj

(
Y (δ)Zi − 1nu>W

)
> 0,

Y (δ) , Pexe
−L(δ) (31)

is satisfied on span{1n}⊥ for all i, j ∈ {1, . . . , h+1}, then
x∗ is GUES for (2).

PROOF. Assume that the set of LMIs (31) is satisfied for
a set of matrices Si, 1 ≤ i ≤ h+ 1. Thus,

(
In − 1nu>W

)>(h+1∑
i=1

µiSi

)(
In − 1nu>W

)
−

(
Y (δ)

h+1∑
i=1

µiZi − 1nu>W
)>(h+1∑

i=1

µjSj

)
×

(
Y (δ)

h+1∑
i=1

µiZi − 1nu>W
)
> 0,

is satisfied for all µi, µj ∈ [0, 1], i, j ∈ {1, . . . , h + 1}

such that
h+1∑
i=1

µi =

h+1∑
j=1

µj = 1. It is noteworthy that the

polytopic embedding provided above implies that for all
δa ∈ [0, δmax] there exists the set of scalars µi ∈ [0, 1] such

that e−Lδa =

h+1∑
i=1

µiZi and
h+1∑
i=1

µi = 1. In other words,

Theorem 7 holds with S(δ′) =

h+1∑
i=1

µi(δ
′)Si.

7 Illustrative examples

Throughout this section the parametric LMIs in Theorems 7,
9 and 10 are replaced by a finite number of LMIs following
the reasoning in Section 6. In order to limit the number of
LMIs to solve, we have chosen h = 5 and embed the set
{X ∈ Rn×n | X = e−Lδa , δa ∈ ∆} into the polytopic set
defined by the vertices Z1, . . . , Zh+1.

7.1 Small network analysis

An academic example consisting in a network of 5 agents
partitioned in 2 clusters (n1 = 3, n2 = 2) is used in the
sequel to illustrate the theoretical results. We consider the
dynamics (2) with

L =



4 −2 −2 0 0

−1 1 0 0 0

0 −2 2 0 0

0 0 0 3 −3

0 0 0 −1 1


, Pl =

[
0.45 0.55

0.25 0.75

]
(32)

and the reset sequence given by δ = 0.5 and δ′k randomly
chosen in ∆ = [0, 0.2]. The initial condition of the system is
x(0) = (8, 7, 9, 2, 3) and the corresponding consensus value
computed by (16) is x∗ = 4.6757. The convergence of the 5
agents towards x∗ is illustrated in Figure 1 emphasizing that
the leaders trajectories are non-smooth while the followers
trajectories are. The table below collects the first 10 time

0 5 10 15 20
2

3

4

5

6

7

8

9

time (s)

x
(t
)

 

 

Cluster 1

Cluster 2

Leader 2

Leader 1

Fig. 1. The state-trajectories of the agents converging to the cal-
culated consensus value.
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intervals between consecutive reset instants. As expected,
these time intervals have random lengths within [0.5, 0.7]
and no monotony occurs. The jumps and decreasing of the

t1 − t0 0.6189 s t6 − t5 0.5979 s

t2 − t1 0.6131 s t7 − t6 0.5372 s

t3 − t2 0.6433 s t8 − t7 0.6401 s

t4 − t3 0.6023 s t9 − t8 0.6965 s

t5 − t4 0.6553 s t10 − t9 0.6613 s

Table 1
The length of the first 10 time intervals between consecutive reset
instants.

Lyapunov function defined by Theorem 7 are pointed out
in Figure 2. We emphasize that the matrices S(δ′) used to
define V are obtained as in the proof of Theorem 11 after
solving (31) for h = 5. In order to illustrate the independence

0 5 10 15 20
0

10

20

30

40

50

60

70

80

time (s)

V
(t
)

Fig. 2. The behavior of the Lyapunov function given by Theorem
7.

of the consensus value on the reset sequence (see Remark
2), we also considered δ = 5. In this case, as can be seen in
Figure 3, the local agreements are reached before each reset
and we better emphasize their piece-wise constant behavior
(see Remark 1). As expected the consensus value remains
x∗ = 4.6757. Coming back to δ = 0.5, to find the decay
rate λd we use the bisection algorithm as stated in Remark
5. In Figure 4 we demonstrate that the initial conditions of
Lyapunov function may vary due to the conditioning of the
matrix S(δ), but the decay rate remains the same. The value
of λd obtained was λd = 0.855 and the number of iterations
of the bisection algorithm is k = 30. Analyzing equation
(15) we obtain that the consensus value is always a convex
combination of the initial agreement values of the clusters.
In the present case, one has two clusters and the two initial
agreements are 2.75 and 7.5. Thus, we can try to reach only
consensus values belonging to [2.75, 7.5]. In Figure 5 the
consensus value is fixed at x∗ = 6.5 and the associated Pl
matrix is

Pl =

[
0.6870 0.3130

0.7825 0.2175

]
.

