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Abstract

This paper investigates time-varying output formation of interconnected heterogeneous linear two-time-scale systems with
model uncertainty. Unlike previous works on the cooperation of interconnected two-time-scale systems, we consider nonidentical
dynamics for each agent that may be characterized by different dimensions and time-scaling factors. Additionally, the systems
are interconnected through a switching graph with a disconnected topology, rendering more challenging the analysis and
the controller design. To address these challenges, a hybrid two-layer hierarchical control protocol is proposed. The upper
layer utilizes an impulsive cooperative control strategy to generate local references, enabling discrete-time interactions among
agents and thereby reducing the communication burden. The lower layer implements an internal model-based controller for
the two-time-scale dynamics to track the generated references, demonstrating robustness against small model uncertainties.
Closed-loop analysis is based on input-to-state stability (ISS) results for hybrid systems. Furthermore, the obtained result is
extended to achieve the output consensus. Finally, two examples are presented to illustrate the effectiveness of the results.
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1 Introduction

Most of the results for analysis and control design within
framework of multi-agent systems (MAS) are developed
under the hypothesis that the agents have identical dy-
namics. However, this assumption is often unrealistic
as slight variations typically exist even among devices
aimed to be identical [1]. For instance, two engines or
batteries with identical characteristic usually exhibit
different degrees of fatigue/deterioration, leading to
slightly different dynamics. Recently, cooperative con-
trol of interconnected heterogeneous systems has gained
significant interest due to its widespread application
across many industrial fields [2–4]. Formation control is
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supported by the ANR through the grant COMMITS ANR-
23-CE25-0005 and the PNRR project DECIDE No. 760069.
Corresponding author Z. Wang.

Email addresses: yanleis@swu.edu.cn (Yan Lei),
zhengwang@swu.edu.cn (Zheng Wang),
xinwangswu@163.com (Xin Wang), lihongyibhu@163.com
(Hongyi Li), constantin.morarescu@univ-lorraine.fr
(Irinel-Constantin Morărescu).

a classical and practical topic, aimed at guiding inter-
connected systems to achieve predefined static or time-
varying formation patterns. Many valuable works have
been done on the formation control of interconnected
systems with identical dynamics [5–8]. However, apply-
ing these cooperative algorithms becomes challenging
when the dynamics and dimension of each system are
different. To address this heterogeneity, the two-layer
hierarchical control framework has been extensively
employed, and yielded numerous excellent results in
both static and time-varying formation control [9–11].
Within the two-layer hierarchical control framework,
the upper layer orchestrates the generation of necessary
local references through the cooperation of the designed
interconnected virtual systems, and the lower layer is
responsible for tracking these local references for each
systems, facilitating the desired cooperative behavior.

Note that the aforementioned results only pertain to sin-
gle time scale systems, and are challenging to apply to
systems with dynamics evolving on two time scales, typ-
ically modeled as singularly perturbed systems [12–17].
For instance, consider the cooperation of interconnected
heterogeneous inverted pendulums or robotics via DC
motor control, where the angular speed and armature
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current of controlled DC motor evolve on slow and fast
time scales [14,15]. Unlike the heterogeneity in inter-
connected single time scale systems, two-time-scale sys-
tems (TTSSs) also encompasses differences in the time-
scaling factor. Moreover, the tracking algorithms design
often encounters challenges related to numerically ill-
conditioning and high dimensionality. Thus, the exist-
ing control design for single time scale systems cannot
be applied on the shelf. Although significant progress
has been achieved on the consensus problem for identi-
cal interconnected TTSSs [18–21], only few results ad-
dress the formation problem [22,23], and no effective
solutions exist for the consensus or formation control
of interconnected heterogeneous two-time-scale systems
(HTTSSs). In [22,23], cooperative control laws are devel-
oped using singular perturbation techniques to achieve
the formation of quadrotor unmanned aerial vehicles
(UAVs) and autonomous underwater vehicles (AUVs).
Notably, in these studies, the multi-time-scale feature
arises from high gain controller rather than the original
systems dynamics. Besides, these results overlook the
inherent heterogeneity of the interconnected TTSSs. Al-
though event-triggered consensus has been achieved for
interconnected linear TTSSs with slightly different dy-
namics due to structured uncertainties [19], significant
gaps and challenges remain in extending these findings
to interconnected HTTSSs, especially when system di-
mensions and time-scaling factors differ.

Furthermore, in practical applications, communication
resources are valuable yet limited for interconnected sys-
tems, making it essential to develop methods with a low
communication burden. Impulsive control techniques,
which built on the time-triggered mechanism allowing
data transmission at discrete-time instants, are effective
and popular [24]. Recently, impulsive control has found
widespread application in the formation of heteroge-
neous interconnected single time scale systems [9,25,26],
primarily due to its advantages including robustness,
simplicity and lower communication burden. However,
it remains challenging and interesting to explore how
to integrate impulsive control into the cooperation of
interconnected HTTSSs. Moreover, given the dynamic
nature of the external environment, model uncertainty
emerges as a significant concern [27,28]. It’s also imper-
ative to enhance the robustness of the control design to
effectively handle this uncertainty.

In this context, we focus on interconnected hetero-
geneous linear TTSSs subject to model uncertainty,
and investigate the time-varying output formation
(TVOF) problem. Each system may have the noniden-
tical dimensions and time-scale factors, and they are
interconnected through a switching direct disconnected
topology. To adapt to the two-time-scale heterogene-
ity and reduce the communication losses, an impulsive
two-layer hierarchical control framework is employed.
This problem presents three main challenges. First, un-
like in [22,23,9,25,26], we consider a switching directed

