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Abstract— We present an emulation-based controller
and transmission policy design procedure for nonlinear
wireless networked control systems. The objective is to
ensure the stability of the closed-loop system, in a stochas-
tic sense, together with given control performance, while
minimizing the average power used for communications.
The controller is designed by emulation, i.e., ignoring the
network, and the transmission power is given by threshold
policies. These policies involve waiting a given amount of
time since the last successful transmission instant, as well
as requiring that the measured wireless channel gain is
above a given threshold, before attempting a new transmis-
sion. Two power control laws are investigated: i) a constant
power and ii) a power level inversely proportional to the
channel gain. We explain how to select the waiting time,
the channel threshold and the power level to minimize the
induced average communication power, while ensuring the
desired control objectives.

I. INTRODUCTION

This work aims at minimizing the energy consumption
of wireless networks, which are being increasingly deployed
in control systems [1]. Since 2011, about 2–6% of the en-
ergy consumption worldwide arises from the communications
and information industry, and a significant portion of this
is contributed by the wireless and mobile communications
companies [2]. Improving the efficiency of this technology
has therefore gained a rising amount of interest in recent
years [3]. For mobile devices such as cellular phones, laptops,
and mobile robots, smart and careful management of the
energy utilized is essential due to the limited supply of energy
available. For the case of fixed infrastructure connected to
wireless networks, energy consumption has become a critical
issue due to environmental and economic factors and has led
to a large amount of research and publications [4], [5].

In the wireless communication literature, various studies
have investigated the design of energy-efficient communication
systems to maximize the ratio of data rate to the energy
consumed, or to minimize energy while maintaining a certain
quality of service parameter, see [3] for an extensive survey.
One of the most relevant techniques to improve energy effi-
ciency is that of transmission power control. In works like
[5] and [6], transmission power is optimized so that the ratio
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between the number of packets transmitted successfully to the
power consumed is maximized. While these works are fully
relevant in the context of regular communication systems, they
are a priori not well-suited for wireless networked control
systems (WNCS), which have different, specific requirements
on control performance rather than maximizing data rates.

A few researchers have recently published results, which
consider the problem above see e.g., [7]–[11], with some of
them utilizing power control [9]–[11]. For example, an event-
based power control policy using a threshold on the error
covariance has been shown to perform optimally for state es-
timation in [9]. Energy-aware event-triggered strategies, in the
sense that communications are only attempted when a state-
dependent criterion holds, have recently been proposed for
state-feedback controllers, see [12]–[14]. While event-based
strategies are very promising, they require constant monitoring
of the plant state (or output), which may be problematic
in some set-ups for which time-triggered paradigms would
be more appropriate. Hence, when communication instants
depend on time, instead of the state, results on communication
energy minimization have been developed in [15], assuming
packets are always successfully transmitted but with varying
costs, and in [16], in which the average transmission power is
minimized while ensuring the desired control performance for
stochastic communication. Even though recent works like [17]
and [18] explore power control for interference management
in nonlinear WNCS over static channels, results for nonlinear
systems are crucially lacking and the design of transmission
policies over a time-varying channel are missing even for
linear systems.

In this work, we propose transmission power policies for
nonlinear discrete-time systems controlled over a wireless
network. For this purpose, we develop threshold-based trans-
mission policies, i.e., transmissions are not attempted until a
certain threshold is passed on i) the time elapsed since the
last successful communication and ii) the measured channel
quality (or channel gain). Transmissions are attempted with
a power level determined by the considered power policy
until the packet is received as long as these conditions are
satisfied. We consider both constant power policies and chan-
nel inversion policies, wherein the power level is inversely
proportional to the channel gain. While inversion policies
are in general more efficient, some communication devices
and protocols may not allow the transmission power to be
controlled freely. In such cases, constant power policies are
a relevant alternative. The control law, on the other hand,
is based on emulation, i.e., it is designed disregarding the



presence of the wireless link to ensure the desired control
objective. This allows the user to utilize their favorite discrete-
time control methodology. In particular, we merely require
the controller to be such that the origin of the closed-loop
system is uniformly globally asymptotically stable, with a
known Lyapunov function. Regarding the set-up, we inves-
tigate output-based control systems in which the wireless link
is used to communicate information from either the sensor to
the controller, or from the controller to the actuator, but not
when both links are over a wireless network.

The main contributions are the following.
• We formulate a framework for the design of threshold-

based transmission policies for nonlinear discrete-time
systems, in contrast to several works that focus on trans-
mission policies for linear systems like [13], [16].

• We provide a set characterizing the usable length of the
time interval before any transmission is attempted after
a successful communication, the channel threshold, and
the transmission power, which guarantee stability and a
desired convergence rate of a given Lyapunov function in
a stochastic sense.

• We then observe that the minimization of the average
communication power, while ensuring the desired control
property, is a non-convex problem for both constant
power and channel inversion policies. Consequently, we
elucidate the following relevant sub-cases over which the
minimization problem is solved: i) pure-time based in
which the power control is independent of the channel
quality, ii) pure-channel based in which the power control
is independent of the time since the last successful
communication, iii) almost sure communications in which
the channel threshold and transmission power are such
that communication is almost always successful when
attempted and finally iv) unsaturated polices in which
the channel thresholds are such that channel inversion
results in a transmission power smaller than the maximum
allowable one.

Compared to the preliminary version of this work presented
in [19], which investigated purely time-based thresholds and
constant power policies, in the present work, we additionally
propose channel-based thresholds and channel inversion power
policies, and account for a time-varying wireless channel,
which is a more realistic assumption.

The rest of the paper is organized as follows: In Section II
we formally state the problem and the main assumptions
considered. In Section III, we provide sufficient conditions
to ensure the desired stochastic stability and performance
properties of the WNCS. Next, in Section IV, we formalize
the optimization problem under the constraint imposed by
the stochastic stability and performance requirement, and
then derive explicit solutions for relevant special cases. In
Section V, we elaborate on one of the standing assumptions
stated in Section II. Finally, we provide numerical illustrations
of our proposed communication strategy in Section VI before
concluding in Section VII.

Notation. Let R := (−∞,∞), R≥0 := [0,∞), Z>0 :=
{1, 2, . . .} and Z≥0 := {0, 1, 2, . . .}. We use Pr(·) for the
probability and E[·] for the expectation taken over the relevant
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Fig. 1. Schematic of the networked control system.

stochastic variables. A function α : R≥0 → R≥0 is of class
K∞ (α ∈ K∞) if it is continuous, strictly increasing, α(0) = 0
and lims→∞ α(s) =∞. For any x1 ∈ Rn1 and x2 ∈ Rn2 with
n1, n2 ∈ Z>0, (x1, x2) stands for (x>1 , x

>
2 )> ∈ Rn1+n2 .

II. PROBLEM STATEMENT

In this section, we first describe the plant and controller
model, followed by the communication model, the threshold
policies and finally the objectives.

A. Plant and controller model

We consider the discrete-time plant model given by

xp(t+ 1) = fp(xp(t), u(t))
y(t) = gp(xp(t)),

(1)

where t ∈ Z≥0 is the time, xp(t) ∈ Rsp is the plant
state, u(t) ∈ Rsu is the control input, y(t) ∈ Rsy is the
measured output used for control and sp, su, sy ∈ Z>0 are
their respective dimensions.

We proceed by emulation, and thus assume that we know
a stabilizing output-feedback controller for system (1) of the
form

xc(t+ 1) = fc(xc(t), y(t))
u(t) = gc(xc(t), y(t)),

(2)

where xc(t) ∈ Rsc is the controller state. When the controller
is static, we simply have u(t) = gc(y(t)) in (2). At this
stage, any controller design techniques can be employed to
construct (2), like backstepping, feedback linearization etc.
The assumption we make on the closed-loop system (1)-(2)
is formalized in the sequel.

We are interested in the scenario where plant (1) and
controller (2) communicate over a wireless channel as illus-
trated in Figure 1, specifically, the wireless link is used to
communicate information from the sensors to the controller.
As a result, the feedback loop is no longer closed at every
time instant t ∈ Z≥0, but only at the instants tk ∈ T ⊆
Z≥0, k ∈ Z>0 when communication is successful. In the
absence of communication, the controller uses a so-called
networked version [20] of the output measurement denoted
by ŷ. Controller (2) becomes in this context

(
xc(t+ 1)
u(t)

)
=


(
fc(xc(t), y(t))
gc(xc(t), y(t))

)
for t ∈ T(

fc(xc(t), ŷ(t))
gc(xc(t), ŷ(t))

)
for t ∈ Z≥0 \ T .

(3)



The networked version of the output ŷ generated at the
controller evolves according to the following dynamics

ŷ(t+ 1) =

{
f̂(gp(xp(t))) if t ∈ T
f̂(ŷ(t)) if t ∈ Z≥0 \ T ,

(4)

where f̂ is the holding function applied, which can take
various forms including the zero-order-hold strategy f̂(ŷ) = ŷ,
or the zeroing policy f̂(ŷ) = 0 for any ŷ ∈ Rsy . Note that ŷ is
never reset to the actual value of y in (4). This is in accordance
with the way we model the closed-loop system in the sequel,
in which u(t) and xc(t + 1) depends on (xc(t), y(t)) when
the packet is successfully received and on (xc(t), ŷ(t)) only
when the network packet is lost.

