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Abstract

We consider the classical emulation paradigm in which a controller is already designed for a linear time-invariant plant.
Motivated by implementation constraints in real applications, we analyze the effects of ubiquitous low-cost quantizers
on the closed-loop dynamics. Consequently, we address the robust control problem of an uncertain discrete-time linear
process using a regulator affected by the effects of uniform quantization performed by the input-output converters and
arithmetical unit. In this setup with fixed hardware resolutions, the regulator’s state-space realization is balanced to
minimize the process’ state quantization error while simultaneously maintaining its desired transient response. To
characterize the quantization error, we provide an ultimate bound for its worst-case scenario using the input-to-state
stability framework. The minimization is performed using off-the-shelf tools, with a characterization of the resulting
problem. Finally, a comparative numeric case study showing the tightness of the computed bound is discussed.

Keywords: quantized control, linear uncertain systems, input-to-state stability, state-space balancing, asymptotic
gain.

1. Introduction

Digital implementation of continuous-time regulators requires the sampling, discretization, and quantization of
system coefficients and of the involved signals. These operations generally affect both the transient and steady-state
responses of the closed-loop system. There are several types of quantizer circuits, such as uniform, logarithmic,
delta-sigma, spherical polar coordinate, generalizing to the implementation of arbitrary countable sets (Gray and
Neuhoff, 1998; Wang, 2021; Fu, 2024). The feedback connection of quantized subsystems can lead to highly-nonlinear
behaviour, with effects such as static steady-state errors, limit cycles, or chaotic behaviour, see (Delchamps, 1990;
Franklin et al., 2006). This engineering problem has lead to two complementary research directions. The first focuses
on adequate hardware to ensure closed-loop asymptotic stability, with notable design tools proposed by (Brockett and
Liberzon, 2000; Liberzon, 2003, 2006; Fu and Xie, 2005, 2009; Liu et al., 2015; Zhou et al., 2010; Ferrante et al.,
2015; Xia et al., 2020; Wang, 2021; Wang et al., 2022; Xu et al., 2022) etc. The second considers simple Lyapunov
stability, with deviations as small as possible from the ideal asymptotic case.

Our focus is on the second paradigm, specifically on minimizing the quantization effects on the process’ state
signals through a controller redesign, when the regulator is implemented on fixed (non-adaptive) hardware which
induces uniform quantization errors. There are many applications, particularly in the automotive and aerospace in-
dustries (Dajsuren and van der Brand, 2019; Llorente, 2020), which impose strict hardware constraints due to which
asymptotic stability cannot be ensured. Tightening hardware constraints in automotive systems is accompanied by
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stricter control performance expectations, forcing designers to exploit limited computational, memory, and sensing
resources to their fullest to meet safety, functional, and cyber security requirements (ISO, 2018; UNECE, 2020a,b).
More so, it is of interest to focus on the effects of uniform quantizers due to their pervasiveness in practice, as they
are the de facto standard in industrial and embedded systems, as seen in the previous references alongside (Bolton,
2021) and (Petkov et al., 2018). An emerging use case is in training and deployment of neural networks (Wang et al.,
2021). Specific target microcontrollers are often mandated once validated and certified; additional software must be
integrated into these existing platforms rather than producing custom hardware for each application, so they must be
exploited to their fullest extent to remain as cost-effective as possible. Our objective is therefore to maximize the
performance attainable from a given hardware platform.

Transient response degradation with respect to external disturbances has been studied by Kameneva and Nešić
(2010), controller sampling rate and coefficients’ quantization by Şuşcă et al. (2023a,b), and has been characterized
using passivity indices (Xu et al., 2020) or mean-square stability (Cheng et al., 2019). We show that if the regulator
state-space matrices are exactly represented, the quantization errors affect only the steady-state behaviour of the
control system. Consequently, we consider the closed-loop steady-state performance degradation of the quantized
system compared to its ideal counterpart. This aspect has been extensively examined in recent studies; however,
relevant research gaps remain, as shown in what follows.

For steady-state effects, Franklin et al. (2006, Ch. 10) and Widrow and Kollár (2008, Ch. 17) use the Bertram
bound to analyze the quantization error of the output signal, but the approach is mostly limited to open-loop analysis.
De Souza et al. (2010) consider finite logarithmic quantizers to design invariant attractor sets, but the technique is
applicable only for single-input single-output systems. Error bounds for linear control systems affected by uniform
quantization, assuming a diagonalizable closed-loop state matrix, are given in (Şuşcă et al., 2022, 2024). In specific
cases, such as in DC-to-DC converter control, tight steady-state bounds are achieved in (Peng et al., 2007), with
a limit cycle rejection technique proposed by Abdullah et al. (2023). Another limiting practical assumption of all
state signals being accessible is considered in the adaptive backstepping control from (Wang et al., 2022). For exact
models, the impact of both uniform and logarithmic finite quantizers has been studied through achievable regions of
attraction of the closed-loop trajectories (Campos et al., 2016), and systematic ultimate bounds on the system’s states
and outputs (Haimovich et al., 2007). Furthermore, the interaction between the controller and process is performed
through zero-order hold circuits, but there exist specific use cases where other hold circuits are necessary, such as
first- and second-order hold, sinc hold, delta-sigma, etc., (Proakis and Manolakis, 2006).

Robustness to uncertainties and disturbances has been considered in multiple works, but most are explicitly ad-
dressed through the use of adaptive hardware, see (Yoo and Park, 2021; Liu et al., 2015; Ferrante and Tarbouriech,
2024; Ferdinando et al., 2022). Practical stability of the quantized closed-loop system has been achieved by Hayakawa
et al. (2009); Liberzon (2006); Ferdinando et al. (2024), but with the allowance of time-varying sampling intervals or
non-uniform quantization in the input/output channels.

In the works above, the quantization effects are assumed to stem from the input/output converters or input/state
only, but not from the full configuration arising in practice, where the internal computations of the regulator are also
affected by quantization. All considered works assume no feedthrough matrix on the process model. Additionally,
many consider state feedback control, which implies the assumption of a fully-measurable state, which is not feasible
in many practical use cases with limited hardware capabilities. Most studies – an exception being (Ferdinando et al.,
2024) – focus on quantifying the impact of the quantization effects, and not on the subsequent step of adapting the
regulator to minimize such effects.

This is why, in this paper, we consider a wide class of discrete-time linear control systems with: (i) uncertainties
and feedthrough in the process model; (ii) dynamic output feedback; (iii) the possibility to interface the process using
zero-order hold, first order-hold, or other more sophisticated hold devices; (iv) quantization effects in the internal
computations of the regulator caused by the arithmetic logic unit (ALU). This work is an extension of (Şuşcă et al.,
2022, 2024) with the added contribution of: (a) formalizing the induced quantization errors using the input-to-state
stability framework, (b) quantifying the effect of system uncertainties on the errors, (c) relaxing the assumptions
on the computed error bounds, (d) providing a nontrivial extension from vector bounds to element-wise bounds,
and (e) proposing a regulator balancing method which ensures tighter bounds without altering the desired transient
response. In developing the results, we also provide an algebraic relationship between the Markov parameters of a
stable LTI system and its H∞-norm. We start from a robust (in the sense of (Skogestad and Postlethwaite, 2005))
discrete-time regulator with given input-output behaviour and fixed sampling rate. The main objective is to minimize
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the quantization errors on the process’ state through controller redesign, considering static (memoryless) uniform
quantization on the regulator’s input-output converters and internal computations of its arithmetical unit. The main
contributions are:

1. computation of analytic ultimate bounds on the (vector and element-wise) quantization errors of the states and
outputs of the process;

2. decoupling the transient and steady-state response degradations of the closed-loop system with respect to the
quantization of the regulator;

3. balancing of regulator state-space matrices to minimize the quantization error bounds without affecting the
transient response.

Paper Structure: Section 2 reviews the necessary concepts on input-to-state stability of nonlinear systems and
robust control of uncertain linear systems in discrete-time domain. Section 3 provides the problem statement and
the required tools for quantized control systems. Section 4 develops the proposed analytic bound on the uniform
quantization error, while Section 5 continues with its minimization through a controller balancing scheme. Section 6
illustrates the achievable tightness of the optimized bound on a numeric example and compares it to other results from
the literature. Conclusions and further extensions are given in Section 7.

Notations: N, R, C are the sets of natural, real, and complex numbers. The subscript ≥ 0 (> 0) denotes nonnega-
tive (positive) numbers. The integer part of x ∈ Rn is symbolized as ⌊x⌋, with its fractional part written as {x}, applied
element-wise. The general linear group of degree n is written GLn(C). The symbol S

∼ denotes a general change of
coordinates through a matrix S ∈ GLn(C); P

∼ brings a square matrix A ∈ Cn×n into its Jordan canonical form JA,
i.e., A P

∼ JA ⇔ A = P · JA · P−1. Let µ(A) = µ(JA) denote the maximum Jordan block (cell) dimension of JA. The
spectral radius, eigenvalue set, and maximum singular value of A are denoted ρ(A), Λ(A) and σ(A). Its ith row is
symbolized as A(i, :). ∥·∥ denotes infinity-type norms. The Euclidean norm, i.e., spectral norm for matrices, is denoted
|·|, |A| = σ(A). We use the input-to-state stability notations from (Mironchenko, 2003), including the K , K∞, L, KL
sets of comparison functions, the space ℓn of sequences of dimension n ∈ N>0, and the space ℓ(Rm,Rp) of discrete
proper linear operators from Rm to Rp. A discrete-time multi-input multi-output (MIMO) linear time-invariant (LTI)
system G ∈ ℓ(Rm,Rp) with fixed sampling rate τ > 0 has a state-space representation (A, B,C,D) and equivalent
input-output transfer matrix representation:

G(z) =
(

A B
C D

)
def
= D +C (zI − A)−1 B.