topology where each sub-graph may be disconnected.
This poses challenges for the impulsive cooperative con-
trol design in the upper layer to generate the reference
trajectories that adapt to time-varying formation pat-
terns. Second, we address the output formation problem
related to the fast states when each agent dynamics
evolves on two time-scales under unmatched model un-
certainty. Therefore, solving regulation equation may
encounter numerical issues due to the small time-scaling
factor, which prevents the direct variable transforma-
tion in [9] from converting the formation problem to
output regulation problem in the lower layer. Achiev-
ing tracking of the hybrid local reference under these
conditions is particularly challenging. Third, the hybrid
dynamics arises not only from the switching topology
but also from the impulsive control signals. While these
impulses aim to generate suitable trajectories for for-
mation realization, they also introduce disturbances
affecting dynamics on both slow and fast time scales
in the lower layer. Consequently, ensuring the stability
of the overall two-time-scale hybrid closed-loop sys-
tems requires a particular attention and tailored tools.
To overcome these challenges, we introduce a virtual
leader aligned with the TVOF patterns. Accordingly,
we propose an internal model based robust hybrid two-
layer hierarchical control protocol that incorporates
two-time-scale feature. In the upper layer, an impulsive
leader-following cooperative control scheme is devel-
oped to generate appropriate reference trajectories with
discrete-time communication, while accommodating a
switching disconnected topology. In the lower layer,
an internal-model based control scheme is designed for
robust output tracking on two-time-scale with model
uncertainty. Under the proposed controller, TVOF is
achieved for interconnected uncertain linear HTTSSs.
Additionally, for cases where the system state is not
measurable, an output feedback control law is designed
and extended to solve the output consensus problem.
This article presents three main contributions.

1) We further considered the two-time-scale feature for
the TVOF of interconnected heterogeneous systems,
where each linear dynamics can be characterized by
different dimensions and time-scaling factors.

2) A robust impulsive two-layer hierarchical control pro-
tocol is proposed to address the challenges of het-
erogeneous uncertain two-time-scale dynamics under
switching directed disconnected topology, enhance
control design flexibility. Additionally, this approach
reduces communication burdens, and ensures robust-
ness to small model uncertainties while adapting to
cases with singular fast dynamic matrices.

3) The overall system is modeled using a hybrid for-
malism and a tailored ISS analysis method is em-
ployed to ensure asymptotic convergence. Addition-
ally, a scheme for estimating the available region of
the time-scaling factor is provided.

The rest of this paper is organized as follows. Section
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II formulates the problem. Section III presents the pro-
posed solution. Section IV gives two illustrative exam-
ples. Section V draws the conclusions.

Notation. The function f : [0,∞)2 → Rm×n is O(ε)
if there exist constants ε̄ > 0 and k > 0 so that for all
ε ∈ [0, ε∗] and ∀t ∈ [0,∞), ‖f(t, ε)‖ ≤ kε. K∞ and KL
functions are considered to be defined in [13, Chapter 4].

2 Preliminaries and Problem Statement
2.1 Graph theory
A graph G =

(
V̄, E ,A

)
is described by a set of nodes

V̄ = {0, 1, 2, . . . , N}, a set of edges E ∈ V̄ × V̄ and
a weighted adjacency matrix A = (aij)

N
i,j=0 with non-

negative adjacency elements. Note that, aij > 0 if and
only if the i-th agent can obtain the information from
the j-th agent. The matrix L̄ = (lij)

N
i,j=1 is defined as

lij = −aij if i 6= j, and lij =
∑N
k=1,k 6=i aik otherwise.

We assume that the interaction between agents takes
place at specific time instants define by a strictly in-
creasing sequence T = {t0, t1, t2, . . .} with t0 = 0 and
0 < τ < tk+1 − tk ≤ τ for k ∈ N. For the sake of conve-
nience, denote Gk =

(
V̄, Ek,Ak

)
as the graph describing

the information flow when t = tk, k ∈ N+.

Definition 1 A sequence of graphs {Gk}mi=1 is jointly
connected if the union graph

⋃m
i=1 Gi contains a spanning

tree with node 0 as the root.

Definition 2 A sequence of graphs {Gk}mi=1 is sequen-
tially connected if there exist Vk ⊆ V̄, k = 1, . . . ,m + 1
with V1 = {0} and Vk+1 ⊆ Vk ∪ N (Gk,Vk) satisfying
Vm+1 = V̄, where N (Gk,Vk) = {j : i ∈ Vk, (j, i) ∈ Ek}.

Assumption 1 ([29]) There existsα ∈ (0, 1) such that,

for any k ∈ N+,
∑N
j=0 aij(tk) = 1, with aii(tk) ≥ α for

i ∈ V; aij(tk) ≥ α when aij 6= 0 for i ∈ V, j ∈ V̄.

Assumption 1 is standard and has also been used in [29]
to describe the conditions on the coupling coefficients.

Assumption 2 ([29]) There is T ∈N+ such that the se-

quence of graphs {Gk}(r+1)T
k=rT+1,∀r∈N is sequentially con-

nected.

Assumption 3 ([29]) There is T ∈N+ such that the se-

quence of graphs {Gk}(r+1)T
k=rT+1,∀r∈N is jointly connected.

Assumptions 2 and 3 are mild conditions on the topol-
ogy that allow each subgraph to be disconnected, and
encompass both the fixed and switching topologies that
are connected at all times as special cases.
2.2 Problem statement
Consider a group of N HTTSSs, labelled with i ∈ V,
respectively. The dynamic of the i-th TTSS is

ẋi = Ai,11(wi)xi +Ai,12(wi)zi +Bi,1(wi)ui,

εiżi = Ai,21(wi)xi +Ai,22(wi)zi +Bi,2(wi)ui,

yi = Ci,1(wi)xi + Ci,2(wi)zi,

(1)

where xi ∈ Rnxiand zi ∈ Rnzi are the slow and fast
states, εi � 1 is positive parameter that governs the sep-
aration between the slow and fast dynamics, ui ∈ Rpi
and yi ∈ Rq are the control input and measurement out-
put,wi ∈ Rnw is an uncertain parameter vector. Suppose
that Ai,mn(wi), Bi,m(wi), Ci,m(wi), m,n = 1, 2, are all
continuous matrix functions of wi ∈ Wi with appropri-
ate dimensions, where Wi is an open neighborhood of the
origin. For convenience, the matrices Ai,mn(0), Bi,m(0),
Ci,m(0), m,n = 1, 2, are denoted by Ai,mn, Bi,m, Ci,m
respectively, which are all known constant matrices.

The formation of agents is described via hi(t) ∈ Rn,

which adheres to the feasible formation condition ḣi(t) =
A0hi(t), for i ∈ V. The desired displacement between
two agents output is denoted as C0hij(t), where hij(t) =
hi(t)−hj(t). Both A0 and C0 are known constant matri-
ces. Regarding the formation patterns, the virtual leader
is introduced in the form{
ẋ0 = A0x0,

y0 = C0x0,
(2)

where x0 ∈ Rn and y0 ∈ Rp are the system state and
output state of the leader. Let the leader be labeled with
0. Denote h0(t) = 0, the TVOF is formulated as follows.