Remark 1: The results presented in this paper apply mutatis
mutandis when the network is located between the controller
and the actuator, and not between the sensors and the controller
as in Figure 1, by changing the network variable to be û
instead of ŷ. When the network is used in both directions,
the analysis becomes quite convoluted, especially if commu-
nication events occur independently; this case is left for the
future. �

Based on (1)-(4), we introduce the concatenated state χ :=
(xp, xc, ŷ) ∈ Rsχ with sχ := sp + sc + sy , and we write the
closed-loop dynamics of the WNCS as

χ(t+ 1) =

{
fS(χ(t)) for t ∈ T
fU (χ(t)) for t ∈ Z≥0 \ T ,

(5)

where fS , fU are defined as

fS(χ) :=

 fp(xp, gc(xc, gp(xp)))
fc(xc, gp(xp))

f̂(gp(xp))

 , (6)

and

fU (χ) :=

 fp(xp, gc(xc, ŷ))
fc(xc, ŷ)

f̂(ŷ)

 . (7)

The standing assumptions (SA) we make on system (5) are
stated next.

Standing Assumption 1 (SA1): There exist α, α ∈ K∞,
aS ∈ [0, 1), aU > aS and V : Rsχ → R≥0 such that, for
any χ ∈ Rsχ ,

α(|χ|) ≤ V (χ) ≤ α(|χ|) (8a)
V (fS(χ)) ≤ aSV (χ), (8b)
V (fU (χ)) ≤ aUV (χ). (8c)

�
Properties (8a) and (8b) imply that the origin of system

χ(t + 1) = fS(χ(t)) is uniformly globally asymptotically
stable (UGAS). This is typically the case when controller (2)
has been designed to ensure that the origin of system (1)-(2) is
UGAS, see Section V. The fact that the bound in (8b) is linear
in V comes with no loss of generality. Indeed, if we know a
Lyapunov function which does not admit a linear bound as
in (8b), we can always modify it to satisfy (8a) and (8b),
under mild regularity assumptions, see Theorem 2 in [21].
On the other hand, (8c) in SA1 imposes a condition on the
growth rate of V along solutions to (5) when a transmission

fails. Typically aU is strictly larger than 1, and we assume
aS < aU implying that successful communications improve
the guaranteed convergence speed of the Lyapunov function
V to zero, along the solutions to (5). Conditions ensuring the
satisfaction of SA1 are discussed in more details in Section V,
where we show that SA1 can always be ensured for detectable
and stabilizable linear time-invariant systems.

To conclude the description of the closed-loop system
(5), we need to explain when a communication attempt is
successful or not.

B. Communication setup
In this sub-section, we describe the sequence of successful

communication instants tk ∈ T . In wireless communication,
the signal-to-interference plus noise ratio (SINR) determines
the probability of successful communication. The SINR is
determined by

i) the transmission power P (t) ∈ [0, Pmax] at time t ∈
Z≥0, with Pmax > 0 being the maximum transmission
power allowed by the transmitter at any time,

ii) the channel gain, which is an exogenous time-varying
parameter,

iii) and the power of the white noise, which is a constant
we normalize to 1.

The channel gain is typically estimated by a feedback from
the receiver after the transmitter sends pilot signals, which
costs the transmitter some power. The estimated value of this
quantity, which we call the channel measurement (CM), is
denoted by h(t). In some cases, like in carrier-sense multiple
access (CSMA), where the channel gain is used to represent
the amount of interference in the medium, the transmitter
simply senses the wireless medium to check for interference
and this will not cost the transmitter any power. We use
q(t) ∈ {0, 1} to express if the channel was estimated at
time t ∈ Z>0 (indicated by q(t) = 1) or not (indicated by
q(t) = 0). We make the following assumption for the CM,
which is relaxed later in Section IV-C.

Standing Assumption 2 (SA2): For any t ∈ Z≥0, the CM
h(t) ∈ H, with H being a finite set, and it is exactly obtained
by the transmitter when q(t) = 1 by spending a fixed amount
of power PS ∈ R≥0. �

Next, we make the following assumption regarding the
probability of successfully receiving the packet at time t ∈
Z≥0.

Standing Assumption 3 (SA3): The following holds.
(i) The packet success rate, i.e., the probability of the

communication attempt succeeding, is given by a known
function ψ(P (t)h(t)), where ψ : R≥0 → [0, 1]. The
mapping ψ is: (i-a) differentiable, (i-b) strictly increasing
on R≥0, (i-c) initially convex and then concave, (i-d)
ψ(0) = 0 and limγ→∞ ψ(γ) = 1.

(ii) When a packet sent at time t ∈ Z>0 is received, the
transmitter obtains an acknowledgement before t + 1
without any error.

(iii) The CM h(t) is an i.i.d. random variable with a known
probability distribution ρ, i.e., ρ(h) = Pr(h(t) = h) for
all h ∈ H. �



Item (i) of SA3 models the packet error rate as a smooth
time-invariant function of the transmission power, as is com-
mon in wireless communication literature [2], [5]. The ad-
ditional properties considered are quite standard in wireless
literature, see [6], [22] for example. On the other hand, most
practical communication setups like, e.g., Wifi, 4G and 5G
use some sort of ACK protocol so that item (ii) of SA3 is
reasonable. The ACK packets have a size of the order of a
few bits and are typically much smaller than the control/output
information packets, and can thus be assumed to be received
without any loss [5].On the other hand, a simple (but conserva-
tive) way to incorporate ACK packet losses into our framework
would be to include the ACK packet loss in the expression
of ψ. This means that the communication will be seen as a
failure if the ACK packet is not received. We will also see
in Section IV-B, a transmission policy that does not require
ACK signals to be implemented, thereby relaxing item (ii) of
SA3. Finally, the channel gain is often assumed to be i.i.d. in
wireless engineering, see Chapter 5 of the book on wireless
communications in practice [23]. Item (iii) of SA3 follows as
the CM is simply a quantization of the channel gain.

C. Threshold policies

We focus on threshold-based transmission policies that de-
termines the transmission power P (t) at each instant t ∈ Z>0.
In particular, we impose a threshold on the time steps since the
last successful transmission and on the CM h(t). The former
implies that communication is attempted only when a certain
number of time instants have elapsed since the last successful
communication, which is known by the transmitter in view
of item (ii) in SA3. To model this number, we introduce the
clock τ(t) ∈ Z>0 for all t ∈ Z>0, which counts the number of
time instants elapsed since the last successful communication
as follows

τ(t+ 1) =

{
1 for t ∈ T
τ(t) + 1 for t ∈ Z≥0 \ T .

(9)

We assume that the initial time is a successful communication
instant, i.e., we set t1 = 0 resulting in 0 ∈ T and τ(0) = 1.

We use P : R≥0 → [0, Pmax] to denote the power control
function, which will be designed in Section III, i.e., the
transmission power used when the CM h(t) is above a certain
threshold h̄. The considered class of transmission policies can
then be written for any t ∈ Z>0 as

P (t) =

{
P(h(t)) if h(t) ≥ h̄ and τ(t) ≥ n+ 1
0 otherwise. (10)

Policy (10) does precisely what we stated, i.e., communication
is triggered only when both the time since the last transmission
τ(t) and the CM h(t) are above given thresholds n and h̄
respectively, which constitute design parameters. Since com-
munication is never attempted when τ(t) ≤ n, we do not need
to spend PS to estimate the channel for these time instants,
see SA2. Under policy (10), the WCNS (5) becomes

(
χ(t+ 1)
τ(t+ 1)

)
=



(
fS(χ(t))

1

) if τ(t) ≥ n+ 1 and
h(t) ≥ h̄, with
probability
ψ(h(t)P(h(t))),(

fU (χ(t))
τ(t) + 1

)
otherwise.

(11)
Recall that the probability of successful communication, when
the thresholds are satisfied at time and transmissions are
attempted, is given by ψ(h(t)P (t)) from item (i) in SA3.

Remark 2: In a more general setting, one could design P (·)
as a function of τ(·) as is done in [16] for linear systems and
also as a function of h(·). However, the objective of this work
is to focus on threshold policies as described in (10), which
are easier to design and implement, and have proved their
strengths/relevance in the context of estimation and wireless
communication [5], [6]. �

D. Objectives

The first objective of this work is to preserve the stability
of the WNCS. Due to the stochastic nature of communication
success, we can no longer ensure the original UGAS property
guaranteed by SA1. Instead, we rely on the stochastic notion
of stability defined next, which is inspired from [24].