TheH∞-norm of a stable system G is defined as:

∥G∥ def
= sup
Ω∈[0,2π)

∣∣∣∣G (
e jΩ

)∣∣∣∣ = sup
z∈C,|z|=1

∣∣∣D +C (zI − A)−1 B
∣∣∣ .

A list of the most important notations is provided in Table 1.

2. Mathematical Background

2.1. Input-to-State Stability

The following concepts are adapted from (Mironchenko, 2003, Ch. 2) and (Jiang and Wang, 2001).
Let Σ be a discrete-time system, with a sufficiently smooth map f : Rnx × Rnu → Rnx , k ∈ N:

Σ : x(k+1) = f (x(k), u(k)) , x0 = x(0) ∈ Rn. (1)

Definition 1. System (1) is called forward complete if, for all x0 ∈ Rnx and all u ∈ ℓnu , the solution ϕ(k, x0, u),
corresponding to initial condition x0 and bounded input u exists and is unique for k ∈ N.

Assume that f (0, 0) = 0, i.e., x = 0 is an equilibrium point of the 0-input system.
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Notation Meaning
∆ = (A∆, B∆,C∆,D∆) Arbitrary stable uncertainty model (4); ∆ ≡ D∆ particularizes to a static uncertainty

G(0),G = ULFT(G(0),∆) Process with nominal dynamics (5) versus uncertain process (6) with ∆ ∈ ∆
K(0), K Ideal and quantized regulator models, Eqns. (7), (10), based on (A1, B1,C1,D1)

L(0) = G(0)K, L = GK Open-loop plant without and with uncertainty block ∆ from (12)
T (0),T = ULFT(T (0),∆) Closed-loop system (13) based on L(0) and L and the feedback e = r − y
Υ = (Φ∆,Γ∆,η,C∆,D∆,η) Error dynamics (15) of the quantized versus ideal closed-loop systems T − T |η≡0
Φ∆ = P∆ · JΦ∆ · P

−1
∆

Complex Jordan form of closed-loop state matrix with Jordan cells of dimensions
{N1, . . . ,Ns} and maximum cell size µ(Φ∆) = max{Ni}, i = 1, s, s ≤ nΞ

QΞ
∆

(k), bound(QΞ
∆

) Quantization error of the state vector Ξ, (18) and its computed bound (19)
Q

y
∆

(k), bound(Qy
∆

) Quantization error of the output vector y (24) and its computed bound (25)

bound(QΞi
∆

), bound(Qyi
∆

) Quantization bounds used for element-wise states Ξi (32a) and outputs yi (32b)
bound(QΞ

∆
(K, P∆)) Computed bound with emphasized dependency on K and P∆ (33)

K(S ) Balanced regulator (34) using arbitrary similarity transformation S ∈ GLnξ (R) = S
P∆(S ) Set of all similarity transforms which lead Φ∆(S ) to its Jordan form, as in (35)
Dα Set of block diagonal matrices (37) based on which P∆(S ) can be spanned

S̃ = diag
(
Inx+nζ , S

)
Shorthand notation S̃ ∈ GLnΞ (R) (38) which allows simplified computations in (39)

Nξ,Nu, Nξ, Nu H∞-norms of the state, output signals of K, with maximum allowed values (40), (41)

Table 1: Main mathematical objects used throughout the paper

Definition 2. System (1) is called input-to-state stable (ISS), if (1) is forward complete and there exist β ∈ KL and
γ ∈ K such that for all x0 ∈ Rnx , u ∈ ℓnu bounded, k ∈ N, the following inequality holds:

|ϕ(k, x0, u)| ≤ β(|x0| , k) + γ(∥u∥).

The function γ is called the asymptotic gain of system (1) and describes the influence of the exogenous input on the
system. The map β describes the transient behaviour of the system.

Theorem 1. If f (·, 0) from system (1) is Lipschitz continuous, global asymptotic stability at zero (0-GAS) is equivalent
to the existence of β ∈ KL such as for all x0 ∈ Rnx and all k ∈ N it holds that:

|ϕ(k, x0, 0)| ≤ β(|x0| , k).

Any ISS system is 0-GAS. On the other hand, for any ISS system there exists γ ∈ K so that for any x0 ∈ Rnx and any
bounded u ∈ ℓnu , the inequality:

lim sup
k→∞

|ϕ(k, x0, u)| ≤ γ (∥u∥) , (2)

is satisfied. Condition (2) is called the asymptotic gain (AG) property. A system having the AG property will be called
an AG system. Every trajectory of an AG system converges to the neighborhood of an origin with a radius γ (∥u∥).
Furthermore:

Theorem 2. System (1) is ISS if and only if it is AG and its origin without inputs is stable in the sense of Lyapunov.

2.2. Robust Control of Discrete-Time Linear Systems
The following robust control concepts are adapted from (Skogestad and Postlethwaite, 2005). In robust control,

the process uncertainties can be classified in unstructured (to describe residual dynamics) and parametric (to model
inaccurate component characteristics). Both types can be encompassed into a single block-diagonal structured matrix
uncertainty from the set:

∆ =
{
∆ = diag

(
∆

p
1 In1 , . . . ,∆

p
F InF ,∆

u
1, . . . ,∆

u
F

)
,∆

p
i ∈ C, ∆

u
j ∈ C

m j×m j , 1 ≤ i ≤ F, 1 ≤ j ≤ F
}
, (3)
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where blocks ∆p
i Ini are used for parametric uncertainties and blocks ∆u

j are used for unstructured uncertainties. By
convention, |∆| < 1, ∀∆ ∈ ∆. Formulation (3) is natural in frequency domain, but in the time domain, the complex
terms translate to fixed LTI models ∆(z). From now on, we will refer to uncertainties ∆ ∈ ∆ only through their
equivalent time-domain dynamical formulations, defined next. The dynamics of an arbitrary stable uncertainty block
∆ ∈ ℓ (Rnv ,Rnd ) of order nζ ∈ N, ∥∆∥ < 1, and initial condition ζ(0) ≡ 0, is:

∆ :

ζ(k+1) = A∆ζ(k) + B∆v(k);
d(k) = C∆ζ(k) + D∆v(k).

(4)

The equivalence is achieved by the identity ∆(z) = D∆+C∆ (zI − A∆)−1 B∆. A static uncertainty model corresponds to a
feedthrough matrix ∆ ≡ D∆, |D∆| < 1. In practice, particular examples of the model (4) can be obtained through Monte
Carlo sampling if the worst-case frequency response of the uncertainty model is known. Methods to experimentally
obtain such models from data can be found in (Hindi et al., 2002; Balas et al., 2009) for LTI systems, with an extension
to descriptor systems developed in (Markiş et al., 2024).

Figure 1 presents the one degree-of-freedom closed-loop discrete-time control system composed of an uncer-
tain process G ∈ ℓ (Rnu ,Rny ) and a regulator (assumed ideal in this section) K(0) ∈ ℓ (Rny ,Rnu ). The ideal pro-
cess, decoupled from the uncertain dynamics ∆ ∈ ℓ (Rnv ,Rnd ), is denoted by G(0) and has the augmented interface(
v⊤ y⊤

)⊤
= G(0)

(
d⊤ u⊤

)⊤
, with a default state-space representation and initial condition x0 = x(0) ∈ Rnx :

G(0):


x(k+1) = A2x(k) + Bd d(k) + B2 u(k);
v(k) = Cvx(k) + Dvdd(k) + Dvuu(k);
y(k) = C2x(k) + Dydd(k) + D2 u(k).

(5)

Figure 1: Closed-loop discrete-time system with process uncertainty ∆ and quantized regulator K, i.e., the ideal regulator model K(0) implemented
using non-ideal sample, hold, and arithmetic unit. This leads to quantization noise at the regulator’s input (analog-to-digital converter, ADC),
output (digital-to-analog converter, DAC), and internal computations (arithmetic logic unit, ALU).

The hardware setup from Figure 1 implies a zero-order hold discretization of the process. A causal adaptation can
be determined, according to Franklin et al. (2006), to the first-order hold extrapolator also, which ultimately leads to
different matrices in (5). The methodology remains adaptable to more specialized hold circuits. The signals u ∈ ℓnu

and y ∈ ℓny represent the command and measurement vectors, which are physically accessible, while d ∈ ℓnd and
v ∈ ℓnv are the disturbance input and output vectors. The state vector is x ∈ ℓnx . For an arbitrary uncertainty model
∆ ∈ ∆ from (4), d = ∆v, we compute the implicit form y = Gu of the process using the upper linear fractional
transformation (ULFT) connection G = ULFT

(
G(0),∆

)
. Its expression, combining (5) with an arbitrary particular

sample (4) from the uncertainty family, is:

G = ULFT
(
G(0),∆

)
:
(

A2,∆ B2,∆

C2,∆ D2,∆

)
def
=

 A2 + BdD̃−1D∆Cv BdD̃−1C∆ B2 + BdD̃−1D∆Dvu

B∆D−1Cv A∆ + B∆D−1DvdC∆ B∆D−1Dvu

C2 + DydD∆D−1Cv DydD̃−1C∆ D2 + DydD∆D−1Dvu

 , (6)

with auxiliary notations D = I − DvdD∆ and D̃ = I − D∆Dvd. The ULFT connection is well-posed if both matrices D

and D̃ have full rank or, equivalently, the matrix
(

I Dvd

D∆ I

)
is invertible (Ionescu et al., 1999, Ch. 2). The state vector
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of the uncertain process is
(
x⊤ ζ⊤

)⊤
∈ ℓnx+nζ . The nominal process model can be recovered as G(0)

∣∣∣
∆≡0 ⇔ G|∆≡0.