Definition 3 (TVOF) The interconnected TTSSs (1)
are said to achieve TVOF asymptotically if for any initial
states, lim

t→∞
‖yi(t)− C0hi(t)− y0(t)‖ = 0, i ∈ V.

In this paper, our objective is to design a distributed con-
troller over the set of discrete-time sequences, enabling
interconnected TTSSs to achieve TVOF. To achieve this
goal, the next assumptions are presented.

Assumption 4 ([27]) The eigenvalues of matrix A0

are semi-simple with zero real parts.

Assumption 4 is standard and common for guaranteeing
the anti-Hurwitz stability of the virtual leader and the
boundedness of relative displacements hi.

Assumption 5 ([27]) For the i-th TTSS, it holds that,
for each λA0 being an eigenvalue of A0,

rank

(
Ai,εi − λA0

I Bi,εi

Ci 0

)
= nxi + nzi + q,

whereAi,εi = EiAi,Bi,εi = EiBi,Ei = diag{Inxi , Inzi},

Ai =

(
Ai,11 Ai,12

Ai,21 Ai,22

)
, Bi =

(
Bi,1

Bi,2

)
, Ci =

(
C>i,1

C>i,2

)>
.

Assumption 5 is standard and essential for ensuring the
existence of the solution to the regulator equations, thus
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facilitating the solvability of the problem.

Lemma 1 ([20]) For the symmetric matrixM0 ∈ Rn×n
and matricesM1 ∈ Rm×n andM2 ∈ Rm×n, the following
statements are equivalents:

(1) M0 + He{M>1 M2} < 0;
(2) ∃ Q1 ∈ Rn×m and Q2 ∈ Rn×m:(

M0 + He{Q1M1} ?

M2 −Q>1 +Q2M1 −Q2 −Q>2

)
< 0.

3 Main Results

In this section, the state feedback two-layer hierarchical
control design and the hybrid model of the closed-loop
system are given. Then, the convergence property is en-
sured. Then, the output feedback controller is further
proposed and extended to achieve the output consensus.

3.1 Two-layer hierarchical control design

In this subsection, we present a two-layer hierarchical
control scheme for TVOF of HTTSSs (1), following a
two-step design procedure as follows.

Step 1 (Virtual systems design in the upper layer): The
upper layer comprises N virtual systems, responsible for
generating the required local references. Each virtual
system is connected to a corresponding agent node in a
one-to-one manner. In this context, the dynamic of i-th
virtual systems are design as follows:

ζ̇i(t) = A0ζi(t)−
∑

k∈N+

δ(t− tk)ψi(t), i ∈ V, (3)

where ζi ∈ Rn is the states, δ(·) is the Dirac delta dis-
tribution defined over the time sequence T , i.e., tk ∈ T ,
and

ψi(t) =
∑N

j=0
aij(t)(ζi(t)− ζj(t)− hij(t)). (4)

Note that, according to the dynamic form specified in
(3), each system i is required to transmit data ζi only
at the discrete time tk. Additionally, the time clocks of
systems are assumed to be synchronous.

Step 2 (Design of controller for TTSSs in the lower
layer): The lower layer consists of N HTTSSs, tasked
with tracking the generated references. Motivated by
[28], the post-processing internal model based state feed-
back controller for i-th TTSS is designed as follows:{
η̇i(t) = Φi,cηi(t) + Γi,cŷi(t),

ui(t)=Ki,1xi(t)+Ki,2zi(t)+Gi(xi(t), zi(t), ηi(t)),
(5)

where ŷi = yi − C0ζi, the dynamic unit of ηi ∈ Rr×q
is so-called linear internal model with post processing
structure, Γi,c = Γi⊗Iq, Φi,c = Φi⊗Iq with the minimal

polynomial of Φ̄i coinciding with that ofA0, and the pair
(Φi,Γi) being controllable. The control matrices Ki,1,
Ki,2 are designed such that Λi,22 and Λi,0 = Λi,11 −
Λi,12Λ−1

i,22Λi,21 are both Hurwitz with Λi,mn = Ai,mn +
Bi,mKi,n, m,n = 1, 2. In this case, there exist positive
definite matrices Pi,1, Pi,2, Pi,3 such that

Λ>i,0Pi,1 + Pi,1Λi,0 < 0, (6)

Λ>i,22Pi,2 + Pi,2Λi,22 < 0, (7)

Φ>i,cPi,3 + Pi,3Φi,c ≤ 0. (8)

Then, the function Gi(xi, zi, η) is designed based on the
forwarding technique inspired by [28] with

Gi(xi, zi, η) = −Gi,cξi +B>i M
>
i Pi,3(ηi −MiĒiξi),

where ξi = (xi, zi),Gi,c = (B>i,1Pi,1−B>i,2(Λi,12Λ−1
i,22)>Pi,1+

B>i,2Pi,2Λ−1
i,22Λi,21, B

>
i,2Pi,2) and Mi satisfies

MiΛi = Φi,cMiĒi + Γi,cCi, (9)

where Ēi = diag{Inxi , 0}, Λi :=

(
Λi,11 Λi,12

Λi,21 Λi,22

)
. Note

that, the existence of Mi can be guaranteed when εi is
small enough, Assumptions 4-5 hold, and Λi,22 and Λi,0
are both Hurwitz, see [16, Lemma 3] for more detail.
Denote ξi,v = (ηi, ξi). Then, the overall systems is

ξ̇i,v(t) = Fi,v(wi)ξi,v(t) + Γi,vζi(t), (10)

where Fi,v(wi) =

(
Φi,c Γi,cCi(wi)

Bi,εi(wi)B
>
i M

>Pi,3 Λ̄i,εi(wi)

)
,

Λ̄i,εi(wi)=Λi,εi(wi)−Bi,εi(wi)(Gc,i+B>i M>i Pi,3MiĒi),

Γi,v =

(
−Γi,cC0

0

)
and Λi,εi(wi) =

(
Λi,11(wi) Λi,12(wi)
Λi,21(wi)

εi

Λi,22(wi)
εi

)
with Λi,mn(wi) =Ai,mn(wi)+Bi,m(wi)Ki,n, m,n= 1, 2.
For the stability of the TTSS (10), it is essential for
Fi,v(wi) to be Hurwitz. The following lemma establishes
that the Hurwitz condition for Fi,v(wi) can be satisfied
under the proposed control design.