Definition 1: We say that the set {(χ, τ) : χ = 0} is
stochastically stable for system (11), if there exists α ∈ K∞,
such that for any solution (χ, τ) to (11),

∞∑
t=0

E[α(|χ(t)|)] <∞. (12)

�

Definition 1 implies that we are merely interested in the
stability of the origin for χ, and not τ , which is simply
constructed to count the time since the last transmission.
In addition to the partial stability property described above,
we also want to ensure that the Lyapunov function V in
SA1 converges in expectation, with a certain given rate µ ∈
(aS ,min{1, aU}), along solutions to (11), i.e.,

E[V (χ(t))] ≤ µtV (χ(0)) (13)

for any solution (χ, τ) to (11) for all t ∈ Z>0. Property (13)
serves as a measure of the control performance of system (11)
and satisfying it automatically ensures (12) as µ < 1 in view
of (8a). Note that we always pick µ < aU as otherwise, never
communicating would achieve the objective in (13).

An intuitive way to ensure the two above properties is to
set P (t) = Pmax for all t ≥ 0 by taking n = 0 and p = Pmax.
This would result in frequent successful communications in
view of item (i) of SA3, but also, and importantly, in a high
power consumption [2]. To overcome this potential issue, we
want to reduce the average power consumed while satisfying
the convergence property (13) (and thereby ensuring (12)).
The average communication power over an infinite horizon is



defined as

J(P) := lim
T→∞

1

T
E

[
T∑
t=1

P (t) + Psq(t)

]
, (14)

where P = (P (1), P (2), . . . ) is the sequence of transmission
powers applied at instances dictated by the threshold policy.
Our objective is to find the optimal h̄ and n for the two types
of power control policies detailed in Section III, taking into ac-
count (13) and (14). Note that reducing communications may
result in a deterioration in control performance. Our approach
in handling this trade-off is to reduce the communication cost
as much as possible, while ensuring a certain level of control
performance determined by µ. This parameter µ is tunable and
can be selected to fit the demands of the intended application
as is illustrated later in Section VI-F.

III. STOCHASTIC STABILITY AND CONTROL
PERFORMANCE

In this section, we first provide conditions on n, the time
threshold used in (10), and the probability of successful com-
munication to ensure the stability property (13). Afterwards,
we clarify how this probability of successful communication
depends on P and h̄ for constant power and channel inversion
policies.

For our analysis, it is important to note that h(t) is assumed
to be i.i.d. in view of item (iii) in SA3, and the power control
function P(h(t)) only depends on this variable. Therefore,
given a channel threshold h̄ and power control function
P(h(t)), the probability of successful communication when
τ(t) ≥ n+ 1 is fixed over all channel realizations. We use η
to denote this probability, where, given h̄ and P(·),

η :=
∑

h∈H,h≥h̄

ψ(P(h))ρ(h). (15)

A. Stability conditions for a given η

Given a convergence rate µ ∈ (aS ,min{1, aU}) for the
expected value of V as in (13), and n ∈ Z≥0, we first identify
a set of probabilities η’s ensuring (13) and stochastic stability
as in Definition 1.

For that purpose, we define for any η ∈ [0, 1] and n ∈ Z≥0,
the convergence rate function

β(n, η) := exp

(
η log(aSa

n
U ) + log(aU )(1− η)

1 + nη

)
, (16)

where aS and aU come from SA1. We next provide conditions
on n and η to ensure the desired stability property (13).

Proposition 1: Consider µ ∈ (aS ,min{1, aU}), n ∈ Z≥0

and η ∈ [0, 1], if β(n, η) ≤ µ, then the WNCS (11) is
stochastically stable and

E[V (χ(t))] ≤ β(n, η)tV (χ(0)) ≤ µtV (χ(0)) (17)

for any solution (χ, τ) to (11) at any t ∈ Z≥0 . �
Proof: See Appendix A

Proposition 1 implies that, as long as the chosen n and the
resulting η are such that β(n, η) ≤ µ, with β(n, η) defined

in (16), the desired stability and convergence properties are
ensured.

Proposition 1 cannot be directly exploited to design trans-
mission power policies as it involves η, which depends on the
channel threshold h̄ as well as on the power control function
P . When additional properties on F and V in SA1 are known,
less conservative bounds on β which characterizes the growth
of V may be derived. We explain how to obtain η for the
considered transmission policies in the following.

B. Evaluation of η for the considered power policies
As already mentioned, we focus on two types of power

control policies: i) constant power and ii) channel inversion
policies.

1) Constant power policy: This policy implies that, when-
ever the conditions for transmission are satisfied according
to (10), communication is attempted with a constant power
p ∈ [0, Pmax], i.e., P(h) = p for any h ≥ h̄ with h ∈ H. The
value of this constant power is a design parameter.

Lemma 1: Given h̄ ∈ H and p ∈ [0, Pmax], the probability
of successful transmission at any time t for which τ(t) ≥ n+1
under the constant power policy using power p ∈ [0, Pmax] is
given by

ηC(h̄, p) :=
∑

h∈H,h≥h̄

ψ(ph)ρ(h). (18)

�
Proof: Recall that item (i) of SA3 gives the probability of

success for a given CM h(t) to be ψ(ph(t)) while using power
p. Due to the channel threshold we impose, transmissions
occur only when h(t) ≥ h̄. Since ρ(h) = Pr(h(t) = h), which
is an i.i.d. random variable, the expected packet success rate
is given by (18).

2) Channel inversion policy: The second policy we consider
is described by

P(h) := min
{
Pmax,

κ

h

}
, (19)

where κ > 0 is the power gain. When the threshold conditions
in (10) are met, this policy applies a transmission power
which is inversely proportional to the channel gain h(t) if
feasible, i.e., when κ

h ≤ Pmax, and Pmax otherwise. Channel
inversion is often used in wireless communication to maintain
a certain SINR at the receiver, and sometimes to optimize the
transmission power [6], [25]. Figure 2 illustrates the power
used for a given CM after applying (19) and (10) with κ = 2,
h̄ = 1 and Pmax = 1.

First, we provide the expression for the probability of
successful communication when τ(t) ≥ n + 1, denoted by
ηI , in the next lemma.

Lemma 2: Given h̄ ∈ H and κ ∈ R≥0, the probability of
successful transmission at any time t for which τ(t) ≥ n+ 1,
under the channel inversion policy (19) is given by

ηI(h̄, κ) =


Pr(h(t) ≥ h̄)ψ(κ) when h̄ ≥ κ

Pmax
,

Pr(h(t) > κ
Pmax

)ψ(κ)

+
∑
h∈H,h̄≤h≤ κ

Pmax

ψ(hPmax)ρ(h)

otherwise.
(20)
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�
Proof: Since, h(t) is i.i.d. and Pr(h(t) = h) = ρ(h)

for any given t ∈ Z≥0, we have identical probabilities for
the channel distribution and also for successful transmissions
when τ(t) ≥ n+ 1.

When h̄ ≥ κ
Pmax

, P(h) is always given by κ
h as κ

h will
always be smaller than Pmax. When h(t) ≥ h̄, we obtain that
P = κ

h(t) and therefore, the probability of packet success is
given by ψ(κ). Since transmissions are only attempted when
h(t) ≥ h̄, we have the probability of successful transmissions
is given by the first case of (20).

On the other hand, if h̄ > κ
Pmax

, we have two possible cases.
The first is when P(h) < Pmax, which following the previous
logic allows us evaluate the probability of successful trans-
mission as ψ(κ). This happens with a probability Pr(h(t) >
κ

Pmax
) and gives us the first line of (20). Secondly, if h(t) > h̄

but κ
h(t) ≥ Pmax, the probability of successful transmission is

simply given by ψ(h(t)Pmax) due to the transmission power
saturation. We can evaluate the expectation of this probability
over the relevant limits of h(t) to derive the second line of
(20).

C. Main result
We are ready to state the main stability result. It provides

a condition on the parameters n, h̄ and p or κ for (13) to
hold under the constant power or channel inversion policies
respectively.

Theorem 1: For given µ ∈ (aS ,min{1, aU}) and n ∈ Z≥0,
the WNCS (11) is stochastically stable and (13) holds for
• constant power policies if β(n, ηC(h̄, p)) ≤ µ, with ηC

from (18),
• channel inversion policies if β(n, ηI(h̄, κ)) ≤ µ, with ηI

from (20). �
Proof: The proof directly follows from Proposition 1 and

using Lemmas 1 and 2 to get the corresponding values of η
for constant power and channel inversion policies respectively.

Theorem 1 provides conditions on n, h̄, p and κ to ensure
the desired control properties. However, these conditions can-
not be exploited directly in order to minimize the average
communication cost (14) in Section IV (while ensuring the
desired control properties). This is because the set of n, h̄, p
and κ, such that its elements ensure the satisfaction of the

conditions in Theorem 1, are not explicitly provided. Since
n and h̄ belong to discrete sets, we will characterize the set
of feasible p’s and κ’s, referred to as feasibility sets in the
subsection below.

D. Feasibility sets
In order to identify the set of p’s and κ’s that ensure

β(n, η) ≤ µ for a given h̄, as required in Theorem 1, we
first provide the following lemma.