This allows us to provide tailored quantization bound expressions in Section 4 to any system from the uncertainty
family.

The ideal numeric regulator K(0) has an input-output mapping u = K(0)e, using the error signal e = r − y as input,
and is connected to the process G in a feedback connection, with reference r ∈ Rny . Its state-space representation is:

K(0) :

ξ(k+1) = A1ξ(k) + B1e(k);
u(k) = C1ξ(k) + D1e(k),

(7)

with initial condition ξ0 = ξ(0) ∈ Rnξ , e ∈ ℓny , u ∈ ℓnu , ξ ∈ ℓnξ .
The problem of steady-state quantization has been shown by Haimovich et al. (2007) and Şuşcă et al. (2022) to be

well-posed if the closed-loop system is stable. To ensure the validity of the study for the entire uncertainty family, we
consider the robust stability (RS) property, i.e., regulator (7) ensures stability of all systems G against ∆. As such, we
consider the assumption:

Assumption 1. The already-designed regulator K(0) ensures robust stability of the uncertain system G for all ∆ ∈ ∆.

We assume that a satisfactory controller (7) has already been designed and is given for the scope of the quantization
analysis. This paradigm reflects common industrial practice, particularly in automotive and aerospace domains, where
responsibilities are split across multiple teams: a design group develops the control law and certifies its functional
properties, while separate implementation and integration teams adapt and deploy the controller on target hardware.

3. Uniform Quantized Linear Control Systems

Problem Statement: Let K(0) be an ideal nominal discrete-time regulator satisfying Assumption 1. Our objective
is to perform a controller redesign to obtain the regulator K(S ) that minimizes the quantization errors induced by fixed
hardware (see Figure 1) on the closed-loop system’s states.

To solve the above problem we provide, in Section 4, a method to accurately characterize the errors induced by
the quantization. Based on this characterization, we perform the controller redesign in Section 5.

In the following, we provide the model of the ideal regulator K(0) affected by the non-ideal hardware devices
from Figure 1 inducing uniform quantization. The interface between the continuous-time process and discrete-time
regulator is ensured through sample and hold circuits, like in (Chen and Francis, 1995; Haimovich et al., 2007) and
(Ferdinando et al., 2024). Furthermore, we also consider that the internal computations from K(0) are affected by
quantization noise, caused by a non-ideal arithmetic unit. This additional extension, normally not accounted for in the
literature, is justified by the following motivating example.

Example 1. Consider a perturbed version of controller (7), where the signals are affected by the uniform quantization
of the arithmetic unit (rounding and truncation), causing bounded uncorrelated additive noise vectors ηξ1 , ηξ2 of
adequate sizes, see (Mullis and Roberts, 1976):

K :

ξ̃(k+1) = A1ξ̃(k) + B1e(k) + ηξ1 (k);
ũ(k) = C1ξ̃(k) + D1e(k) + ηξ2 (k).

Each state can be written as ξ̃(k) = ξ(k) + ηξ1 (k−1). This leads to the perturbed command signal:

ũ(k) = C1

(
ξ(k) + ηξ1 (k−1)

)
+ D1e(k) + ηξ2 (k).

The relative error of the command signal, assuming a non-zero forced equilibrium, i.e., lim
k→∞

u(k) , 0, is:

∥ũ(k) − u(k)∥
∥u(k)∥

=
∥C1ηξ1 (k−1) + ηξ2 (k)∥
∥C1ξ(k) + D1e(k)∥

. (8)

The analysis of (8) shows two possible quantization-sourced problems. First, the numerator can have non-negligible
absolute errors in high-gain dynamic regulators (when ∥C1∥ ≫ 1). Second, arbitrarily large relative errors can
appear in practical applications, e.g., computer numerical control machining, with variable arbitrary trajectories
and steady-states. An equilibrium point implies e(k) → 0, which means that state equilibria ξ ∈ ker (C1) cancels the
numerator, leading to numeric singularities (Spong et al., 2020). ■
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To account for the quantization effects of the regulator hardware, consider mappings Q(χ, x) : R>0 × Rn →

Rn. The argument χ is the resolution of the quantizer, with element-wise application on each component of the
vector argument x. The two commonly-used functions are the midtread (rounding) and midriser (truncation), defined
(Widrow and Kollár, 2008) as:

Q(χ, x) = χ
⌊

x
χ
+

1
2

⌋
, Q(χ, x) = χ

(⌊
x
χ

⌋
+

1
2

)
. (9)

We propose a rewriting of the quantization functions (9) in a unified additive manner as Q(χ, x) = x + φ(χ, x) ⊙ χ,
χ > 0, x ∈ Rn, with a considered uncertain but bounded term φ(χ, x) ∈

[
− 1

2 ,
1
2

]n
, where φ(χ, x) = 1

2−
{

x
χ
+ 1

2

}
∈

[
− 1

2 ,
1
2

)n

for midtread, and φ(χ, x) = 1
2 −

{
x
χ

}
∈

(
− 1

2 ,
1
2

]n
for midriser, respectively. The symbol ⊙ denotes element-wise

multiplication. In practice, the truncation is usually translated by a half step, but it can be adapted back to its original
form with average slope equal to one.

The hardware interfacing the process with the regulator from Figure 1 leads to quantization effects perturbing
the input, state, and output signals of the ideal regulator K(0) from (7), as illustrated in Figure 2. Irrespective of the
quantization function, the quantized regulator K ∈ ℓ

(
R2ny+nξ+2nu ,Rnu

)
can be modelled as:

K :

ξ(k+1) = A1ξ(k) + B1e(k) + B1ηe(k) + ηξ1 (k);
u(k) = C1ξ(k) + D1e(k) + D1ηe(k) + ηξ2 (k) + ηu(k),

(10)

with bounded disturbance inputs due to quantization as: ηe ∈ Rny , ∥ηe∥ =
χe
2 (ADC), ηξ1 ∈ Rnξ , ∥ηξ1∥ =

χξ
2 (ALU

involved in state computations), ηξ2 ∈ Rnu , ∥ηξ2∥ =
χξ
2 , (ALU involved in output computations) ηu ∈ Rnu , ∥ηu∥ =

χu
2

(DAC), for hardware resolutions χe, χξ, χu ∈ R>0. The disturbances can be lumped into a single vector:

η =
(
η⊤e η⊤ξ1

η⊤ξ2
η⊤u

)⊤
∈ ℓny+nξ+2nu . (11)

Figure 2: Ideal discrete-time controller (7) affected by quantization at its input (ADC), output (DAC), and internal computations (ALU).

We make the following assumption.

Assumption 2. The reference r and matrices (A1, B1,C1,D1) from (10) are exactly represented.

The reference signal must also be encoded in the same manner as the other signals involved in the controller’s com-
putations, irrespective of the fact that it may be provided by an external source. More so, coefficient encoding will not
be further considered in this paper, as it is a separate problem which influences the transient response of the system,
see (Şuşcă et al., 2023a). However, our analysis holds even for perturbed systems (Ã1, B̃1, C̃1, D̃1) ≈ (A1, B1,C1,D1)
as long as RS is maintained for the entire uncertainty set ∆. The resulting non-ideal regulator has the extended
input-output representation u = K

(
η⊤ e⊤

)⊤
, with the ideal expression (7) recovered as K(0) = K|η≡0.
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4. Input-to-State Stability Characterization of System Quantization Errors

Using the setup from Section 3, we proceed to quantify the resulting quantization effects on the closed-loop system
within the ISS framework. Using the quantized regulator K from (10), we obtain the open-loop system as the series
connection L(0) = G(0)K,

(
v⊤ y⊤

)⊤
= L(0)

(
d⊤ η⊤ e⊤

)⊤
, with an extended state Ξ of dimension nΞ = nx + nζ + nξ:

Ξ =
(
x⊤ ζ⊤ ξ⊤

)⊤
.

The partial closed-loop with the uncertainty blocks ∆ ∈ ∆, ∥∆∥ < 1, is L = ULFT
(
L(0),∆

)
, d = ∆v, with the input-

output representation y = L
(
η⊤ e⊤

)⊤
, L = GK. Furthermore, the state-space representation of the open-loop

plant can be expressed, based on (6), as:

L :

 A2,∆ B2,∆C1 B2,∆D1 O B2,∆ B2,∆ B2,∆D1
O A1 B1 I O O B1

C2,∆ D2,∆C1 D2,∆D1 O D2,∆ D2,∆ D2,∆D1

 ≡
(

AL,∆ BL,∆,η BL,∆,e

CL,∆ DL,∆,η DL,∆,e

)
. (12)

A feedback connection applied to L implies that the regulator input becomes e = r − y, which is a simplified form
of the lower linear fractional transformation (LLFT) connection, see (Ionescu et al., 1999, Ch. 2). This leads to the
closed-loop uncertain system model T = ULFT(T (0),∆), y = T

(
η⊤ r⊤

)⊤
. We make the following assumption.

Assumption 3. Matrix E∆
def
= I + DL,∆,e = I + D2,∆D1 is invertible.