Lemma 2 ([16]) Suppose Assumptions 4-5 hold. For i-
th TTSS (1), when Λi,22 and Λi,0 are both Hurwitz, there
exist ε̄i > 0 and an open neighborhood Wi of the origin,
such that for εi∈(0, ε̄i] and wi∈Wi, Fi,v(wi) is Hurwitz.

Proof 1 Similar to the proof of Lemma 4 in [16], for i-th
TTSS (1), there exists ε̄i > 0, such that for εi ∈ (0, ε̄i],
Fi,v(0) is hurwitz. Since Ai,mn(wi), Bi,m(wi), Ci,m(wi),
m,n = 1, 2, are all continuous matrix functions of wi, it
is easily obtained thatFi,v(wi) is also a continuous matrix
function of wi. Thus, there exists an open neighborhood
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Wi of the origin, such that for wi ∈Wi and εi ∈ (0, ε̄i],
Fi,v(wi) is Hurwitz. This completes the proof.

WithAi,22 being non-singular, the model reduction tech-
nique has been utilized in [12,13,16,17] to design the de-
sired control gains Ki,1, Ki,2. To relax such constraint
and simplify the control design, we further propose a one
step control design procedure.

Lemma 3 If there exist positive definite matrices Wi,1,
Wi,2, matrices Yi,1, Yi,2, a scalar ς > 0, and the given
matrix Ii, i = 1, . . . , N , such that(

He{Ψi,11 + IiΨ>i,12} ?

Ψi,21 + Ψi,22I>i + ςΨ>i,12 ςHe{Ψi,22}

)
< 0, (11)

where Ψi,mn = Ai,mnWi,n + Bi,mYi,n, m,n = 1, 2, then

(6)-(7) hold with Pi,j=W−1
i,j andKi,j=Yi,jW

−1
i,j , j=1, 2.

Proof 2 DenoteMi,0 = He{Ψi,11},M>i,1 = −Ψi,12Ψ−1
i,22,

Mi,2 = Ψi,21, Q>i,1 = −Ψi,22I>i , Qi,2 = −ςΨ>i,22. Then,
inequality (11) is rewritten as condition (2) of Lemma
1. From Lemma 1, inequality (11) is equivalent to

Mi,0 + He{M>i,1Mi,2} = He{Ψi,11 −Ψi,12Ψ−1
i,22Ψi,21} < 0.

Since inequality (11) holds and Ki,j=Yi,jW
−1
i,j , it has

He{Ψi,11 −Ψi,12Ψ−1
i,22Ψi,21} = He{Λi,0Wi,1}<0. (12)

Then, pre-multiplying and post-multiplying (12) by Pi,1,
one obtains that (6) holds. Finally, pre-multiplying and

post-multiplying (11) by
(

0 I 0
)

, it has ςHe{Ψi,22} =

ςHe{Λi,22Wi,2} < 0. Since ς > 0, it can also easily ob-
tained that (7) holds. This completes the proof.

Accordingly, the details of the controller parameter de-
sign for TTSS i as described in (5) are provided in the
following three steps.

S1: Select Γi,c = Γi⊗ Iq, Φi,c = Φi⊗ Iq with the minimal
polynomial of Φ̄i coinciding with that of S, and ensure
that the pair (Φi,Γi) being controllable.

S2: Solve LMI (11) to obtain matrices Wi,1, Wi,2, Yi,1 and

Yi,2. Then calculate Pi,j = W−1
i,j and Ki,j = Yi,jW

−1
i,j ,

j = 1, 2. Select Pi,3 satisfying (8).
S3: Solve the equation (9) to obtain Mi, then compute

Gi(xi, zi, η) = −Gi,cξi + B>i M
>
i Pi,3(ηi − MiĒiξi)

with Gi,c = (B>i,1Pi,1 − B>i,2(Λi,12Λ−1
i,22)>Pi,1 +

B>i,2Pi,2Λ−1
i,22Λi,21, B

>
i,2Pi,2).

Remark 1 The control gain can be obtained by solving
the linear matrix inequality (LMI) (11) using an LMI

toolbox. It is noted that the two-layer hierarchical control
design is independent of εi.

3.2 Hybrid model

Since Fi,v(wi) is Hurwitz, the intersection of the spec-
trum of Fi,v(wi) and A0 is empty. As in [27], there exist
matrices Πi and Σi uniquely defined such that(

Σi

Πi

)
A0 = Fv,i(wi)

(
Σi

Πi

)
+ Γi,v. (13)

As in [27], the first equation above implies Ci(wi)Πi +

C0 = 0. Denote xi,v = (η̃i, ξ̃i) where

η̃i = ηi − Σiζi, ξ̃i = ξi −Πiζi. (14)

Define xv = (x1,v, . . . , xN,v), ψ = (ψ1, . . . , ψN ). Then,
the overall impulsive system can be rewritten as{
ẋv(t) = Fv(w)xv(t), t ∈ (tk, tk+1),

xv(tk) = xv(t
−
k ) + Πvψ(t−k ), t = tk, k ∈ N+,

(15)

wherew = (w1, ..., wN ),Fv(w) = (F1,v(w1), ..., FN,v(wN )),

Πv = (Π1,v, . . . ,ΠN,v), Πi,v =
(

Σ>i Π>i

)>
. Then, the

TVOF problem of the interconnected TTSSs (1) is
transform to the stabilization problem of (15).