The decay rate associated with this Pl is λd = 0.782 and

0 20 40 60 80 100 120 140 160
2

4

6

8

time (s)

x
(t
)

16 18 20 22 24 26 28 30 32 34 36

4

5

6

time (s)

x
(t
)

Fig. 3. Top: State trajectories of the agents converging to the piece–
wise constant local agreements. The local agreements approach
one of each other at the reset times. Bottom: Zoom emphasizing
the state behavior. Jumps are present only in the leaders trajecto-
ries.
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Fig. 4. Lyapunov function for different conditionings

can be improved by using Theorem 10. Imposing λ̄ = 0.82
in (30) one gets

Pl =

[
0.6425 0.3575

0.8937 0.1063

]
. (33)

and for this Pl, the corresponding decay rate is λd =
0.756 < λ̄ as noticed in Remark 8. Similar analysis has
been done for x∗ = 6. When Pl is designed without decay
rate constraint one gets λd = 0.799 and it is improved to
λd = 0.747 designing Pl based on Theorem 10.

In Figure 6 the consensus value is fixed as x∗ = 3.5 and
based on Theorem 9 and the polytopic embedding described
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Fig. 5. The states of a system (x∗ = 6.5).

in the previous Section we get Pl matrix is

Pl =

[
0.3010 0.6990

0.0874 0.9126

]
. (34)

Finally, in Figure 7 the associated Lyapunov function is

0 5 10 15 20
2

3

4

5

6

7

8

9

time (s)

x
(t
)

 

 

Cluster 1

Cluster 2

Leader 1

Leader 2

Fig. 6. The states of a system (x∗ = 3.5).

plotted for both consensus values. Numerical simulations

have confirmed the intuition that Pl tends to

[
0 1

0 1

]
when x∗

approaches the initial local agreement of the second cluster

2.75 while Pl tends to

[
1 0

1 0

]
when x∗ approaches 7.5 the

initial local agreement of the first cluster .

7.2 Larger network analysis

In order to prove that the algorithms are implementable in
real networks we consider in the following a larger system.
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∗ = 6.5

0 5 10 15 20
0

50

100

time (s)

V
(t
)

x
∗ = 3.5

Fig. 7. The Lyapunov function of the system

Precisely, we present an example consisting of a network of
100 agents partitioned in 3 clusters. The size of the clusters
as well as the connections between agents are randomized,
resulting in non-symmetric matrices L and Pl. The random
initialization leads at n1 = 59, n2 = 20, n3 = 21 and

Pl =


0.1538 0.8080 0.0382

0.4886 0.3876 0.1238

0.1266 0.2805 0.5929

 . (35)

The initial condition is also randomized but, in order to guar-
antee a relatively large interval for the possible consensus
value, for the first cluster the initial states of the agents are
randomly chosen within [0, 3], for the second one within
[3, 7] and for the third one within [7, 10]. The correspond-
ing initial local agreement values are 1.2970, 5.2578 and
8.7556, respectively. We illustrate the theoretical results by
using the dynamics (2) with the reset sequence given by
δ = 0.5. The corresponding consensus value computed by
(16) is x∗ = 4.2562. The convergence of the 100 agents
towards x∗ is shown in Figure 8.

To find the decay rate λd we use the bisection algorithm
as stated in Remark 5. In Figure 9 we demonstrate that the
initial conditions of Lyapunov function may vary due to the
conditioning of the matrix S(δ), but the decay rate remains
the same. The value of λd obtained was λd = 0.9712 and the
number of iterations of the bisection algorithm is k = 10.

As noticed before, from (15) we deduce that the consensus
value is always a convex combination of the initial agree-
ment values of the clusters. Therefore, for the initialization
above, any consensus value can be imposed between 1.2970
and 8.7556. In Figure 10 the consensus value was fixed at

11



0 10 20 30 40 50 60 70 80 90 100
0

5

time (s)

x
(t
)

Cluster 1

0 10 20 30 40 50 60 70 80 90 100
0

5

10

time (s)

x
(t
)

Cluster 2

0 10 20 30 40 50 60 70 80 90 100
0

5

10

time (s)

x
(t
)

Cluster 3

Fig. 8. The state-trajectories of the agents converging to the cal-
culated consensus value.
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Fig. 9. Lyapunov function for different conditionings

x∗ = 6.5 and one obtained Pl matrix is

Pl =


0.0643 0.3720 0.5637

0.3064 0.0358 0.6578

0.0360 0.1917 0.7723

 .

8 Conclusions and perspectives

In this work we have considered networks of linear agents
partitioned in several clusters disconnected one of each other.
The consensus is forced by designing a decentralized reset
strategy that exogenously control the state of one agent in
each cluster. On one hand we have characterized the consen-
sus value for this type of networks and we have analyzed its
stability as well as the convergence speed. On the other hand,
we have designed the interconnection network between the
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Fig. 10. The states of a system (x∗ = 6.5).

leaders allowing to reach a prescribed consensus value. Our
results are computationally oriented since they are given in
LMI form. Two academic examples illustrate the entire the-
oretical developments.

Future investigations may consider the influence of the lead-
ers centrality on the convergence speed. Other interesting
issue would be related to the influence of the nominal reset
period δ on the decay rate λd. Finally, we consider that net-
works with impulsive leaders having event-based reset rules
may be of particular interest.
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