This assumption guarantees that the closed-loop system is well-posed. Thus, it is not restrictive in practice. Further-
more, regulators are usually designed such that the closed-loop system has roll-off, i.e., D2,∆D1 = O, or otherwise, the
feedthrough gain is

∣∣∣D2,∆D1
∣∣∣ ≪ 1, to attenuate high-frequency noise. If the process or the regulator is strictly proper,

i.e., D2,∆ = O or D1 = O, then E∆ = I. Due to this, in typical applications, the matrix E∆ is diagonally dominant.
Then, the closed-loop uncertain model T has the state-space representation:

T :

Ξ(k+1) = Φ∆Ξ(k) + Γ∆
(
η⊤(k) r⊤(k)

)⊤
;

y(k) = C∆Ξ(k) + D∆
(
η⊤(k) r⊤(k)

)⊤
,

(13)

with initial condition Ξ(0) =
(
ξ(0)⊤ x(0)⊤ ζ(0)⊤

)⊤
∈ RnΞ . The closed-loop state and input matrices (well defined

due to Assumption 3) are:

Φ∆ = AL,∆ − BL,∆,eE−1
∆ CL,∆ =

(
A2,∆ B2,∆C1
O A1

)
−

(
B2,∆D1

B1

) (
I + DL,∆,e

)−1
(
C2,∆ D2,∆C1

)
;

Γ∆ =
(

BL,∆,η BL,∆,e

)
− BL,∆,eD∆ ≡

(
Γ∆,η Γ∆,r

)
=

(
Γe
∆,η

Γ
ξ1
∆,η

Γ
ξ2
∆,η

Γu
∆,η

Γ∆,r
)
,

and the output and feedthrough matrices are:

C∆ = E−1
∆ CL,∆ =

(
E−1
∆

C2,∆ E−1
∆

D2,∆C1

)
, D∆ = E−1

∆

(
DL,∆,η DL,∆,e

)
≡

(
D∆,η D∆,r

)
. (14)

Denote the difference between the quantized closed-loop system’s state Ξ(k) and its ideal case counterpart as
ε(k) = Ξ(k)−Ξ(k)|η≡0, and the difference between the corresponding outputs as δ(k) = y(k)− y(k)|η≡0. The quantization
error dynamics system Υ is then described by the state-space realization:

Υ :

ε(k+1) = Φ∆ε(k) + Γ∆,ηη(k);
δ(k) = C∆ε(k) + D∆,ηη(k),

ε0 ∈ RnΞ . (15)

Theorem 3. Under Assumptions 1, 2, 3, the error dynamics Υ from (15) induced by uniform quantization, composed
of system G from (6) and regulator K from (10), is ISS.
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Proof 1. Summing up the state equations of the error dynamics (15) for i = 1, k+1 scaled by the (k + 1 − i)th power
of the state matrix Φ∆, the (k+1)th sample depending on the initial state ε(0) = ε0 is:

ε(k+1) = Φk+1
∆ ε(0) +

k∑
i=0

Φi
∆Γ∆,ηη(k − i)︸                 ︷︷                 ︸
QΞ
∆

(k)

. (16)

By definition, the state trajectory of the difference equation (15) coincides with (16). As such, ϕ(k, ε0, η) def
= ε(k) in

Definition 2. Applying the∞-norm on (16), we obtain:

∥ϕ (k, ε0, η)∥ ≤
∥∥∥Φk
∆

∥∥∥ · ∥ε0∥︸        ︷︷        ︸
β(∥ε0∥,k)

+
∑

ϑ∈{e,ξ1,ξ2,u}

∥∥∥∥∥∥∥
k−1∑
i=0

Φi
∆Γ

ϑ
∆,η

∥∥∥∥∥∥∥ · ∥ηϑ(k−1−i)∥︸                                           ︷︷                                           ︸
γ(∥η∥)

, (17)

which corresponds to Definition 2 of the ISS property with the Euclidean norm replaced by the ∞-norm. The term
β asymptotically decreases to zero, as shown next. Let Φ∆ = UXΦ∆U

⋆ be the Schur canonical form, where U is a
unitary matrix and XΦ∆ ∈ CnΞ×nΞ is the upper triangular form. Then we have

∥∥∥Φk
∆

∥∥∥ = ∥∥∥Xk
Φ∆

∥∥∥. We write XΦ∆ = DX+FX ,
where DX and FX are the main diagonal and upper triangular part of matrix XΦ∆ , respectively. Because FnΞ

X is the
null matrix, we have: ∥∥∥Φk

∆

∥∥∥ = ∥∥∥Xk
Φ∆

∥∥∥ ≤ nΞ−1∑
i=0

(
k
i

)
∥DX∥

k−i ∥FX∥
i =

nΞ−1∑
i=0

(
k
i

)
ρ (Φ∆)k−i ∥FX∥

i ,

where
(

k
i

)
is the notation for combinations. According to Assumption 1, ρ (Φ∆) < 1 for all ∆ ∈ ∆. Then:

lim
k→∞

(
k
i

)
ρ (Φ∆)k−i = 0,

which, alongside (17), completes the proof. ■

In conclusion, for k → ∞, the quantization error is given only by the asymptotic gain γ (∥η∥). Note that for k = 0,
the initial process states x(0) and ζ(0) = 0 are invariant to the quantized and ideal regulators alike. If, furthermore,
ξ(0) = ξ(0)|η(0)≡0, then ε0 = 0 in (17) and the quantization error coincides with the asymptotic gain γ (∥η∥) for any
k ∈ N, not just for the steady-state behaviour. Thanks to Assumption 2, the external reference signal vanishes from
(15) and it does not influence the quantization error.

We further proceed to obtain an absolute bound on the asymptotic gain of the error dynamics. Define the ideal
(non-conservative) upper bound of the partial sum:

QΞ
∆
= sup

k≥0

∥∥∥QΞ∆(k)
∥∥∥ .

Denote the set of indices ϑ found in the outer sum of (17) as Θ def
= {e, ξ1, ξ2, u}. We rewrite the input-dependent term

from (16) as:

QΞ∆(k) =
∑
ϑ∈Θ

k−1∑
i=0

Φi
∆Γ

ϑ
∆,ηηϑ(k−1−i). (18)

An absolute bound for the worst-case state quantization error can be computed based on the Jordan canonical form of
the closed-loop state matrix Φ∆, as folows:

Theorem 4 (State error vector bound). Given ∆ ∈ ∆, the state ε in (15) is asymptotically bounded by:

QΞ
∆
≤

∑
ϑ∈Θ

µ(Φ∆)∑
i=1

1
(1 − ρ (Φ∆))i

 · ∥P∆∥ · ∥∥∥∥P−1
∆ Γ

ϑ
∆,η

∥∥∥∥ · χϑ2 def
= bound

(
QΞ
∆

)
, (19)

with the (complex) Jordan canonical form Φ∆ = P∆ · JΦ∆ · P
−1
∆

and µ(Φ∆) is the maximum Jordan cell dimension.
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The proof is found in Appendix A. Theorem 4 allows us to quantify the steady-state quantization error in terms
of the infinity norm instead of the Euclidean norm, which would only provide a qualitative assessment in our case.

Remark 1. It can be seen from (19) that bound
(
QΞ
∆

)
depends on the regulator K and, through matrices Φ∆, Γ∆,η, on

the similarity transform P∆.

Next, the quantization error of the uncertain model (6), ∆ . 0, is shown to be separable into the sum of its nominal
counterpart’s error and a bounded term caused by the uncertainty. To state the next result, we introduce the order of
growth notation O(·). A vector-valued function F (x, ψ) is said to be O(ψ) on a compact set Dx×

[
0, ψ⋆

]
if there exist

constants c, ψ⋆ > 0 such that:
|F (x, ψ)| ≤ cψ, ∀ψ ∈

[
0, ψ⋆

]
, ∀x ∈ Dx.

Theorem 5 (Uncertain state error vector bound). For an arbitrary ∆ ∈ ∆, the state ε in (15), reduced to the process
states x and regulator states ξ, is asymptotically bounded by the sum of the nominal quantization error and the size of
the uncertainty as:

QΞ
∆
≤ QΞ

∆

∣∣∣∣
∆≡0
+ O (∥∆∥) . (20)

The proof is found in Appendix B. The above result shows that for sufficiently small uncertainties ∆ ∈ ∆, the
quantization error of the uncertain system is well approximated by the nominal one’s.

A bound on the worst-case quantization error of the process measurements can be similarly derived. Combining
(15) with (16), the output dynamics can be rewritten as:

δ(k) = C∆ε(k) + D∆,ηη(k) = C∆Φk
∆ε(0) +

k−1∑
i=0

C∆Φi
∆Γ∆,ηη(k−1−i) + D∆,ηη(k)︸                                       ︷︷                                       ︸

Q
y
∆

(k)

. (21)

Applying the∞-norm on expression (21), similarly to (17), we obtain the ISS-type formulation:

∥δ(k)∥ ≤
∥∥∥C∆Φk

∆

∥∥∥ · ∥ε0∥︸            ︷︷            ︸
βy(∥ε0∥,k)

+
∑
ϑ∈Θ

( ∥∥∥∥Dϑ
∆,η

∥∥∥∥ · ∥ηϑ(k)∥ +

∥∥∥∥∥∥∥
k−1∑
i=0

C∆Φi
∆Γ

ϑ
∆,η

∥∥∥∥∥∥∥ · ∥ηϑ(k−1−i)∥
)

︸                                                                    ︷︷                                                                    ︸
γy(∥η∥)

. (22)

For an uncertainty block ∆ ∈ ∆, define the ideal (non-conservative) upper bound of the above error as:

Q
y
∆
= sup

k≥0

∥∥∥Qy
∆

(k)
∥∥∥ . (23)

We rewrite the input-dependent term from (21):

Q
y
∆

(k) =
∑
ϑ∈Θ

Dϑ
∆,ηηϑ(k) +

k−1∑
i=0

C∆Φi
∆Γ

ϑ
∆,ηηϑ(k−1−i)

 . (24)

An ultimate bound for the ideal worst-case output quantization error (23) can be computed as follows.