To facilitate the stability analysis, we model the entire
system using the hybrid formalism introduced in [30],
where a jump corresponds to the injection of impulse
signals. Define χ = (xv, τ) ∈ X̄ = R(r×q+nx+nz)×N ×
R≥0, where τ is a time variable with τ(t0) = t0. The
hybrid model is given by

χ̇ = F(χ) χ ∈ C, χ+ ∈ G(χ) χ ∈ D, (16)

whereF(χ) :=

(
Fv(w)xv

1

)
, G(χ) := (xv+Πvψ, τ), C =

R(r×q+nx+nz)×N×(R≥0\T ), D = R(r×q+nx+nz)×N×T .
Note that the sets C and D are respectively the flow and
jump set, and defined according to the interaction se-
quence. When interactions occur, i-th system transmits
ζi to neighboring systems, and this transmission gener-
ates an impulse control signal resulting in a jump in the
state ζ, and also xv. Then, the TVOF problem is trans-
form to stabilization problem of hybrid system (16).

3.3 Asymptotical convergence

In the following, we present a sufficient condition for the
asymptotic stability solving the TVOF problem of inter-
connected HTTSSs by ISS method of impulsive systems.

Definition 4 (ISS of impulsive system [24]) The
impulsive system (15) is input-to-state stable if there
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exist β ∈ KL and γ ∈ K∞, such that for the initial con-
dition xv(t0) and any Lebesgue-measurable but bounded
input ψ, there holds

‖xv(t)‖≤β(‖xv(t0)‖, t−t0)+γ(‖ψ‖[t0,t]),∀t ≥ t0. (17)

where ‖ · ‖[t0,t] denotes the supremum norm over [t0, t].

Proposition 1 Consider the hybrid system (16), and
suppose that Fv(wi) is Hurwitz. For any locally bounded
and Lebesgue-measurable input ψ(t), (16) is uniformly
ISS over impulse time sequence with smallest interval
being greater than τ > 0.

Proof 3 Let us define a time-independent candidate
ISS-Lyapunov function W1(χ) of the form

W1(χ) = xTv (t)Pvxv(t) (18)

where Pv and Qv are two positive definite matrices satis-
fying Lyapunov equation PvFv(wi) +FTv (wi)Pv = −Qv.
Note that there always exists a unique solution Pv for any
given positive definite Qv. Therefore, for χ ∈ C,

〈∇W1(χ), F (χ)〉=xTv (PvFv + FTv Pv)xv≤−aW1(xv(t)),

where a = λmin(Qv)
λmax(Pv) . When χ(tk, k − 1) ∈ D, ∀ς > 0,

W1(χ(tk, k))=xTv (tk, k)Pvxv(tk, k)

= [xv(tk, k − 1)+Πvψ(tk, k − 1)]T Pv·
[xv(tk, k − 1)+Πvψ(tk, k − 1)]

≤1+4ς

4ς
[Πvψ(tk, k−1)]T Pv [Πvψ(tk, k−1)]

+(1+ς)xv(tk, k−1)TPvxv(tk, k−1)

≤(1+ς)W1(χ(tk, k−1))+γ(‖ψ(tk, k−1)‖)
=e−bvW1(χ(tk, k−1))+γ(‖ψ(tk, k−1)‖),

where γ(‖ψ‖) = 1+4ς
4ς λmax(Pv)‖Πv‖2‖ψ‖2 and bv =

− ln(1 + ς) < 0. Obviously, γ(‖ψ‖) is of class K∞. Over-
all, W1(t) is almost differential everywhere, that is, it is
differentiable except on a set of measure zero. By Corol-
lary 1 in [24], we have that when bv < 0 and a > 0, (16) is
uniformly ISS for τ > |bv|/a = ln(1+ς)/a. Note that, we
can always find ς(τ) > 0 such that ln(1 + ς)/a < τ ≤ Ta
holds. In other words, for any impulse time sequence
with smallest interval being greater than τ , we have that
(16) is uniformly ISS. This completes the proof.

Theorem 1 Suppose Assumptions 1-3 hold, and apply
the controller (3)-(5) on HTTSSs (1). Then, there exist
ε̄i > 0 and an open neighborhood Wi of the origin, i ∈ V,
such that for all εi ∈ (0, ε̄i] and wi ∈Wi, it has:

(1) When Assumption 4 holds, ψ(t) converges to zero
asymptotically if µT (1 − αT ) < 1, where µ =

max
t∈[τ,τ ]

{‖eA0t‖};

(2) When Assumption 5 holds, ψ(t) converges to zero

asymptotically if µN
2T (1− αN2T ) < 1;

(3) TVOF is achieved asymptotically if ψ(t) converges to
zero asymptotically.

Proof 4 (1) LetW (t)=diam{ζ0(t), ζ1(t)−h1(t), ..., ζN (t)−
hN (t)}. Then the asymptotically convergence of ψ(t) is

equivalent to lim
t→∞

‖W (t)‖ = 0. Since {Gk}(r+1)T
k=rT+1 is se-

quentially connected with node 0 as the root, suppose that
VrT+k+1 ⊆ Vk ∪ N (Gk,Vk) = N (GrT+k,VrT+k), where
VrT+1 = {0} is a singleton and V(r+1)T = V̄. Denote

HrT+k = conv(ζi(trT+k)− hi(trT+k))i∈VrT+k
,

H+
rT+k = conv(ζi(t

+
rT+k)− hi(t+rT+k))i∈VrT+k+1

,

ĤrT+k = conv(ζi(trT+k)− hi(trT+k))i∈V̄ .

For any i ∈ VrT+k+1 and i 6= 0, it has

ζi(t
+
rT+k)−hi(t

+
rT+k)=

∑
j∈VrT+k

aij(ζj(trT+k)− hj(trT+k))

+
∑

j 6∈VrT+k

aij(ζj(trT+k)− hj(trT+k))

∈(
∑

j∈VrT+k

aij)HrT+k+(
∑

j 6∈VrT+k

aij)ĤrT+k.

Since i ∈ VrT+k+1, there is j ∈ VrT+k, thus
∑

j∈VrT+k

aij ≥

α. Then, ζi(t
+
rT+k) − hi(t

+
rT+k) ∈ αHrT+k + (1 −

α)ĤrT+k. Since node 0 is the root, we can also sup-
pose that 0 ∈ VrT+k for any t = 1, . . . , T . Then,

ζ0(t+rT+k) = ζ0(trT+k) ∈ αHrT+k + (1 − α)ĤrT+k.

Thus,H+
rT+k ⊆ αHrT+k+(1−α)ĤrT+k. Consequently,

diam(H+
rT+k) ≤ αdiam(HrT+k) + (1− α)diam(ĤrT+k)

= αdiam(HrT+k) + (1− α)W (trT+k).