Lemma 3: For any given µ ∈ (0, 1) and n ∈ Z≥0, β(n, ·) is
decreasing. Additionally, ηC(h̄, ·) and ηI(h̄, ·) are increasing
functions. �

Proof: See Appendix B.
Given µ ∈ (aS , 1), n ∈ Z≥0, h̄ ∈ H, we denote by

p(µ, n, h̄), the smallest solution to

β(n, ηC(h̄, p(µ, n, h̄))) = µ. (21)

In view of Lemma 3, we have that β(n, ηC(h̄, p)) ≤ µ for any
p ≥ p(µ, n, h̄). If no such p(µ, n, h̄) exists or if p(µ, n, h̄) >
Pmax, then β(n, ηC(h̄, p)) > µ for all p ∈ [0, Pmax] and the
conditions of Theorem 1 cannot hold. Otherwise, the set of
feasible powers is identified as [p(µ, n, h̄), Pmax]

Similarly, denote by κ(µ, n, h̄), the smallest solution to

β(n, ηI(h̄, κ(µ, n, h̄))) = µ. (22)

In view of Lemma 3, we have that β(n, ηI(κ̄, p)) ≤ µ for any
κ ≥ κ(µ, n, h̄). If no such κ exists, then β(n, ηI(h̄, κ)) > µ
for all κ ∈ R≥0. Otherwise, the set of feasible κ’s is given by
[κ(µ, n, h̄),∞). Based on these observations, we are ready to
proceed with the optimization of the transmission policies.

IV. POLICY DESIGN

In this section, we first provide the general expression of
the communication cost under the constant power policy and
the channel inversion policy. Minimizing this general cost in
general is observed to be challenging due to the non-convex
property of the cost function, and due to the average packet
success η being hard to evaluate. Indeed, while Lemmas 1 and
2 provide theoretical methods to evaluate the probability of
successful communication when τ(t) ≥ n+ 1, in practice, the
summation in (18) or (20) is difficult to analyze. For example,
consider that we use quadrature phase shift keying (QPSK)
modulation, and an additive white Gaussian noise (AWGN) is
present yielding ψ(hp) = 1− (1− 0.5erfc(

√
hp))M where M

is the packet size. The summation of such an expression over
h ∈ H becomes hard to characterize in terms of derivatives,
convexity, etc. On the other hand, the first case of (20) can
be easily expressed analytically for several types of channel
fading models that are often considered in wireless literature.
For example, we have Pr(h(t) ≥ h̄) = exp(− h̄

2σ2 ) for
Rayleigh fading with σ2 ∈ R>0 a constant parameter of the
distribution.

All of these reasons motivate us to consider some special,
relevant cases for the selection of time and channel thresholds,
which allows for an easier evaluation of η and minimization
of the communication cost (14), while ensuring the stability
and convergence properties as stated in Section III.



A. General cost minimization

First, we provide the expression of the cost function (14)
under the threshold policies we are interested in.

Proposition 2: Under policy (10), the average communica-
tion cost in (14) for constant power policies is given by

JC(n, h̄, p) =
PS + pPr(h(t) ≥ h̄)

1 + nηC(h̄, p)
. (23)

for any n ∈ Z≥0, h̄ ∈ H, p ∈ [0, Pmax], and for channel
inversion policies is given by

JI(n, h̄, κ) =
PS +

∑
h∈H,h≥h̄ P(h)ρ(h)

1 + nηI(h̄, κ)
. (24)

for any n ∈ Z≥0, h̄ ∈ H, κ ∈ R≥0. �
Proof: First, we note that under policy (10), the trans-

mission power P (·) can be seen as a Markov process which
depends on the clock state τ(·) and the CM h(·) and applying
Lemma 5, given in the Appendix, we have

Pr(τ(t) ≥ n+ 1) =

1
η

n+ 1
η

(25)

When τ(t) ≥ n, the expected transmission power can be
evaluated as pPr(h(t) ≥ h̄) for constant power policies and∑
h∈H,h≥h̄ P(h)ρ(h) for inversion policies as the transmis-

sion power is 0 when h(t) < h̄. This allows us to obtain (23)
and (24).

Next, we formally state our optimization problems (OP).
We have OPC for constant power policies given by

Minimizen∈Z≥0,h̄∈H,p∈[0,Pmax]JC(n, h̄, p),

subject to β(n, ηC(h̄, p)) ≤ µ. (26)

Similarly, we have OPI for inversion policies given by

Minimizen∈Z≥0,h̄∈H,κ∈R≥0
JI(n, h̄, κ),

subject to β(n, ηI(h̄, κ)) ≤ µ. (27)

From SA2, we have that H is a discrete and finite set.
Therefore, if, for a given h̄ ∈ H, n and p or κ can be
optimized, OPC and OPI can be solved. Next, we show that
the set of feasible n such that β(n, η) ≤ µ is also finite for
any η ∈ [0, 1]. Therefore, if p and κ can be optimized for any
given n, h̄, an exhaustive search over all feasible n, h̄ can be
performed to solve OPC and OPI as they belong to finite sets.

Lemma 4: For any given µ ∈ (0, 1) and any probability
of successful transmission η in (16), the set of feasible n
satisfying β(n, η) ≤ µ is finite, and any feasible n is upper-
bounded by N <∞, defined by

N := max
{
n ∈ Z≥0 | (aSanU )

1
n+1 ≤ µ

}
. (28)

�
Proof: Notice that for any transmission policy and η ∈

[0, 1], β(n, η) is decreasing in η as seen from Lemma 3. We
have in view of (16),

β(n, 1) = (aSa
n
U )

1
n+1 , (29)

for any n ∈ Z≥0. Therefore, if (aSa
n
U )

1
n+1 > µ for some

n ∈ Z≥0, then β(n, η) > µ for all η ∈ [0, 1]. This condition

can be rewritten as aS
(
aU
µ

)n
> µ and since aU > µ from

SA1, aU
µ is greater than 1 and increasing exponentially in n.

We can thus define N <∞ according to (28).
Then for every n > N , we have β(n, η) > µ which means

that the feasible set of n ensuring β(n, η) ≤ µ is a subset of
{0, . . . , N}.

Next, note that OPC and OPI are not typically investigated
in the wireless communication literature due to the time-based
trigger and the constraints added in order to satisfy the control
property. Minimizing this cost with respect to p or κ is, in
general, a difficult problem due to JC and JI being non-convex
with respect to these variables, and η being hard to analyze in
general. Therefore, we focus on some special, relevant cases
and propose methods, for which we can solve OPC and OPI
as described below.

1) Pure channel threshold policies, in which, transmissions
can be attempted at any time, provided the CM is greater
or equal to h̄. This corresponds to the case where n = 0
and results in a cost function that is often seen in
wireless communications literature [2]. Although this
policy requires channel measurements at all time, when
PS is very small or zero due to purely sensing the
channel without sending pilot signals, this policy can
perform well. Also, this policy is applicable when ACK
packets are unavailable.

2) Pure time triggered policies, in which transmissions
occur whenever τ(t) ≥ n + 1 irrespective of the
actual value of h(t), i.e., h̄ = 0. These policies are
relevant when no CM is available at the transmitter and
do not consume power for sensing. Naturally, channel
thresholds or inversion cannot be applied in this case and
so we focus on constant power policies with threshold
only on τ(t).

3) ε-loss constant power policies, in which the channel
threshold and power are chosen sufficiently large such
that communication is almost always successful, i.e.,
ψ(h̄p) ≥ 1 − ε. These policies are suitable when the
feasible transmit power is large but not finely adjustable,
leading to almost sure communication success with a
sufficiently high channel gain.

4) Unsaturated inversion policies, in which the channel
thresholds and the power gain κ are chosen such that the
channel inversion results in a transmission power smaller
than or equal to the maximum power, i.e., h̄ ≥ κ

Pmax
.

This allows us to use (20) and thus η can be easily
evaluated. We also demonstrate in the following how
this simplifies tuning κ.

B. Pure channel threshold policies

In the policies considered in this subsection, since the
decision to transmit or not is determined by the CM h(t) alone,
the policy becomes independent of τ(t). This allows us to relax
item (ii) of SA3 as this policy can be implemented without
any ACK protocol. From Proposition 2, the cost function is



given in this case, for any h̄ ∈ H, p ∈ [0, Pmax], by

JC(0, h̄, p) = PS +
∑

h∈H,h≥h̄

pρ(h) = PS + pPr(h(t) ≥ h̄)

(30)
for constant power policies. The cost function for any h̄ ∈
H, κ ∈ R≥0 is given by

JI(0, h̄, κ) = PS +
∑

h∈H,h≥h̄

κ

h
ρ(h) (31)

for inversion policies. Due to these simplified forms of the
cost function, we are able to solve OPC and OPI as follows.