Corollary 1 (Output error vector bound). Given ∆ ∈ ∆, the output δ in (15) is asymptotically bounded by:

Q
y
∆
≤

∑
ϑ∈{e,ξ1,ξ2,u}


µ(Φ∆)∑

i=1

1
(1 − ρ (Φ∆))i

 · ∥C∆P∆∥ ·
∥∥∥∥P−1
∆ Γ

ϑ
∆,η

∥∥∥∥ + ∥∥∥∥Dϑ
∆,η

∥∥∥∥ · χϑ2 def
= bound

(
Q

y
∆

)
. (25)

The framework of Corollary 1 can be further adapted to provide element-wise bounds for each state Ξi ∈ Ξ,
i = 1, nΞ, and output yi ∈ y, i = 1, ny from (15). This adaptation is not straightforward, as we need to maintain the
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feedback dynamics unaffected by the required matrix modifications to isolate individual errors. To isolate a worst-case
bound for each component, we start from (21). Taking (14) into account, (21) becomes:

E∆δ(k) = CL,∆Φ
k
∆ε(0) + DL,∆,ηη(k) +

k−1∑
i=0

CL,∆Φ
i
∆Γ∆,ηη(i). (26)

To isolate output yi, the pre-multiplications in (26) are replaced by:

Eyi
∆
= I(i, :) + Dyi

2,∆D1; Cyi
∆,L =

(
Cyi

2,∆ Dyi
2,∆C1

)
; Dyi

∆,L =
(

Dyi
2,∆D1 O Dyi

2,∆ Dyi
2,∆ Dyi

2,∆D1
)
, (27)

where, adapting from (5) and (6):

Cyi
2,∆ =

(
C2(i, :) + Dyd(i, :)D∆D−1Cv Dyd(i, :)D̃−1C∆

)
; Dyi

2,∆ = D2(i, :) + Dyd(i, :)D∆D−1Dvu, (28)

and D, D̃ remain unchanged. The closed-loop matrices Φ∆ and Γ∆,η remain unaffected. Similarly, to highlight the
states Ξi in (26), i = 1, nΞ, we replace in (28):

EΞi
∆
← I(i, :); C2(i, :)←

(
0 . . . 0 1︸︷︷︸

i

0 . . . 0
)

; D2(i, :)← 0; Dyd(i, :)← 0, (29)

leading to the output matrices CΞi
2,∆, DΞi

2,∆ and EΞi
∆

. The quantization errors δΞi (k) and δyi (k), respectively, have the
dynamics:

EΞi
∆
δΞi (k) = CΞi

L,∆Φ
k
∆ε(0)

k−1∑
j=0

CΞi
L,∆Φ

j
∆
Γ∆,ηη(k−1− j) + DΞL,∆,ηη(k)︸                                            ︷︷                                            ︸

Q
Ξi
∆

(k)

, i = 1, nΞ, k ≥ 0; (30)

Eyi
∆
δyi (k) = Cyi

L,∆Φ
k
∆ε(0) +

k−1∑
j=0

Cyi
L,∆Φ

j
∆
Γ∆,ηη(k−1− j) + Dyi

L,∆,ηη(k)︸                                            ︷︷                                            ︸
Q

yi
∆

(k)

, i = 1, ny, k ≥ 0. (31)

Denote by bound
(
Q
Ξi
∆

)
and bound

(
Q

yi
∆

)
the supremum of the terms indicated in (30) and (31), similarly to (19) and

(25). We now proceed to provide ultimate element-wise quantization error bounds for the state and output signals of
the closed-loop system T from (13).

Corollary 2 (Error element-wise bounds). For an arbitrary ∆ ∈ ∆, each state Ξi, i = 1, nΞ, and output δi, i = 1, ny,
in (15) is asymptotically bounded by:

Q
Ξi
∆
≤ bound

(
Q
Ξi
∆

)
, i = 1, nΞ; (32a)

Q
yi
∆
≤

ny∑
j=1

(∣∣∣ẽi j

∣∣∣ · bound
(
Q

yi
∆

))
, i = 1, ny, (32b)

where ẽi j are the elements of the matrix inverse of E∆, i.e., E−1
∆
=

[
ẽi j

]
, 1 ≤ i, j ≤ ny.

The proof is found in Appendix C. In practice, Corollary 2 shows, on the one hand, that the steady-state quantization
error is directly influenced by the spectral radius of the closed-loop state matrix. On the other hand, it allows the
computation of individual quantization errors based on an algebraic test on the regulator and process state-space
matrices, alongside the hardware configuration parameters χe, χξ, χu. For the best-case scenario of Assumption 3, i.e.,
E∆ = I, usually found in applications, (32b) is reduced to a decoupled version.
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5. Controller Balancing for Asymptotic Gain Minimization

Emphasizing the dependency on the regulator K and the similarity matrix P∆, based on Remark 1, the state vector
bounds from Section 4 can be written as:

bound
(
QΞ
∆

)
= bound

(
QΞ
∆

(K, P∆)
)
. (33)

This section proposes an adequate scaling of the regulator matrices (A1, B1,C1,D1) and a way to find the similarity
matrix P∆, given K, to ensure optimized bounds of QΞ

∆
.

There are several possible changes to the regulator to minimize the bounds from Theorem 4 and Corollaries 1 and 2.
Among them, one can select the discretization method for K(0) or apply a similarity transformation to its state-space
representation. The discretization method is usually selected to shape the transient response of the regulator, impact-
ing the matrices mentioned in Assumption 2, see also (Yepes et al., 2010; Şuşcă et al., 2023a,b). The next invariance
proposition is justified by relations (10), (13) and (15).

Proposition 1. The quantization (11) of a process G from (6) controlled by regulator K in (10) does not affect the
pole-zero structure of the closed-loop system, i.e., its transient response.

The proof is straightforward due to the structure of the resulting closed-loop system matrices. As such, based on
Assumptions 1, 2 and Proposition 1, the quantization effects from K affect only the steady-state response. Thus, to
minimize the quantization error bounds, we consider the set of state-space representations of K(0) of minimal order
nξ, which implicitly maintains the input-output response. Starting from a fixed ideal regulator K(0) from (7), through
a similarity transformation S ∈ GLnξ (R) applied to K from (10), we obtain a new regulator K(S ):

K =
(

A1 B1

C1 D1

)
S
∼

(
S −1A1S S −1B1

C1S D1

)
def
= K(S ). (34)

According to (33), the state error bound is influenced by the decision variables S ∈ GLnξ (R) def
= S, to balance the

controller using (34) leading to the state matrix Φ∆(S ), and P∆ ∈ P∆(S ),

P∆(S ) def
=

{
P∆ ∈ GLnΞ (C) : Φ∆(S ) = P∆JΦ∆(S )P−1

∆

}
, (35)

to obtain various coordinate changes to the Jordan form representation from the bound formula (33). The dimension-
ality of the decision variable is n2

ξ + n2
Ξ

. This leads to the following optimization problem:

min
S∈S

min
P∆∈P∆(S )

bound
(
QΞ
∆

(K(S ), P∆)
)
. (36)

We next proceed to show that, due to the structure of the quantization error, the minimization (36) can be performed
using a single decision variable (instead of a two step approach), with a reduced number of parameters. Suppose
Φ∆(S ) = P(0)

∆
· J(0)
Φ∆(S ) ·

(
P(0)
∆

)−1
is a fixed arbitrary Jordan form realization and that it is composed of s ≤ nΞ Jordan

blocks with geometric multiplicities Ni, i = 1, s,
∑

Ni = nΞ. The following lemma gives a way to generate all
similarity matrices from (35) starting from a single fixed example.

Lemma 1. For any S ∈ GLnξ (R), P∆(S ) can be spanned by any similarity matrix P(0)
∆

right multiplied by the block
diagonal matrices Dα from the set:

Dα =
{
diag

(
α1IN1 , α2IN2 , . . . , αsINs

) ∣∣∣ αNi ∈ C \ {0} , i = 1, s
}
, (37)

for a given permutation of the Jordan structure J(0)
Φ∆(S ). All Jordan block permutations of Φ∆(S ) can be recovered by

a further right multiplication with permutation matrices that preserve its block structure.

The proof is found in Appendix D. The technical advantage of the previous lemma is that, instead of using matrices
P∆ from (35), we can iterate through a single decision vector (α1, . . . , αs)⊤ ∈ Rs

>0 of reduced size, which allows the
use of off-the-shelf optimization techniques.
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Remark 2. In the case of a diagonal matrix J(0)
Φ∆(S ), the scaling set Dα from (37) is characterized by nΞ degrees-of-

freedom αi ∈ C \ {0} as opposed to s ≤ nΞ in the general statement of Lemma 1. In practice, to achieve smaller
quantization error bounds, it may be desirable to design a closed-loop state matrixΦ∆(S ) with eigenspaces of dimen-
sion 1 (not equivalent to forcing poles to have multiplicity 1), leading to µ(Φ∆) = 1 in (25).

Thus, according to Lemma 1, the inner minimization for P∆ ∈ P∆(S ) in (36) reduces the search from a n2
Ξ

dimensional manifold to the Cartesian product of an s ≤ nΞ dimensional complex space and N ≤ s! permutation
matrices Π.