Obviously, W (t+rT+k) ≤W (trT+k) and

diam(HrT+k) ≤ ‖eA0(trT+k−trT+k−1)‖diam(HrT+k−1)

≤ µ‖diam(HrT+k−1),

W (trT+k) ≤ ‖eA0(trT+k−trT+k−1)‖W (trT+k−1)

≤ µW (trT+k−1).

Thus, W (t+(r+1)T+1) ≤ µT (1−αT )W (trT ). Since µT (1−
αT )<1, it has lim

r→∞
‖W (trT+1)‖=0, thus lim

t→∞
‖ψ(t)‖=0.

(2) Since Assumption 5 holds, it has {Gk}(r+1)T
rT+1 is jointly

connected with node 0 as the root. Then, with a similar

proof in [29], {Gk}(r+1)N2T
rN2T+1 is sequentially connected with
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node 0 as the root. According to the statement (1), it is
a direct result that lim

t→∞
‖ψ(t)‖ = 0.

(3) By the definition of ISS and Proposition 1, there exist
β(·, ·) ∈ KL and γ(·) ∈ K such that

‖xv(t)‖ ≤ β(‖xv(t0)‖, t− t0) +γ(‖ψ(t)‖[t0,t]), ∀t ≥ t0.

where ‖ψ(t)‖[t0,t] = maxs∈[t0,t](‖ψ(s)‖), namely, the
maximum norm of ψ(t) over the selected interval. Note
that γ(·) is continuous and strictly increasing with
γ(0) = 0. If ψ(t) converges to zero asymptotically, then
for any ε > 0 there exists T0(ε) > 0, such that ∀t > T0(ε),

γ(‖ψ(t)‖[T0(ε),t]) < ε. (19)

In this way, for t = T0(ε), it holds that ‖xv(T0(ε))‖ ≤
β(‖xv(t0)‖, T0(ε)− t0) + γ(‖ψ(t)‖[t0,T0(ε)]).

Obviously, ψ(t) is bounded over t ∈ R>0. Let us recall
the definition of the class K function, γ(·) is an strictly
increasing function, here we have γ(‖ψ(t)‖[t0,T0(ε)]) is
bounded and thus ‖xv(T0(ε))‖ is also bounded. By the
property of the class KL, for a fixed ‖xv(T0(ε))‖, the
mapping β(‖xv(T0(ε))‖, t) is continuous and strictly de-
creasing to zero as t → ∞. Then it can be obtained that
for any ε > 0, there exists Tf (ε) > T0(ε) > 0, such that

β(‖xv(T0)‖, Tf − T0) < ε. (20)

Therefore, for any ε > 0, there exists t > Tf (ε) such that

‖xv(t)‖≤β(‖xv(T0(ε))‖, t−T0(ε))+γ(‖ψ(t)‖[T0(ε),t])<2ε.

Then, it has lim
t→∞

‖xv(t)‖=0 if lim
t→∞

‖ψ(t)‖=0.

Recalling the definition of ξ̃i(t) and lim
t→∞

‖ψ(t)‖ = 0, then

it follows that lim
t→∞

‖ξ̃i(t)‖ = 0, lim
t→∞

‖Ciξ̃i(t)‖ = 0 and

lim
t→∞

‖C0(ζi(t)− hi(t)− x0(t))‖ = 0. Therefore, we have

lim
t→∞

‖yi(t)− C0hi(t)− y0(t)‖

≤ lim
t→∞

‖Ciξ̃i(t)‖+ lim
t→∞

‖C0(ξi(t)− hi(t)− x0(t))‖ = 0.

Remark 2 The designed two-layer control scheme facil-
itates dynamic formation of interconnected TTSSs with
heterogeneous dynamics. It also demonstrates robustness
to small structural uncertainties, and is applicable to di-
rected topology that is sequentially or jointly connected.
These features enhance flexibility of the control scheme
and broaden its range of applications. Furthermore, the
control scheme is designed via discrete-time communica-
tion, requiring fewer communication resources.

Remark 3 For each agent i, the approximate bound ε̄i

of εi, and the approximate available region Wi of wi in
Theorems 1 can be obtained by finding the available re-
gion such that J̃(0) is Hurwitz, i.e., solving the following
optimization problem inspired by [17]:

max
Zi,1=Z>

i,1
,Zi,2j=Z>i,2j ,Zi,3j=Z

>
i,3j

,Zi,4j=Z>i,4j ,j=1,...,M−1
ε̄i&Wi,

s.t. ∀wi ∈Wi,

Ωi,1(wi)>0, Zi,1>0,Ωi,1(wi)+
∑m−1

n=1
ε̄iΩi,n+1(wi)>0,(

Z1 0

0 0

)
+
∑m−1

n=1
ε̄i

(
Zi,2n Z

>
i,3n

Z>i,3n Zi,4n

)
> 0,m = 2, . . . ,M,

where Ωi,j(wi) = −(ẼiFi,v(wi))
>Zi,j − Z>i,jẼiFi,v(wi),

Fi,v(wi) is defined in (10), Ẽi = {Inηi+nxi , εiInzi },

Zi,1 =

(
Zi,1 0

Zi,31 Zi,41

)
, Zi,j =

(
Zi,2(j−1) Z

>
i,3(j−1)

Zi,3j Zi,4j

)
,

j = 2, . . . ,M − 1, Zi,M =

(
Zi,2M−1 Z

>
i,3M−1

0 0

)
.