Proposition 3: For any given µ ∈ (0, 1), n = 0 and
h̄ ∈ H, if p(µ, 0, h̄) ∈ [0, Pmax] satisfying (21) exists, the
solution to OPC is given by p(µ, 0, h̄), otherwise OPC is
infeasible. Similarly, if κ(µ, 0, h̄) ∈ R≥0 satisfying (22) exists,
the optimal κ solving OPI is κ(µ, 0, h̄), otherwise OPI is
infeasible.

Proof: The proof is straightforward upon noticing that
JC(0, h̄, p) is increasing in p. Recall that the set of feasible
p ensuring stochastic stability are such that p ≥ p(µ, 0, h̄).
Therefore, the optimal power minimizing the communication
energy cost while satisfying the desired convergence property
must be p(µ, 0, h̄) for constant power policies. Similar argu-
ments hold for inversion polices, completing the proof.

C. Pure time threshold policies

For ease of notation, we define e(p) := 1−ηC(0, p), where
ηC comes from (18), the average packet error rate over all
possible channel realizations while using a fixed power p ∈
[0, Pmax]. We make the following assumption on e.

Assumption 1: The mapping e : [0, Pmax] → [0, 1] is con-
tinuous, twice differentiable, initially concave and eventually
convex. �

Assumption 1 is standard in the wireless communications
literature and is observed to hold true for various channel
fading models [6], [22]. Next, from Section III-D, we know
that the set of feasible powers is given by [p(µ, n, 0), Pmax].
For the sake of convenience, we will use p

n
:= p(µ, n, 0)

throughout this subsection.
The minimum feasible power is given by p

n
, but using p

n
does not necessarily imply that the cost (14) is minimized
for a given n ∈ Z≥0. Indeed, it might be more efficient to
use a higher power because we assume that transmissions are
attempted until a packet goes through, and using a smaller
power would imply a larger number of re-transmissions,
thereby potentially increasing the net energy consumed [5],
[6], see Section VI for an illustration. In the next proposition,
we characterize the associated average communication cost.
We use the notation JPT(p, n) := JC(n, 0, p) to denote the
cost of a pure time threshold policy with a constant power p
for convenience.

Proposition 4: Under Assumption 1, using a transmission
policy based on (10) with h̄ = 0, p ∈ [0, Pmax] and P(h) = p,
the cost in (14) for all n ∈ Z≥0 is given by

JPT(p, n) =
p

(1− e(p))n+ 1
. (32)

Furthermore, the mapping (p, n) 7→ JPT(p, n) is
1) strictly increasing in p for small n,
2) “N -shaped” for larger values of n, i.e., it is initially

increasing upto a local maximum, then decreasing to a
local minimum and then finally increasing again in p. �

Proof: See Appendix C.
Note that PS does not appear in the cost (32) as the channel

is never sensed or estimated for the policies considered in this
subsection. We can then exploit Proposition 4 to characterize
the optimal power p minimizing (14) for a given n, such that
(p, n) ∈ S.

Theorem 2: Under Assumption 1, for any given n ∈ Z≥0

with β(n, 1 − e(Pmax)) ≤ µ and h̄ = 0, OPC is solved by
using the optimal power p∗n, obtained as follows: If a local
minimum pon ∈ R>0 exists such that ∂JPT

∂p (pon, n) = 0 and
∂2JPT

∂p2 (pon, n) > 0, then p∗n ∈
{
p
n
, pon, Pmax

}
. Otherwise,

p∗n = p
n

. �
Proof: Proposition 4 implies JPT for a given n is either

strictly increasing in p or N -shaped. In the first case, pon does
not exist and so, selecting p

n
is optimal.

In the second case, JPT is N -shaped in p, and it has a single
local minimum and is concave for small p and then convex.
Since we look at JPT(p, n) for p ∈ [p

n
, Pmax], a closed and

compact set, the global optimum is either the local minimum
or one of the boundary points. When pon > Pmax, JPT may
be decreasing or concave in the interval [p

n
, Pmax], which

implies that the global minimum is at p
n

or Pmax. Otherwise,
the optimal power is either p

n
or the local minimum pon.

Theorem 2 characterizes the optimal power to use for a
given n ∈ Z≥0. If a local minimum pon for JPT exists,
the optimal power belongs to

{
p
n
, pon, Pmax

}
. Otherwise, the

optimal power is the minimum feasible power p
n

. In practice,
the existence of the local minimum pon ∈ [p

n
, Pmax] for JPT

with a given n can be easily checked by applying a gradient
descent initialized at Pmax. If the gradient descent converges
to a point in the interval [p

n
, Pmax], then this point is pon, and

all elements of the set
{
p
n
, pon, Pmax

}
can be tested to find

the optimum.

D. ε-loss constant power policies

We focus on policies with h̄, p selected such that ψ(h̄p) ≥
1 − ε with 0 < ε � 1, i.e., when communicating, the packet
is successful with a probability close to 1. We define pε(h̄) as
the solution to

ψ(h̄pε(h̄)) = 1− ε. (33)

If pε(h̄) ∈ [0, Pmax] exists, then h̄ is a feasible channel
threshold for the ε-sure constant power policy and all p ∈
[pε(h̄), Pmax] are feasible. We make use of the following result
to provide optimality conditions on the communication cost.

Proposition 5: For any h̄, p, we have

Pr(h(t) ≥ h̄)ψ(h̄p) ≤ ηC(h̄, p) ≤ Pr(h(t) ≥ h̄). (34)

�
Proof: Recall that ψ is a strictly increasing function

according to SA3. Therefore, the term ψ(ph)ρ(h) in the



summation expression in ηC , as seen from Lemma 1 is lower
and upper bounded by ψ(h̄p)ρ(h) and ρ(h) respectively. Note
that since ρ(h) = Pr(h(t) = h), we have Pr(h(t) ≥ h̄) =∑
h∈H,h≥h̄ ρ(h).
For a given n, h̄, from Proposition 5, the desired control

properties (13) are ensured for any p ∈ [pε(h̄), Pmax] as long
as

β(n,Pr(h(t) ≥ h̄)(1− ε)) ≥ µ (35)

We approximate ηC(h̄, p) as follows to find the optimal
policy, which is justified by ε being very small, and thus the
difference of the approximation to the exact value becomes of
order ε.

Assumption 2: For all p ∈ [pε(h̄), Pmax], ηC(h̄, p) =
Pr(h(t) ≥ h̄)(1− ε). �

We now search for the optimal p solving OPC under
Assumption 2.

Theorem 3: Under Assumption 2, for a given n ∈ Z≥0, if
there exists h̄∗ ∈ H such that

β(n,Pr(h(t) ≥ h̄∗)(1− ε)) = µ, (36)

then pε(h̄) is the optimal power for any h̄ ≤ h̄∗ solving OPC .
If no such h̄∗ exists, then the ε-loss constant power policy is
infeasible. �

Proof: Note that JC(n, h̄, p) = (PS + pPr(h(t) ≥
h̄)(1 + nPr(h(t) ≥ h̄)(1 − ε))−1 from (23) as we consider
ηC(h̄, p) = 1 − ε under Assumption 2. Thus, JC(n, h̄, p) is
strictly increasing in p. Therefore, taking the smallest power
results in the smallest cost, which is achieved by pε(h̄).

These policies are well suited for communication systems
where the power p cannot be fine tuned, but can only be set at
certain levels, such as {0, Pmax}. The condition (36) is easily
verifiable as n and h̄ belong to finite discrete sets and an
exhaustively search can be applied to find all feasible values.

E. Unsaturated inversion policies

In this subsection, we focus on channel inversion policies
with h̄ ≥ κ

Pmax
, which implies that κ

h(t) ≤ Pmax for all
t when h(t) ≥ h̄. Consequently, from Lemma 2, we have
that ηI(h̄, κ) = Pr(h(t) ≥ h̄)ψ(κ). For a given µ ∈
(0, 1), n ∈ Z≥0 and h̄ ∈ H, the smallest κ satisfying the
stability and convergence property is given by κ(µ, n, h̄) from
Section III-D. Observe that if κ(µ, n, h̄) < h̄Pmax, then the
unsaturated inversion policy becomes feasible for any κ ∈
[κ(µ, n, h̄), h̄Pmax]. This allows us to derive the following
theorem.

Theorem 4: For any given n ∈ Z≥0, µ ∈ (0, 1) and h̄ ∈ H
such that κ(µ, n, h̄) ≤ Pmaxh̄, the optimal gain solving OPI is
given by κ∗ obtained as follows: If a local minimum κo ∈ R>0

exists such that ∂JI
∂κ (n, h̄, κo) = 0 and ∂2JI

∂κ2 (n, h̄, κo) > 0,
then the optimal gain κ∗ ∈

{
κ(µ, n, h̄), κo, Pmaxh̄

}
. Other-

wise, the optimal gain κ∗ = κ(µ, n, h̄). �
Proof: The mathematical properties of JI(n, h̄, κ) are

identical to the properties of JPT(p, n) for a given value of h̄
with κ being replaced by p for unsaturated policies due to the
first case of (20). We can thus follow the proof of Theorem
2 to prove this result. For unsaturated inversion policies, the

cost function (24), which can be rewritten as

JI(n, h̄, κ) =
PS + κ

∑
h∈H,h≥h̄

ρ(h)
h

1 + nPr(h(t) ≥ h̄)ψ(κ)
, (37)

is N-shaped w.r.t κ. Consequently the optimal κ for any given
n, µ and h̄ can be found using the same method explained in
the proof of Theorem 2.