A change S in K(S ) implies a change in the state matrixΦ∆(S ) which, in turn, leads to a different similarity matrix
P∆. This sequentiality of selecting a regulator K(S ) based upon which the matrix P∆ will be further computed can be
bypassed by two independent decision variables, as follows. Denote an extension of S ∈ S up to the dimension nΞ of
the closed-loop system order as:

S̃ = diag
(
Inx+nζ , S

)
∈ GLnΞ (R). (38)

Lemma 2. For ∆ ∈ ∆, given S ∈ S such that K S
∼ K(S ), the asymptotic gain bound (19) can be expressed as:

bound
(
QΞ
∆

(K(S ), P∆)
)
=

µ(Φ∆)∑
i=1

1
(1 − ρ (Φ∆))i

 · [ ∥∥∥S̃ −1P∆
∥∥∥ · ∥∥∥∥S̃ P−1

∆ Γ
ξ1
∆,η

∥∥∥∥ · δξ1

2
+

∑
ϑ∈{e,ξ2,u}

∥∥∥∥P−1
∆ Γ

ϑ
∆,η

∥∥∥∥ · χϑ2


∣∣∣∣∣∣∣∣
K

. (39)

The proof is found in Appendix E.

Remark 3. Compared to the influence of S on the state quantization error (18), which roughly translates to QΞ
∆

(k)
∣∣∣
K(S ) =

S̃ −1 · QΞ
∆

(k)
∣∣∣
K + Residual (S ,K), in the case of the output error (24) it translates to Qy

∆
(k)

∣∣∣
K(S ) = Q

y
∆

(k)
∣∣∣
K + C∆ ·

Residual (S ,K). The existence of the residual term (that depends on Γξ1
∆,η

) shows that the quantization in the controller
state computations cannot be easily compensated in the process’s outputs, although it can be for the states. Further-
more, Lemma 2 shows that a change S in K(S ) due to the structure of the quantization errors does not induce a new
similarity matrix P∆ for the Jordan form of Φ∆. Thus, S ∈ S and P∆ ∈ P∆ can be varied independently.

A challenge stems from the possibility of arbitrarily low or large norms, i.e., ∥S ∥ → 0 or ∥S ∥ → ∞, which
makes it practically impossible to encode the regulator signals in the considered hardware of the microprocessor. Let
Nξ = ∥(A1, B1, I,O)∥ and Nu = ∥(A1, B1,C1,D1)∥ denote the H∞-norms of the regulator K state and output signals,
respectively, assumed to be finite. Based on Lemma 4 from (Şuşcă et al., 2022), a maximum admissible regulator state
norm Nξ should be imposed. Given that Nu is invariant to S ∈ GLnξ (R) (due to Proposition 1), an additional design
specification arises:

S ∈ S subject to
∥∥∥∥(S −1A1S , S −1B1, I,O

)∥∥∥∥ ≤ Nξ. (40)

Combining (36) with Lemma 1, (39) from Lemma 2, and constraint (40), the minimization (36) becomes:

min
S∈S

Dα∈Dα(37)

bound
(
QΞ
∆

(
K(S ), P(0)

∆
DαΠ

))
(41)

subject to
∥∥∥∥(S −1A1S , S −1B1, I,O

)∥∥∥∥ ≤ Nξ,

for any permutation matrix Π corresponding to the Jordan block structure JΦ∆ . The functional (41) is differentiable,
having a right-continuous Jacobian due to the ∞-norms, and a solution can be obtained by subgradient methods, see

(Clarke, 1990). The above results can also be adapted for Qy
∆

, QΞi
∆

and Qyi
∆

. The importance of Lemmas 1 and 2 in
practice is that, on the one hand, they reduce the dimensionality of the optimization problem (36), and on the other
hand, they allow the joint optimization of both variables S and P∆. Furthermore, Theorem 3 ensures that the bounds
are well-defined based on the ∞-norm, while Theorem 5 ensures the robustness and overall range of the computed
bounds based on only a few samples from the uncertainty set. Once a software routine to solve (41) is implemented,
it can also be used in a reverse manner, i.e., to design the minimal hardware configuration χe, χξ, χu which ensures
a quantization error less than a prescribed tolerance. The resulting scaling leads to the expression of the balanced
regulator (34) to be implemented. The control engineer can select to minimize the bound on state error (Theorem 4),
output error (Corollary 1), or on a subset of any individual state or output signal (Corollary 2).
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6. Case Study and Relevant Comparison

We proceed to illustrate the proposed method on a benchmark eight-order MIMO LTI mass, spring, dashpot
system, adapted from (Mihaly et al., 2022). The steps that are taken are to: obtain the analytical expression of the
process family (6) using MATLAB®; design a robust continuous-time controller (7) which satisfies Assumption 1;
discretize the regulator; define the quantization steps, with minimum number of bits to not require saturation, based
on constraint (40); balance the regulator matrices for a suboptimal output vector bound (Corollary 4) by solving
(41); present a comparative analysis with the computed element-wise bounds using Corollary 2 and the method from
(Haimovich et al., 2007); illustrate the negligible effects of uncertainties on the computed bounds.

The system is modelled through the Euler-Lagrange equationMq̈(t)+Cq̇(t)+Kq(t) = T u(t), where q(t) =
[
qi
]
i=1,4

are the mechanical positions of the four masses. The matricesM,C,K ,T are given by:

(M|C) =


m1 0 0 0 c1+c2 −c2 0 0
0 m2 0 0 −c2 c2+c3 −c3 0
0 0 m3 0 0 −c3 c3+c4 −c4
0 0 0 m4 0 0 −c4 c4

 ; (T |K) =


0 0 k1+k2 −k2 0 0
1 0 −k2 k2+k3 −k3 0
0 0 0 −k3 k3+k4 −k4
0 1 0 0 −k4 k4

 ,
with parameters having nominal values m1 = m2 = m3 = m4 = 1 [kg], k1 = k2 = k3 = k4 = 1 [N/m], c1 = c2 = c3 =

c4 = 0.4 [Ns/m] and tolerances tolm1 = ±10[%], tolm2 = tolm3 = tolm4 = ±50[%], tolc1 = tolc2 = tolc3 = tolc4 = tolk1 =

tolk2 = tolk3 = tolk4 = ±5[%]. This leads to static uncertainties in model (4), i.e., ∆ ≡ D∆, normalized to |D∆| < 1.
Such models can be constructed using the ultidyn and musynData routines in MATLAB® (Balas et al., 2023). The
state-space model G has state x⊤ =

(
q⊤ q̇⊤

)
, input u(t), and output y⊤ =

(
x2 x4

)
:

(
ẋ(t)
y(t)

)
=

 O4×4 I4×4 O4×2
−M−1K −M−1C M−1T

T ⊤ O2×4 O2×2


(
x(t)
u(t)

)
.

A closed-loop shaping procedure (Skogestad and Postlethwaite, 2005) was used to derive the continuous-time regula-
tor K(0)(s). It was computed using the musyn routine from MATLAB®, version R2023b, with the weighting functions

for the sensitivity WS (s) = diag
(

0.4167s+0.15
s+0.0015 , 0.4167s+0.15

s+0.0015

)
and complementary sensitivity WT (s) = diag

(
100(s+6)2

(s+92.95)2 ,
100(s+6)2

(s+92.95)2

)
,

respectively. We further apply a balanced order-reduction algorithm with multiplicative error model on the resulting
optimal controller. A zero-order hold discretization with a sampling period T = 0.1 [s] is applied to G(0)(s) and the
form (5) is obtained using the musynData function. Through the Tustin discretization applied to K(0)(s), maintaining
the previous sampling period, the following regulator is obtained1:

A1=



0.9999 0.0761 −0.0495 −0.0287 −0.0764 0.0107 0.0166 −0.0091 0.0640 −0.5247
−0.0004 0.6716 0.0176 0.1250 0.2698 −0.1221 −0.0427 0.1287 0.5797 0.8570
−0.0015 −0.0393 −0.7132 0.1194 −0.0710 −0.1378 −0.0416 0.1218 −0.1231 −0.4307
0.0001 0.3413 −0.0293 0.2656 0.2556 −0.0360 −0.0525 0.0916 −0.5154 0.0830
0.0010 0.1632 −0.1870 0.4777 −0.0220 −0.2198 0.1721 −0.0067 1.4104 1.3097
0.0006 −0.0300 −0.1184 −0.1619 −0.3565 0.3938 −0.0215 0.3473 1.0975 1.3567
0.0002 −0.0219 −0.0279 −0.1224 0.0007 −0.1805 0.8873 −0.1241 0.1434 1.3172
−0.0004 −0.0378 0.0716 −0.0341 0.3010 0.2084 0.1611 0.9111 −0.1920 −0.3130
0.0001 −0.0696 −0.0201 −0.2874 0.1754 −0.2743 −0.1554 0.1494 −0.9181 −0.3662
−0.0000 0.0095 0.0064 0.0447 −0.0147 0.0535 0.0233 −0.0417 0.0952 −0.7854



;

B⊤1 =
(

1.2515 3.2513 −3.9534 −2.3351 2.9414 4.5996 −0.0712 −0.9089 0.4562 −0.0497
−2.1297 −2.2881 −4.3578 3.9184 5.9039 2.8040 −0.2377 −0.2215 −0.5109 0.1399

)
;

C1=

(
0.0097 0.0773 −0.2420 −3.2081 0.9643 −2.6670 −1.1576 1.5027 −7.3888 2.8939
−0.0020 0.4476 −0.5423 −3.1756 0.1145 −2.8886 −1.0948 1.5464 −9.2361 6.9479

)
;

D1=

(
6.8053 6.3820
5.4449 12.1026

)
. (42)

1The source code and results with full precision can be found at the GitHub repository: https://github.com/mirceasusca/nahs-2025-quantization.
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The scaling-invariantH∞-norm of the controller isNu = ∥(A1, B1,C1,D1)∥ = 213.25, with dynamic range encoded
on 8 bits. The range of the state signal is initiallyNξ = 21617.92, which requires 7 extra bits to be correctly encoded.
The quantizer resolutions (11) are χe =

5
213 , χξ = 5

222 , χu =
5

214 , calibrated to 5 [V] analog voltages, with truncation
applied by the input-output devices and rounding applied to the internal computations.