3.4 Output feedback control

Considering the case that the system’s state is not mea-
surable, an output feedback controller is further designed

ui(t) = Ki,1x̄i(t) +Ki,2z̄i(t) +Gi(x̄i(t), z̄i(t), ηi(t)),

ζ̇i(t) = A0ζi(t)−
∑
k∈N+

δ(t− tk)ψi(t),

η̇i(t) = Φi,cηi(t) + Γi,cŷi(t),

˙̄xi(t) = Ai,11x̄i(t) +Ai,12z̄i(t) +Bi,1ui(t)

+ Li,1(Ciξ̄i(t)− yi(t)),
εi ˙̄zi(t) = Ai,21x̄i(t) +Ai,22z̄i(t) +Bi,2ui(t)

+ Li,2(Ciξ̄i(t)− yi(t)),

(21)

where Ki,1, Ki,2, Gi(·), ψi, Φi,c, Γi,c have the same def-
inition as in (3)-(5), Li,1, Li,2 are designed such that

Λ̄i,22 and Λ̄i,0 = Λ̄i,11 − Λ̄i,12Λ̄−1
i,22Λ̄i,21 are both Hur-

witz with Λ̄i,mn = Ai,mn+Li,mCi,n,m,n = 1, 2. Denote
ξ̄i,v=(ηi, ξi, ξ̄i). Then, it has

˙̄ξi,v(t) = F̄i,v(wi)ξ̄i,v(t) + Γ̄i,vζi(t), (22)

where Γ̄i,v=
(
−C>0 Γ>i,c 0 0

)>
, Li,εi =

(
L>i,1

L>i,2
εi

)>
and

F̄i,v(wi)=


Φi,c Γi,cCi(wi) 0

Bi,εi(wi)B
>
i M

>Pi,3 Ai,εi(wi) Λ̄i,εi(wi)−Ai,εi(wi)

Bi,εiB
>
i M

>Pi,3 −Li,εiCi Λ̄i,εi+Li,εiCi

.
Lemma 4 Suppose Assumptions 1-2 hold and Λi,22,
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Λi,0, Λ̄i,22 and Λ̄i,0 are all Hurwitz. There exist ε̄i > 0
and an open neighborhood Wi of the origin, such that
for εi ∈ (0, ε̄i] and wi ∈Wi, F̄i,v(wi) is Hurwitz.

Proof 5 Denote

F̃i,v(0)=


Inη 0 0

0 Inξ Inξ

0 0 Inξ

 F̄i,v(0)


Inη 0 0

0 Inξ Inξ

0 0 Inξ


−1

=


Φi,c Γi,cCi(0) 0

Bi,εi(0)B>i M
>Pi,3 Λ̄i,εi(0) Λ̄i,εi(0)−Ai,εi(0)

0 0 Ai,εi(0)+Li,εiCi

 ,

where nη = r × q and nξ = nx + nz. Clearly, the ma-

trices F̄i,v(0) and F̃i,v(0) are similar, implying F̄i,v(0) is

Hurwitz if and only if F̃i,v(0) is Hurwitz. Since Λ̄i,22 and
Λ̄i,0 are both Hurwitz, there exists ε̄i,1 > 0, such that for
εi ∈ (0, ε̄i,1], Ai,εi(0)+Li,εiCi is Hurwitz. From Lemma
4, there exists 0 < ε̄i,2 ≤ ε̄i,1, such that for εi ∈ (0, ε̄i,2],

Fi,v(0) =

(
Φi,c Γi,cCi(0)

Bi,εi(0)B>i M
>Pi,3 Λ̄i,εi(0)

)
is Hurwitz.

Thus, for εi ∈ (0, ε̄i,2], F̃i,v(0) is Hurwitz and so does
F̄i,v(0). Thus, there exists 0 < ε̄ ≤ ε̄i,2 and an open
neighborhood Wi of the origin, such that for εi ∈ (0, ε̄],
i ∈ V and wi ∈Wi, F̄i,v(wi) is Hurwitz.

Remark 4 Similar to Lemma 2, the control matrices is
designed as Li,j = W̄−1

i,j Ȳi,j, i ∈ V, j = 1, 2, where the

positive definite matrices W̄−1
i,j and matrices Ȳi,j, satisfy

(
He{Ψ̄i,11 + IiΨ̄i,12} ?

Ψ̄i,21 + Ψ̄i,22Ī>i + ς̄Ψ̄>i,12 ς̄He{Ψ̄i,22}

)
< 0, (23)

where Ψ̄i,mn = W̄i,mAi,mn+Yi,mCi,n, m,n = 1, 2, ς̄ > 0
is a scale, and Īi is a given matrix as in Lemma 3.

Then, the next Theorem is obtained. The proof is similar
to that of Theorem 1, thus is omitted here.

Theorem 2 Suppose Assumptions 1-3 hold, and ap-
ply the output feedback controller (21) on HTTSSs (1).
Then, there exist ε̄i > 0 and an open neighborhood Wi

of the origin, i = 1, . . . , N , such that for all εi ∈ (0, ε̄i]
and wi ∈Wi, the following statements hold:

(1) TVOF is achieved asymptotically if Assumption 4
holds and µT (1− αT ) < 1;

(2) TVOF is achieved asymptotically if Assumption 5

holds and µN
2T (1− αN2T ) < 1..

3.5 Application to output consensus problem

In this subsection, the above result is extended to handle
output consensus of HTTSSs (1), which is defined next.

Definition 5 The interconnected TTSSs (1) are said to
achieve output consensus asymptotically if for any initial
states xi(0), zi(0), lim

t→∞
‖yi(t)− y0(t)‖ = 0, i ∈ V.

The controller is designed in the form of (21) with

ψi(t) =
∑N
j=0 aij(t)(ζi(t) − ζj(t)). Then, next theorem

is obtained. The proof is similar, thus is omitted here.

Theorem 3 Suppose Assumptions 1-3 hold, and apply
the proposed controller on HTTSSs (1). Then, there exist
ε̄i > 0 and an open neighborhood Wi of the origin, i =
1, . . . , N , such that for all εi ∈ (0, ε̄] and wi ∈ Wi, the
following statements hold:

(1) Output consensus is achieved asymptotically if As-
sumption 4 holds and µT (1− αT ) < 1;

(2) Output consensus is achieved asymptotically if As-

sumption 5 holds and µN
2T (1− αN2T ) < 1.

Remark 5 Unlike the consensus results in [18–21], each
TTSSs in this study has nonidentical dimensions and
time-scale factors, better suited for practical applications.
Moreover, the considered switching topology is directed
and disconnected, resulting in a weaker assumption.

4 Simulation

In this section, two examples are given to demonstrate
the proposed results.