V. CONDITIONS ENSURING SA1

Before illustrating the results of Section IV on an example,
we demonstrate how to systematically satisfy SA1 for the case
of a linear time-invariant plant and controller. Afterwards, we
consider again the nonlinear setting, and propose conditions to
guarantee SA1 when the strategy used to generate ŷ is based
on zeroing and zero-order-hold, respectively.

A. Linear time-invariant systems

We consider the case in which the plant (1) is linear and
time-invariant, i.e.,

fp(xp, u) = Apxp +Bpu
gp(xp) = Cpxp,

(38)

where the pairs (Ap, Bp) and (Ap, Cp) are assumed to be
stabilizable and detectable, respectively. Here, we can design
an output-feedback stabilizing controller for system (38) as

fc(xc, y) = Acxc +Bcy
gc(xc, y) = Ccxc +Dcy,

(39)

in the sense that the closed-loop state matrix A0 :=[
Ap +BpDcCp BpCc

BcCp Ac

]
is Schur. Between two successive

successful transmission instants, ŷ is held using a linear
holding function f̂(y) = Cgy for some Cg ∈ Rsy×sy and
any y ∈ Rsy .

Let χ := (xp, xc, ŷ) as in Section II, and we obtain (5) with

fS(χ) = ASχ
fU (χ) = AUχ,

(40)

where

AS :=

 Ap +BpDcCp BpCc 0
BcCp Ac 0
CgCp 0 0

 , (41)

and

AU :=

 Ap BpCc BpDc

0 Ac Bc
0 0 Cg

 . (42)

The next proposition ensures that Assumption 1 always
holds for system (5) with (40)-(42).

Proposition 6: SA1 holds for system (5) with (40)-(42) by
taking V (χ) = χ>Pχ for any χ ∈ Rsχ with P ∈ Rsχ×sχ
symmetric, positive definite and such that

A>SPAS ≤ aSP
A>UPAU ≤ aUP

(43)

with aS ∈ [0, 1), aU > aS , α(s) = λmax(P )s2 and α(s) =
λmin(P )s2. �



Proof: Since A0 is Schur, there exists P0 ∈ Rsx×sx
which is symmetric, positive definite and such that

A>0 P0A0 ≤ a0P0 (44)

for some a0 ∈ [0, 1). Let P :=

[
P0 0
0 ε

]
with ε > 0, which

is thus symmetric and positive definite. We have that

A>SPAS =

[
A>0 P0A0 + εC>g C

>
p CgCp 0

0 0

]
. (45)

Let χ ∈ Rsχ , we have

V (ASχ) = χ>A>SPASχ
= x>A>0 P0A0x+ εx>p C

>
g C
>
p CgCpxp

(46)

using (45) and since x = (xp, xc). In view of (44), we have

V (ASχ) ≤ a0x
>P0x+ ε|CgCp|2|xp|2

≤ aSx
>P0x ≤ aSV (χ)

(47)

with aS := a0 +ε|CgCp|2λmin(P0)−1. In the first line of (47),
we apply (44) on the first term x>A>0 P0A0x to provide an
inequality for the first term. Since x = (xp, xc), we can always
find some aS > 0 such that the first line of (47) is bounded
by the second line. Next, as the second term depends on ε, by
taking ε sufficiently small, we can always find aS ∈ (a0, 1)
as a0 < 1. On the other hand, we have for any χ ∈ Rsχ

V (AUχ) = χ>A>UPAUχ
≤ |A>UPAU ||χ|2 ≤ aUV (χ)

(48)

with aU ≥ |A>UPAU |λmin(P )−1. Since all these terms are
positive, we can always find some aU > aS thus satisfying
(43), and consequently SA1.

Conditions (43) are linear matrix inequalities (LMIs) with
respect to unknowns P , aS ∈ (0, 1) and aU > aS , which
always have a solution in view of Proposition 6. A desired pair
(aU , aS) less conservative than the one obtained following the
proof can be tested for feasibility numerically using an LMI
solver.

B. Zeroing strategy

We return to a general plant and controller models as in (1)
and (2), and we focus on zeroing strategies to generate ŷ, i.e.,
f̂ = 0. We suppose that controller (2) has been designed such
that the following properties hold.

Assumption 3: There exist W : Rsp+sc → R continuous,
αW , αW ∈ K∞, aW,1 ∈ (0, 1) and aW,0 > 0 such that, for
any (xp, xc) ∈ Rsp+sc :

(i) αW (|(xp, xc)|) ≤W (xp, xc) ≤ αW (|(xp, xc)|);
(ii) W (fp(xp, gc(xc, gp(xp)), fc(xc, gp(xp))) ≤ aW,1W (x);

(iii) W (fp(xp, gc(xc, 0), fc(xc, 0)) ≤ aW,0W (x). �
Items (i)-(ii) of Assumption 3 are equivalent to the fact

that the origin of (1)-(2) is UGAS when fp, fc, gp and gc
are continuous, see [26]. Item (iii), on the other hand, is an
exponential growth condition on W when a transmission fails
and f̂ in (4) is the zero function. The next proposition ensures
the satisfaction of SA1.

Proposition 7: Suppose Assumption 3 holds, then SA1 is
verified with V : χ 7→ W (xp, xc) + |ŷ|, aS = aW,1, aU =

aW,0, α(s) = min{αW (s/2), s/2} and α(s) = αW (s) + s for
any s ≥ 0. �

Proof: Let χ ∈ Rsχ , V (χ) ≤ αW (|(xp, xc)|) + |ŷ| in
view of item (i) of Assumption 3, from which we derive
that V (χ) ≤ αW (|χ|) with αW given in Proposition 7.
We obtain the lower-bound on V by invoking [27, Remark
2.3]. On the other hand, in view of item (ii) of Assumption
3, V (fS(χ)) = W (fp(xp, gc(xc, gp(xp)), fc(xc, gp(xp))) ≤
aSW (x) ≤ aW,1V (χ). We similarly derive from item (iii) of
Assumption 3 that V (fU (χ)) ≤ aW,0V (χ), which concludes
the proof. �

C. Zero-order-hold strategy

When zero-order-hold devices are used to generate ŷ, we
introduce Assumption 4 to conclude about the satisfaction of
SA1.

Assumption 4: There exist W : Rsp+sc → R continuous,
aW , aW > 0, aW,1 ∈ (0, 1) and aW,0, b0 ≥ 0 such that, for
any χ ∈ Rsχ :

(i) aW |(xp, xc)|2 ≤W (xp, xc) ≤ aW |(xp, xc)|2;
(ii) W (fp(xp, gc(xc, gp(xp)), fc(xc, gp(xp))) ≤ aW,1W (x);

(iii)W (fp(xp, gc(xc, ŷ), fc(xc, ŷ)) ≤ aW,0W (x) + b0|ŷ|2. �
Items (i)-(ii) of Assumption 4 are equivalent to the fact that

the origin of (1)-(2) is uniformly globally exponentially stable
under conditions as mentioned after Assumption 3. Item (iii)
is an exponential growth condition on W when a transmission
fails, which involves ŷ this time because of the use of a zero-
order-hold strategy.

We also require the output map to be linearly bounded.
Assumption 5: There exist c ≥ 0 such that |gp(xp)| ≤ c|xp|

for any xp ∈ Rsp . �
Assumption 5 is verified when y = Cpxp with Cp a real

matrix (for instance) in which case c = ||Cp||. The next
proposition ensures the satisfaction of SA1.

Proposition 8: Suppose Assumptions 4-5 hold, then SA1
is verified with V : χ 7→ W (xp, xc) + ν|ŷ|2 for some
ν ∈

(
0, (1− aW,1)

aW
c2

)
, aS = aW,1 + νc2/aW , aU =

max{aW,0, b0/ν + 1} given in Assumption 3, α(s) =
min{αU (s/2), ν(s/2)2} and α(s) = αU (s) + νs2 for any
s ≥ 0. �

Proof: The proof of (8a) follows similar lines as
in the proof of Proposition 7. Let χ ∈ Rsχ . In
view of item (ii) of Assumption 4, V (fS(χ)) =
W (fp(xp, gc(xc, gp(xp)), fc(xc, gp(xp))) + ν|gp(xp)|2 ≤
aW,1W (x) + ν|gp(xp)|2. According to Assumption 5,
|gp(xp)|2 ≤ c2|xp|2, and, in view of item (i) of As-
sumption 4, |gp(xp)|2 ≤ c2/aWW (xp, xc) ≤ c2/aWV (χ).
Consequently, V (fS(χ)) ≤ aW,1W (x) + νc2/aWV (χ) ≤(
aW,1 + νc2/aW

)
V (χ) = aSV (χ) and aS ∈ (0, 1) in view

of the definition of ν.
On the other hand, V (fU (χ)) ≤ aW,0W (x) + b0|ŷ|2 +

ν|ŷ|2 in view of (7) and item (iii) of Assumption 4.
Hence, V (fU (χ)) ≤ max{aW,0, b0/ν + 1}(W (x) + ν|ŷ|2) =
max{aW,0, b0/ν + 1}V (χ) = aUV (χ). We have proved that
the conditions in SA1 are verified. �



VI. NUMERICAL EXAMPLES

A. Single link robot arm and its controller

We illustrate the results of Section III on a single link robot
arm, whose model is obtained by discretizing the continuous-
time system using an Euler method with sampling period of
10−3 seconds. System (1) with plant state xp = (x1, x2) ∈ R2

is given by(
x1(t+ 1)
x2(t+ 1)

)
=

(
x1(t) + 10−3x2(t)

x2(t) + 10−3(sin(x1(t)) + u(t))

)
.