For simplicity of implementation, we consider only positive diagonal scalings on S from (34), along with real-
valued positive scalings Dα from (37) on P∆. This leads to nΞ + nξ = 28 R>0 decision variables. A good start-
ing point for Nξ is 255, to maintain the same (already-required) dynamic range on the states. The minimization
(41) has been performed using the fmincon routine on the nominal system, i.e., ∆ ≡ 0, with default hyperpa-
rameters, starting point x0 = 1, lower and upper bounds

[
10−2, 102

]
for S , and

[
10−6, 108

]
for Dα, respectively.

A feasible suboptimal solution x⋆ which ensures the state bound is N⋆
ξ = 226.79. The guaranteed state vec-

tor bound (39) decreases to 0.1961, compared to its starting value 4.9018, obtained by setting S = I, Dα = I
and P(0)

∆
returned by applying the eig routine to the nominal closed-loop state matrix Φ∆(I)|∆≡0. This leads to

the regulator K(S ⋆) by combining (34) with (42). S ⋆ = diag(95.37, 98.43, 30.93, 98.43, 74.53, 96.07, 99.99, 70.52,
6.56, 13.42), with a corresponding D⋆

α = diag(4.74, 4.74, 0.38, 23.83, 13.77, 13.77, 38.42, 38.60, 1.70, 1.66, 1.2, 1.06,
10.09, 10.05, 19.33, 55.91, 35.90, 88.10) were obtained.

Figure 3: Element-wise state quantization error bounds bound
(
Q
Ξi
∆

)
from (32a), for i = 1, 8, alongside Monte Carlo (MC) simulated closed-

loop counterparts, as described in (i)-(vi) from Section 6. For this example, the experimental quantization errors in the nominal case (v) and
with uncertainties (vi) are practically interchangeable, showing that the statement in Theorem 5, although providing a safety guarantee that the
uncertainty does not arbitrarily break the quantization error, it is conservative. Furthermore, cases (i), (iv) show comparative results and the
improvements obtained by using the proposed method.

Now, considering K(S ⋆) fixed, (32a) from Corollary 2 can be applied to compute the element-wise bounds for
the process states, using only P∆ as decision variable. This implicitly covers the output error bounds, as y1 = x2
and y2 = x4. Multiple experiments have been performed, with results gathered in Figure 3, where the y-axes are in
logarithmic scale. For each state quantization error bound (32a), i = 1, 8, we consider: (i) an unoptimized default
case with P∆ = P(0)

∆
, which is already an improvement compared to the full state vector bound from (Şuşcă et al.,

2022) (dashed black lines); (ii) a set of 25 Monte Carlo suboptimal bounds for uncertain variations ∆ . 0 of the
process (green dotted lines); (iii) the best achieved bound for the nominal system ∆ ≡ 0 (red lines); (iv) the systematic
ultimate bound computed with the method from (Haimovich et al., 2007) for ∆ ≡ 0 (blue lines). On top of that, we
validate the computed bounds using two sets of 25 Monte Carlo closed-loop simulations for experimental quantization
errors obtained using: (v) the nominal process (dark gray), and (vi) uncertain system configurations (light gray). The
simulations have been performed for tsim = 150 [s], which is beyond the settling time of the closed-loop system.
The computed bounds of experiment (iii) are 10−4 × (1.96, 5.44, 4.76, 6.99, 2.56, 115.19, 5.87, 147.32), while for (iv)
they are 10−4 × (34.83, 58.86, 45.16, 51.63, 25.69 , 77.86, 29.92, 83.72). It can be seen that the proposed method (iii)
provides considerably tighter bounds on states x1–x5 and x7, averaging to an improvement of an order of magnitude,
while the bounds on x6 and x8 are approximately double in magnitude, compared to (iv).

The experiments in (ii) have been performed using a maximum of 3000 iterations in fmincon, compared to (iii),
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configured to run up to 40000 iterations, achieving tighter bounds. Figure 3 shows that the minimization of the bounds
for states x1–x5 behave better than for x6–x8, as they tend, for various numbers of iterations and function tolerances,
to reach the same value, and to less conservative bounds. Wider gaps can be seen between the green and red lines for
x6–x8. An investigation of this discrepancy can be carried out as further research.

7. Conclusions and Future Works

This work analyses linear control systems perturbed by uniform quantization errors. It presents means to quantify
the quantization effects on the system’s states and outputs, and methods to minimize such effects through an adequate
balancing of the regulator state-space realization. The guaranteed bounds are shown to scale proportionally with the
norm of the uncertainty. The computed bounds can be easily adapted to allow different resolutions of each channel.
Practical insights are given regarding the implementation and application of the method. In this work, we considered
the regulator and hardware configuration as given, focusing on optimally leveraging the available resources to achieve
the best possible performance. A natural extension involves the joint design of the least-cost hardware parameters
χe, χξ, χu with the objective of ensuring that the quantization error remains below a specified threshold.

A complementary research direction is to extend the proposed framework to the nonlinear system case. Assuming
sufficiently smooth mappings, the recurrence relation that yields the state dynamics in (16) generalizes to an infinite
composition of nonlinear functions. Such compositions could be analyzed by expanding them via Taylor series around
the operating point, and applying the current method on the resulting linear approximation. It is also of significant
interest to investigate the conditions under which diffeomorphisms, originally constructed in the continuous-time
domain for system linearization, retain their effectiveness after numerical implementation.
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Appendix A. Proof of Theorem 4

Denote:

Σk

(
Φ∆,Γ

ϑ
∆,η, ηϑ

)
=

k−1∑
i=0

Φi
∆Γ

ϑ
∆,ηηϑ(k−1−i), ϑ ∈ Θ.
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An upper bound for QΞ
∆

is:

QΞ
∆
≤ sup

k≥0

∑
ϑ∈Θ

∥∥∥∥Σk

(
Φ∆,Γ

ϑ
∆,η, ηϑ

)∥∥∥∥ . (A.1)

Each partial sum from (A.1) can be rewritten as:

∥∥∥∥Σk

(
Φ∆,Γ

ϑ
∆,η, ηϑ

)∥∥∥∥ ≤ k−1∑
i=0

∥∥∥∥Φi
∆Γ

ϑ
∆,ηηϑ(k−1−i)

∥∥∥∥ ≤ ∥P∆∥ · k−1∑
i=0

∥∥∥Ji
Φ∆

∥∥∥ · ∥∥∥∥P−1
∆ Γ

ϑ
∆,η

∥∥∥∥ · χϑ2 .

For each Jordan cell JNi (λi) of dimension Ni, i = 1, s, corresponding to eigenvalue λi ∈ Λ (Φ∆) we have:

Jm
Ni

(λi) =


λm

i

(
m
1

)
λm−1

(
m
2

)
λm−2 . . .

λm
i

(
m
1

)
λm−1 . . .

. . .
. . .

λm
i

 ,
which implies

∥Jm
Ni

(λi)∥ ≤
Ni−1∑
j=0

|λi|
m− j

(
m
j

)
≤

Ni−1∑
j=0

ρ (Φ∆)m− j
(
m
j

)
,

where
(

m
j

)
= 0, if j > m. As k → ∞, we have:

k−1∑
m=0

∥Jm
Ni

(λi)∥ ≤
k−1∑
m=0

Ni−1∑
j=0

ρ (Φ∆)m− j
(
m
j

)
=

Ni−1∑
j=0

k−1∑
m=0

ρ (Φ∆)m− j
(
m
j

)
≤

Ni∑
j=1

1
(1 − ρ (Φ∆)) j .

Therefore, considering µ (Φ∆) = max{N1,N2, . . . ,Ns}, we have

k−1∑
i=0

∥∥∥Ji
Φ∆

∥∥∥ ≤ µ(Φ∆)∑
i=1

1
(1 − ρ (Φ∆))i ,

which leads to the upper bound:

∥∥∥∥Σk

(
Φ∆,Γ

ϑ
∆,η, ηϑ

)∥∥∥∥ ≤ µ(Φ∆)∑
i=1

1
(1 − ρ (Φ∆))i

 · ∥P∆∥ · ∥∥∥∥P−1
∆ Γ

ϑ
∆,η

∥∥∥∥ · χϑ2 . (A.2)

Combining (A.1) with (A.2), (19) follows. ■

Appendix B. Proof of Theorem 5

We begin with an auxiliary result needed to prove Theorem 5. The following lemma establishes a connection
between the Markov parameters of a stable LTI system and itsH∞-norm.