4.1 Example 1: TVOF of interconnected HTTSSs

Consider a group of four HTTSSs (1), with xi ∈ R2,
i = 1, . . . , 4, z1, z2 ∈ R, z3, z4 ∈ R2, ε1 = 0.06, ε2 = 0.01,
ε3 = ε4 = 0.1, and

A1 =


0 1 0

0 0 1

w1,1−0.5 1+w1,2 0

⊗I2, B1 =


0

0

1+w1,3

⊗I2,

A2 =


0 1 0

0 0 1

0.5+w2,1 w2,2−1 2+w2,3

⊗I2, B2 =


0

0

1+w2,4

⊗I2,
C1 =

(
1+w1,4 0 2+w1,5

)
⊗I2, C2 =

(
1 + w2,5 0 0

)
⊗I2,

A3 =


0 0.4+w3,1 0 0

0 0 0.3 0

w3,2 w3,3−0.5 0.5 0.2

0 0 0 −1

⊗I2, B3 =


1

0

1 + w3,4

2

⊗I2,
C3 =

(
1 + w3,5 0 1 + w3,6 1

)
⊗I2,

A4 =


0 −0.5 + w4,1 w4,2 − 0.4 0

0.5 0 0 0.5

0.5 + w4,3 0.4 0 0.5

−0.5 0.5 w4,4 − 0.5 0

⊗I2,
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B4 =
(
−1 2 0 1 + w4,5

)>
⊗I2, C4 =

(
1 + w4,6 −1 0 0

)
⊗I2.

The formation hi, i ∈ {1, 2, 3, 4} is defined as hi(t) =(
25 sin(t+ 2π×i

4 ) 25 cos(t+ 2π×i
5 )

)
. The leader is with

the form of (2), where S =

(
0 1

−1 0

)
, C = I2 and

x0(0) = (50, 0). The switching communication topology
is given in Fig. 1, which switches with 0.1s<tk+1−tk≤
0.5s. Thus, Assumptions 2 and 3 are satisfied. The asso-
ciated weighted adjacency matrix is obtained with As-
sumption 1 being satisfied.

0

12 4

3

0

12 4

3

t = t2k−1 t = t2k

Fig. 1. The switching communication topology.

The simulation is presented with wij ∈ (−0.01, 0.01),

Φi = S, and Γi =
(
1 0
)>

i, j = 1, . . . , 6. Following the

control parameter design procedure under Remark 1, the
controller (5) can be obtained.
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Fig. 2. Evolutions of virtual systems. (a) Trajectories of vir-
tual states; (b) Dwell time of adjacent interactions.
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Fig. 3. Evolutions of HMASs. (a) Trajectories of output
states; (b) Trajectories of output formation error.

The simulation results are shown in Figs. 2-3. Fig.
2(a) shows that the formation tracking of the leader is
achieved for the interconnected virtual systems, which
generates the reference signal for lower layer TTSSs.
Fig. 2(b) shows that dwell time between two adjacent
impulsives, which is aperiodic. Using impulsive control
technique promotes to avoid persistently interacting,

which reduces the burden of communication devises.
Fig. 3 shows that the TVOF for interconnected HTTSSs
(1) with switching topology in Fig. 1 is eventually
achieved, and the output formation errors approach to
zero along with time, which confirms the effectiveness
of Theorem 1.

4.2 Example 2: Output consensus of interconnected mo-
tor systems

Consider a group of two permanent magnet synchronous
motor(PMSM) systems as in [14] and two dual-PMSM
systems as in [15], labelled with I = {1, 2, 3, 4}. The
PMSM systems are of the form

Jmω̇i = npϕi,fIq,i −Bωi,
Lsq İq,i = −Ri,sIq,i − npϕi,fωi + ui, i = 1, 2,

the dual-PMSM systems are of the form

g1ω̇i = 1.5np1ϕi,f1Ip1,i + 1.5np2ϕi,f2Ip2,i − g2ωi,

Lsq1İq1,i = −Ri,s1Iq1,i − np1ϕi,f1ωi + uq1,i,

Lsq2İq2,i = −Ri,s2Iq2,i − np2ϕi,f2ωi + uq2,i, i = 3, 4,

where ωi is the angular speed, Iq,i, Iq1,i, Iq2,i are the
q shaft armature current, ui, uq1,i, uq2,i are the con-
trol voltage, other system parameters have the same
definition as in [14] and [15]. The goal is to achieve
the consensus of angular speed, i.e., yi = ωi. Then,
the form of leader is the same as that in Example 1
with x0 = (50, 0). Set Jm = 0.000021, B = 0.0004927,
g1 = 0.000063, g2 = −.0014781, np = np1 =p2= 4,
Lsq = Lsq1 = Lsq2 = 0.0098, ϕi,f = 0.0804 + 0.1wi,1,
ϕi,f1 = 0.0804+0.1wi,1, ϕi,f2 = 0.0804+0.1wi,2, Ri,s =
10.7 + wi,2, Ri,s1 = 10.7 + wi,3, Ri,s2 = 10.7 + wi,4.
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Fig. 4. Evolutions of motor systems. (a) Dewell time of adje-
cent interactions; (b) Trajectories of output consensus error.

The simulation is presented with wij ∈ (−0.01, 0.01),
Pi,3 = I2, i, j = 1, . . . , 4. Let Φi,c and Γi,c be the same

as that in Example 1. Let L1 = L2 =
(
−0.001 0 0

)>
,

L3 = L4 =
(
−0.001 0

)
. Then, following the control pa-

rameter design procedure under Remark 1, the output
feedback controller (21) is obtained. The switching com-
munication topology is the same as that in Example 1.
The simulation results are shown in Figs. 4, which shows
that the output consensus for interconnected TTSSs (1)
with switching topology is achieved, which confirms the
effectiveness of Theorem 2.
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5 Conclusion

In this work, we presented new results on the hybrid two-
layer hierarchical control protocol design for the TVOF
of interconnected linear HTTSSs with model uncertain-
ties. Each system can exhibit nonidentical dimensions
and time-scaling factors, while the direct communica-
tion topology is switching and disconnected. On the top
of that, the output formation is achieved, while systems
can only interact with each other at discrete-time such
that the communication burden is reduced. The results
are also extended for the output consensus of intercon-
nected HTTSSs. It would be interesting to extend the
results to the hybrid cooperative control of the intercon-
nected heterogeneous TTSSs in the presence of nonlin-
ear dynamics and Byzantine agent [31] in future work.
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raine in 2016. His works concern stability and control of
time-delay systems, stability and tracking for different
classes of hybrid systems, consensus and synchroniza-
tion problems.
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