(49)
The control (2) is given by strategy u = − sin(x1)− 25x1 −
10x2 and we use zero-order-holds to implement it.

SA1 is verified with V (χ) 7→ χ>Pχ, aS = 0.98 and aU =
1.0009 where

P =


0.0384 −0.0019 −0.0336 0.0031
−0.0019 0.0015 0.0033 −0.0008
−0.0336 0.0033 0.0341 −0.0032
0.0031 −0.0008 −0.0032 0.0009

 .

B. Communication settings

We fix µ = 0.999 and apply Proposition 1
to obtain the minimum η required to ensure the
desired stability property for n ∈ {0, 1, . . . , 10} as
{0.092, 0.097, 0.11, 0.12, 0.14, 0.16, 0.19, 0.24, 0.32, 0.47, 0.9}
respectively.

We first study the case where CMs are available at the
transmitter and consider the packet success rate to be given
by φ(γ) = (0.5 + 0.5erf(

√
γ))32, which corresponds to the

probability that every single bit in a packet of 32 bits is
decoded correctly under a white Gaussian noise. For the
communication channel model, we consider that the CMs
are the quantization of a Rayleigh slow-fading channel with
a probability distribution function 0.5 exp(−0.5ω). We take
H := {0, 0.05, . . . , 5} in SA2 and thus obtain

ρ(h) =

∫ h+0.05

ω=h

0.5 exp(−0.5ω)dω,

for all h ∈ H \ {5} and

ρ(5) =

∫ ∞
ω=5

0.5 exp(−0.5ω)dω.

C. Pure channel thresholds

We fix PS = 0 and N = 0 to obtain Figure 3 which depicts
the cost function using a constant power level and a channel
inversion policy for feasible values of h̄ and optimal p and
κ respectively based on Proposition 3. We obtain a minimum
cost of 0.12 with channel inversion and 0.16 for the constant
power policy with h̄ = 2.2. However, note that measuring the
channel is not always possible and when it is possible, PS
is added to the final cost expression for n = 0 as seen in
(31). Therefore, if PS > 0.04, the constant power policy will
outperform the inversion policy.
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Fig. 3. The cost J plotted for the optimal p (under a constant power
policy) or κ (under a channel inversion policy) for feasible values of h̄ ∈
{1.8, 1.9, . . . , 3} with n = 0.

D. Pure time thresholds

Next, we look at the case where CMs are not available and
consider parameters such that e(p) 7→ 1− exp(−1/p), which
verifies SA3, see [28] for details. This results in p

10
= 9.5

with Pmax = 10 using (16) and Theorem 1. The value of PS
is irrelevant in this case as we never measure the channel.

In Figure 4, we plot the optimal power p∗n minimizing
JPT(p, n) for n ∈ {0, . . . , 19} and compare it with the
required power p

n
to ensure the convergence property (13). We

note that p
n

is not always the optimal power as explained in
Theorem 2. In Figure 5, we plot the average power consumed
JPT(p∗n, n) with respect to feasible values of n for given
values of µ, when using the optimal power p∗n as defined in
Theorem 2. We note that using the largest values of feasible
n results in a higher communication cost because while the
frequency of communications decreases, the power required
to stabilize the system also increases with n. The optimal n
for µ ∈ {0.995, 0.999, 0.9999} can be observed to be 1, 8, 18
respectively. We observe that a smaller µ demands more fre-
quent communication, leading to a higher communication cost,
but ensures a faster guaranteed convergence of the Lyapunov
function along the solutions to the WCNS.
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Fig. 4. We plot the optimal power p∗n minimizing JPT(p, n), and the
required power p

n
for given values of n.
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Fig. 5. Average power consumed JPT(p∗n, n) using the optimal
transmission power p∗n for the given n and µ.

E. Unsaturated inversion and ε-loss policies
Next, in Figure 6, we plot the cost function using an ε-

loss constant power policies and unsaturated channel inversion
policies for n = 9, PS = 0 and for some feasible values
of h̄. Here, we apply the optimal values of p for constant
power policies according to Proposition 5 with ε = 0.99, and
the optimal κ for inversion policies based on Theorem 4. We
note that the communication energy cost J is minimized for
h̄ = 0.65 and using a channel inversion policy results in a cost
of 0.29 compared to a cost of 0.57 using a constant power
policy, i.e., the cost is almost halved.

We observe that increasing n is not always good, despite
seemingly transmitting less often. This is because of the larger
channel threshold that is feasible with a small n. This property
is demonstrated in Figure 7, where we plot the minimum cost
achievable using unsaturated inversion policies (by optimizing
h̄, κ) for all feasible values of n and various values of PS
using Theorem 4. However, it is important to note that this
behavior occurs due to the distribution of the channel and
different distributions may change the results presented here.
We also observe that when PS is large, using a larger time
threshold n is more efficient.
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Fig. 6. The cost J plotted for the optimal p (under a constant power
policy) or κ (under a channel inversion policy) for feasible values of h̄
with n = 9.

F. Control performance vs communication cost
In this subsection, we perform an actual simulation of (49)

to study the trade-off between communication and control
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Fig. 7. The cost J plotted for the feasible values ofn and various values
of the sensing power PS , with the optimal parameters h̄, p and κ being
selected for a channel inversion policy.

performance. While µ gives a guaranteed property on the
convergence speed, its value may be subject to conservatism
compared to the actual speed. We thus compare the expected
time steps (averaged for 105 simulations) for |x|2 to reach
a ball of radius 10−6 with a random initialization on x(0)
satisfying |x(0)| = 1. In Fig. 8, we plot the results of this
numerical experiment for four communication policies: i) the
baseline which uses P (t) = Pmax for all t, and the remaining
three being the optimal unsaturated inversion policy for µ ∈
{0.99, 0.995, 0.999}. Naturally, a higher µ implies a higher
convergence time. Surprisingly, we discover that the control
performance in simulation deteriorates by a very small amount
in actual simulations compared to the theoretical bound which
scales with −1/ log(µ).
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Fig. 8. We plot J on the Y axis and on the X axis, the expected time
steps for x to hit a ball of radius 10−6 while starting from a random
point in the circle of radius 1 in our simulations. The communication
cost is optimized for a certain µ as indicated in the figure.

VII. CONCLUSIONS

We have proposed a framework to design a class of energy-
efficient transmission power policies for nonlinear WNCS.
The main objective of this work is to minimize the average
transmission power while maintaining the stability of the
WCNS in a stochastic sense. We provide expressions to
compute the optimal transmission power for control-relevant
performance criteria under the proposed policy based on time



and channel thresholds. Numerical simulations show that when
the power required to sense the channel is ignored, a pure
channel threshold policy can be optimal. However, when the
power required to sense the channel is also accounted for, a
suitable time threshold will significantly reduce the average
communication cost.

APPENDIX

It is convenient to define the function F : Rsχ×Z>0 → Rsχ
with the following recursion, for any χ ∈ Rsχ and ` ∈ Z>0,

F (χ, `) :=

{
fS(χ) for ` = 1
fU (F (χ, `− 1)) otherwise. (50)

This allows us to write the dynamics between successful
communication instants as χ(tk + `) = F (χ(tk), `k) for all
tk ∈ T and `k ∈ {1, . . . , tk+1 − tk}.

We next provide a lemma on the evolution of τ(t) along
solutions to (11) where η denotes the packet success rate when
τ(t) ≥ n+ 1.