Lemma 3. If a discrete-time system (A, B,C,D) has theH∞-norm ψ, then |D| ≤ ψ and for each k > 0:

sup
z∈C,|z|=1

∣∣∣D +CBz−1 + . . . +CAk−1Bz−k
∣∣∣ ≤ ψ. (B.1)

Proof. From theH∞-norm definition, we have:

sup
z∈C,|z|=1

∣∣∣D +C (zI − A)−1 B
∣∣∣ = ψ. (B.2)
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Let h0 = D and hn = CAn−1B, n ≥ 1, be the impulse response of the discrete-time system, i.e., its Markov
parameters. Because the system is Schur stable, the spectral radius ρ(A) < 1, so An converges exponentially to the
null matrix. Moreover:

|hn| = |CAn−1B| ≤ |C||A|n−1|B|,

so the sequence of norms |hn| decays exponentially. Therefore, the series
∞∑

n=0

|hn| is convergent. Additionally, according

to (B.2), we have that

∣∣∣∣∣∣∣
∞∑

n=0

hnzn

∣∣∣∣∣∣∣ ≤ ψ, for each complex number z with |z| = 1. Therefore, the power series
∞∑

n=0

hnzn is

uniformly convergent on the unit circle.
We first prove that |h0| = |D| ≤ ψ. For z ≡ εℓ n

√
z, where εℓ = e j 2πℓ

n , ℓ ∈ {0, 1, . . . , n− 1} are the nth roots of unity and
z is an arbitrary complex number on the unit circle, we have:∣∣∣∣D +CBε−1

ℓ
n
√

z−1
+CABε−2

ℓ
n
√

z−2
+ . . .

∣∣∣∣ ≤ ψ,
for ℓ ∈ 1, n and |z| = 1. Summing up the above n inequalities, and using the triangle inequality along with the
following fact:

n−1∑
ℓ=0

εi
ℓ =

n−1∑
ℓ=0

ei· j 2πℓ
n =

0, if i . 0 (mod n);
n, if i ≡ 0 (mod n),

it leads to: ∣∣∣D +CAn−1Bz−1 +CA2n−1Bz−2 + . . .
∣∣∣ ≤ ψ. (B.3)

Because the spectral radius ρ (A) < 1, we have lim
n→∞

An = O, so relation (B.3) implies |D| ≤ ψ.
For k ≥ 1 we proceed by induction for an adequate system which has the partial sum of the first k Markov

parameters in its feedforward matrix D. We consider the response of the (A, B,C,D) system to the input:

u(n) = δ(n) + νδ(n + 1) + · · · + νkδ(n + k),

where δ(n) is the discrete impulse signal and ν is a complex number with |ν| = 1. Then, we will have the same property
for a new system with Markov parameters h̃n = hn + νhn+1 + · · · + ν

khn+k, n ≥ 0, and, according to the case k = 0,

using the uniform convergence of
∞∑

n=0

hnzn, we have that each partial term satisfies:

sup
|ν|=1

∣∣∣h0 + h1ν + · · · + hkν
k
∣∣∣ ≤ ψ,

which covers all the remaining cases of statement (B.1). ■

Next, we proceed to analyze QΞ
∆

(k) from (18) in terms of the nominal (∆ ≡ 0) system matrices perturbed by
residuals due to ∆ . 0, ∥∆∥ < 1. Define the shift operator S : ℓnζ → ℓnζ , Sx(n) = x(n−1). Then, for k ∈ N and initial
condition ζ(0) = 0, the output of the discrete-time uncertainty model (4) is:

d(k) = D∆v(k) +
k−1∑
i=0

C∆Ak−1−i
∆ B∆v(i) =

D∆ +
k−1∑
i=0

Si+1C∆Ak−1−i
∆ B∆

 v(k) def
= ∆(k) · v(k).

Then, according to Lemma 3, |∆(k)| ≤ ∥∆∥, for all k ∈ N. This means that system G from (6), with only its original
states x ∈ Rnx , can be seen as a linear time-varying system with matrices:(

A2,∆(k) B2,∆(k)
C2,∆(k) D2,∆(k)

)
=

(
A2 B2
C2 D2

)
+

(
Bd

Dyd

)
(I − ∆(k)Dvd)−1 ∆(k)

(
Cv Dvu

)
=

(
A2 B2
C2 D2

)
+ Res(∆(k)),
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which perturbs the nominal matrices with a term that scales with the uncertainty norm, i.e., |Res(∆(k))| = O(∥∆∥).
Furthermore, it follows that matrices from the steady-state quantization error (18) are affected in the same manner:
Φ∆ = Φ∆|∆≡0 + Res(∆(k)) and Γ∆,η = Γ∆,η

∣∣∣
∆≡0 + Res(∆(k)). Therefore:

QΞ∆(k) =
k−1∑
i=0

[
Φ∆|∆≡0 + Res (∆(k))

]i
·
[
Γ∆,η

∣∣∣
∆≡0 + Res (∆(k))

]
η(k−1−i) = QΞ∆(k)

∣∣∣
∆≡0 +

k−1∑
i=0

[∑
Res (∆(k))

]
η(k−1−i).

(B.4)
All resulting uncertain control systems are stable, due to Assumption 1, leading to convergent residual series in (B.4).
By applying the supremum with respect to k ∈ N and the∞-norm, (20) follows. ■

Appendix C. Proof of Corollary 2

In the case of element-wise state bounds (32a), the individual signal errors δΞi , i = 1, nΞ from (30) are decoupled,

see (29), which implies that the bounds on
∣∣∣δΞi (k)

∣∣∣ for k → ∞ coincide with bound
(
Q
Ξi
∆

)
, i = 1, nΞ.

On the other hand, for the element-wise outputs (32b), the individual signal errors δyi , i = 1, ny are linked, based on
(27) and (28), as: 

Ey1
∆
...

E
yny

∆

︸︷︷︸
E∆


δy1 (k)
...

δyny (k)

 =

Q

y1
∆

(k)
...

Q
yny

∆
(k)

 ⇔


δy1 (k)
...

δyny (k)

 = E−1
∆


Q

y1
∆

(k)
...

Q
yny

∆
(k)

 .

Therefore, each signal δyi is bounded by:

sup
k≥0
|δyi (k)| = sup

k≥0

∣∣∣∣∣∣∣∣
ny∑
j=1

ẽi j · Q
y j

∆
(k)

∣∣∣∣∣∣∣∣ ≤
ny∑
j=1

∣∣∣ẽi j

∣∣∣ · sup
k≥0

∣∣∣Qy j

∆
(k)

∣∣∣ ≤ ny∑
j=1

(∣∣∣ẽi j

∣∣∣ · bound
(
Q

yi
∆

))
,

which concludes the proof. ■

Appendix D. Proof of Lemma 1

The similarity matrix P(0)
∆

has the eigenvector structure:

P(0)
∆
=

(
p(1)

1 . . . p(1)
N1

. . . p(s)
1 . . . p(s)

Ns

)
∈ CnΞ×nΞ ,

according to the Jordan block structure of J(0)
Φ∆(S ), as each eigenspace Vλi of P(0)

∆
has the dimension dim Vλi = Ni,

leading to:
Vλi = Span

{
p(i)

1 , . . . , p(i)
Ni

}
, i = 1, s, λi ∈ Λ (Φ∆(S )) .

To preserve the change of coordinates from Φ∆(S ) to J(0)
Φ∆(S ), the basis of each subspace Vλi can at most be scaled by

a non-zero value αi ∈ C \ {0}. It follows that all Jordan form representations of Φ∆(S ) can be written as:

Φ∆(S ) =
(
P(0)
∆

DαΠ
)
·
(
Π−1J(0)

Φ∆(S )Π
)
·
(
Π−1D−1

α (P(0)
∆

)−1
)
= P∆ · JΦ∆ (S ) · P−1

∆ ,

where Dα = diag(α1IN1 , . . . , αsINs ) ∈ Dα as in (37) and Π are permutation matrices of order s, with units extended to
size Ni, i = 1, s, corresponding to each Jordan block of J(0)

Φ∆(S ). ■
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Appendix E. Proof of Lemma 2

An analysis of the bound (19), considering a change of coordinates to from K to K(S ) implies two different
occurrences of matrix S̃ from (38). First, for the state matrix, there is the similarity transformation:

Φ∆(S ) =
(
A2,∆ B2,∆C1S
O S −1A1S

)
−

(
B2,∆D1
S −1B1

) (
I + DL,∆,e

)−1
(
C2,∆ D2,∆C1S

)
= S̃ −1Φ∆(I)S̃ S̃

∼ Φ∆(I).

Furthermore, matrices C∆ and Γ∆,η from (12) are transformed to:

C∆|K(S ) = C∆|K · S̃ ; Γ
ξ1
∆,η

∣∣∣∣
K(S )
= Γ

ξ1
∆,η

∣∣∣∣
K

; Γϑ∆,η

∣∣∣∣
K(S )
= S̃ −1 · Γϑ∆,η

∣∣∣∣
K
, ϑ ∈ {e, ξ2, u} .

As the state quantization error (16) involves products of the formΦi
∆
·Γ∆, it follows that, for the scaled regulator K(S ),

formula (18) reduces to a left-multiplication by S̃ −1. An exception is the invariant term Γξ1
∆,η

, as it does not depend on
the regulator matrices by S̃ −1 to cancel the effect of S̃ from Φi

∆
:

QΞ∆(k) =
∑

ϑ∈{e,ξ2,u}

k−1∑
i=0

S̃ −1Φi
∆��̃S ��S̃ −1Γϑ∆,ηηϑ(k−1−i) +

k−1∑
i=0

S̃ −1Φi
∆S̃ · Γξ1

∆,η
ηξ1 (k−1−i). (E.1)

By applying (19) to the set of matrices (E.1), the bound (39) for the scaled regulator results. ■
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