Lemma 5: For any η ∈ (0, 1), the sequence τ(1), τ(2), . . .
is a Markov chain and τ(t) converges exponentially to the
following stationary distribution:

Pr(τ(t) = j) =
η

nη + 1
, (51)

for all j ∈ {1, 2, . . . , n} and

Pr(τ(t) ≥ n+ 1) =
1− η
nη + 1

. (52)

�
Proof: Equation (11) allows us to evaluate Pr(τ(t +

1)|τ(t)). Since P (t) = 0 when τ(t) ≤ n, and as ψ(0) = 0
from SA3, we have that

Pr
(
τ(t+ 1) = τ(t) + 1|τ(t) ≤ n

)
= 1. (53)

as communication is never attempted for these values of τ(t).
For all ` ∈ Z≥0 we have

Pr
(
τ(t+ 1) = n+ `+ 2|τ(t) = n+ 1 + `

)
= 1− η

Pr
(
τ(t+ 1) = 1|τ(t) = n+ 1 + `

)
= η

(54)
in view of SA3 and the fact that η denotes the packet success
rate when τ(t) ≥ n+ 1. Since τ(t) is always in one of these
states, we have

Pr(τ(t) ≥ n+ 1) +

n∑
i=1

Pr(τ(t) = i) = 1. (55)

Applying base rule, we derive

η−1 Pr(τ(t) = 1) +

n∑
i=1

Pr(τ(t) = 1) = 1. (56)

This allows us to evaluate

Pr(τ(t) = 1) =
η

nη + 1
, (57)

when the Markov chain is in steady state, which will also
be the steady state probabilities for τ(t) = i for any i ∈

{1, . . . , n}. Additionally,

Pr(τ(t) ≥ n+ 1) =
1− η
nη + 1

. (58)

Since the Markov chain is trivially irreducible (as τ(t) always
cycles between states) and aperiodic for all η ∈ (0, 1), we
have exponential convergence to the steady state distribution
from [29].

A. Proof of Proposition 1

Given µ ∈ (aS ,min{1, aU}), n ∈ Z≥0 and η ∈ [0, 1], we
first note that in view of SA1 and (11), we have

V (F (χ, i+ 1)) ≤ aSaiUV (χ) (59)

for all χ ∈ Rsχ and i ∈ Z≥0.
Let χ0 ∈ Rsχ and consider χ(t) the solution to (11)

initialized at χ0. Recall that due to the structure of (10), once
a transmission is successful, the next transmission is attempted
only after n steps. Therefore, we define for all t ∈ Z≥0

TU (t) :=
{
i ∈ {1, 2, . . . , t− 1} | τ(i+ 1) ≥ 2 + n

}
, (60)

the set of all time instances where transmissions were at-
tempted, but communication failed before t. This implies that
for any t ∈ Z>0 and any i ∈ TU (t),

V (χ(i+ 1)) ≤ aUV (χ(i)) (61)

in view of SA1.
On the other hand, we define the set of all time instances

where transmission was successful before t for all t ∈ Z≥0 as

Tq(t) :=
{
i ∈ {1, 2, . . . , t− 1} | τ(i+ 1) = 1

}
, (62)

because whenever a communication occurs at some time, we
have τ(t+1) = 1 according to (9). This allows us to use SA1
to write, for any t ∈ Z>0 and any i ∈ Tq(t),

V (χ(i+ `)) ≤ anUaSV (χ(i)). (63)

for all ` ∈ {1, . . . , n + 1}. Combining (61) and (63), we can
write

V (χ(t)) ≤ aSanU
t−1∏
i=0

G(i)V (χ0) (64)

where G(i) := aU if i ∈ TU (t), G(i) := aSa
n
U if i ∈ Tq(t)

and G(i) := 1 otherwise. This can be done because we have
aS ≤ aSaU ≤ · · · ≤ aSa

n
U . Taking the logarithm on both

sides, we have for any t ∈ Z>0,

log(V (χ(t))) ≤ log(V (χ(0))) +

t∑
i=1

log(G(i)). (65)

Note that under (11), the clock state sequence can be seen
as a Markov chain with steady state distribution as stated in
Lemma 5. Recall that we initialize τ(1) = 1. This allows us
to express G(i) as a random variable, and its distribution can
be calculated as follows,

Pr(G(i) = aSa
n
U ) ≤ Pr(τ(i+ 1) = 1)

Pr(G(i) = aU ) ≥ Pr(τ(i+ 1) = n+ 1)
(66)



for all i ∈ {0, . . . , t− 1} for any t ∈ Z>0.
The results of Lemma 5 provides Pr(τ(i+ 1) = 1) and we

have

E[log(V (χ(t)))] ≤ log(V (χ0))

+t
(

Pr(τ(t) > n+ 1) log(aU ))

+ Pr(τ(t) = n+ 1) log(aSa
n
U )
)

≤ log(V (χ0)) + tβ(n, η)
(67)

Taking the exponential on both sides, we get the conver-
gence rate

E[V (χ(t))] ≤ β(n, η)tV (χ0) (68)

Since β(n, η) < µ, property (68) automatically implies that∑∞
t=0 E[α(|χ(t)|)] ≤

∑∞
t=0 E[V (χ(t))]

≤ 1
1−µV (χ0) <∞ (69)

satisfying condition (12) in Definition 1 as µ < 1 and
concluding our proof.

B. Proof of Lemma 3
Proof: Recall that we consider aU > aS in SA1. Due to

the property of logarithms, if log(β(n, η)) for any n ∈ Z≥0,
is monotonically decreasing in η, then so is β(n, η). Taking
the logarithm of (16) on both sides, we obtain

log(β(n, η)) =
log(aU ) + log(aSa

n−1
U )η

1 + nη
. (70)

Taking the derivative w.r.t. η, we have

log(aSa
n−1
U )

1 + nη
−
n(log(aU ) + log(aSa

n−1
U )η)

(1 + nη)2

=
log(aSa

n−1
U )− n log(aU )

(1 + nη)2
=

log(aS)− log(aU )

(1 + nη)2

(71)

which is negative as log(aU ) > log(aS). Therefore, β(n, η)
is monotonically decreasing in η.

Next, observe that we have β(n, 0) = aU . Since, we con-
sider µ < aU , if β(n, 1) < µ, we have β(n, 1) ≤ µ ≤ β(n, 0).
Since β(n, ·) is continuous by definition, there exists at least
one η such that β(n, η) = µ. Finally, due to β(n, ·) being
monotonous, this η is unique. Additionally if β(n, 1) > µ,
then β(n, η) > µ for any η ∈ [0, 1].

Finally, we look at ηC(h̄, p) in (18) and notice that each
term in the summation is increasing w.r.t. p in view of item (i)
SA3. Therefore, ηC(h̄, ·) is an increasing function. A similar
logic applies to ηI(h̄, κ).

C. Proof of Proposition 4
Since we know that P (t) is a stochastic process under policy

(10), we can rewrite the cost (14) as

JPT(p, n) = E[P (t)] = pPr(τ(t) ≥ n+ 1). (72)

Applying Lemma 5, we substitute for Pr(τ(t) ≥ n + 1)
which provides (32).

For n = 0, we trivially have that the function JPT(p, 0) = p,
which is strictly increasing in p. For all other cases, we will

have p
n
> 0. In order to study the properties of JPT(p, n)

w.r.t p, we look at the properties of the inverse cost which is
never zero for p > 0 defined as

ξn(p) =
1

JPT(p, n)
=

1

p
+ n

1− e(p)
p

(73)

Due to the stability requirement, we only look at ξn(p) for
all p ∈ [p

n
, Pmax], n ≥ 1. Note that due to item (i) of SA3,

we have that 1 − e(p) is a sigmoidal function of p. We can
therefore apply Theorem 1 in [22], to conclude that the term
1−e(p)
p is quasi-concave and takes the value 0 at the limits

when p → 0 and p → ∞. The term 1−e(p)
p therefore has a

unique maximum at say pu, is strictly increasing in the interval
(0, pu) and is decreasing in the interval (pu,∞).

Now, we can consider the two cases.
1) There is no local extremum for ξn(p) for p > 0.
2) There exists at least one p∗ which is a local extremum

satisfying

∂ξ(p∗)

∂p
=
−ne′(p∗)

p∗
− 1 + n(1− e(p∗)

p∗2
= 0. (74)

In the first case, since ξn(·) is differentiable and has no
local extremum, ∂ξ(p)

∂p is never 0 for p > 0. Note that the
function ξn is decreasing in the interval (pu,∞) for any n,
and so p 7→ ξn(p) must be decreasing for all p > 0. Since
ξn(p) is differentiable and ∂ξ(p∗)

∂p is never 0, ξn(p) is always
decreasing, which implies that JPT(p, n) is always increasing.

For the second case, there exists at least one p∗ satisfying
(74). Then, we evaluate

∂2ξ(p)

∂p2
=
−ne′′(p)

p
+

2

p2

(
1 + n(1− e(p))

p
+ ne′(p)

)
(75)

However, note that at a local extremum, the above expres-
sion will have the second term vanishing due to (74), implying
that

∂2ξ(p∗)

∂p2
=
−ne′′(p∗)

p∗
(76)

which is positive when e is concave and negative when e is
convex. From item (ii) of SA3, we know that (1−e) is initially
convex and then concave. This means that ξ has only local
minima initially (when 1 − e is convex), and then only local
maxima. Since ξ(p) is continuous and differentiable, this is
only possible if the local minimum and maximum are unique.
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