
Learning-based control of the consensus value
in unknown graphs

Florin Gogianu1, Lucian Buşoniu1, Irinel-Constantin Morărescu1,2

Abstract— We consider the problem of optimal budget al-
location for consensus reaching in unknown networks. The
network is represented by a directed graph whose vertices
corresponds to agents influencing each other. At discrete
instants, agents are influenced by an external entity that
intends to sway the consensus to a target value. Between
two external influence instants, the states of the agents
evolve continuously due to the network dynamics. Prior
results establish that, in known networks, a water-filling
strategy that targets the most influential agents first is
optimal. In our approach to the unknown-network setup, the
marketer uses the evolution between two influence instants
to update a learned model of the graph.Then, the control
allocation at the next marketing instant is done according
to the water-filling strategy applied to the current model
of the graph. Our main analytical contribution states that
the sub-optimality of the budget allocation induced by the
approximation of the graph is related to the error of the
learning algorithm. Extensive numerical analysis illustrates
the performance of our method and suggests a regulariza-
tion term that improves it further.

Index Terms— Control of networks, machine learning,
opinion dynamics

I. INTRODUCTION

MULTI-AGENT systems are used in many applications
such as robotic teams, energy and telecommunication

networks, opinion dynamics in social networks, analysis of
biological networks, etc. The desired behaviour of the agents
is often described in terms of consensus or agreement. The
analysis and design of control strategies to reach consensus in
multi-agent systems received significant attention in the litera-
ture [1]–[3]. Many works focus on finding sufficient conditions
ensuring the consensus in various types of networks: directed
or undirected, fixed or time-varying.

An interesting application of consensus algorithms is opin-
ion dynamics over social networks [4]–[8]. The contribution of
each agent to the final consensus value of a directed network
(or the agent influence power) has been investigated in both
fixed [9] and time-varying graphs [10]. Finding the influence
power so as to prioritize major influencers in the network is
a key tool in the design of targeted marketing strategies [11]–
[13]. For opinion dynamics driven by consensus algorithms,
detecting the influencers corresponds to measuring the central-
ity [9] of the individuals in the social network.

This work was supported by project DECIDE, no. 57/14.11.2022
funded under the PNRR I8 scheme by the Romanian Ministry
of Research, Innovation, and Digitisation, and by project “Roma-
nian Hub for Artificial Intelligence–HRIA”, Smart Growth, Digiti-
zation and Financial Instruments Program, MySMIS no. 334906.
(1)Automation Department, Technical University of Cluj-Napoca,
400114 Cluj-Napoca, Romania. (2)Université de Lorraine, CNRS,
CRAN, 54000 Nancy, France. (emails: florin.gogianu@gmail.com, lu-
cian@busoniu.net, constantin.morarescu@univ-lorraine.fr)

In most existing works, analysis and the control design
are based on precise knowledge of the interaction graph
between the agents. Nevertheless, this information is unknown
in many practical applications, such as viral marketing over
social networks. In [14], the authors approximate from data
the influence power in a fully connected social network. In
contrast, our goal in this paper is to use the known form of the
agents’ dynamics in order to learn the interaction graph (that
may be sparse), before applying a budget allocation strategy
inspired from [12] to control the consensus value.

An important line of work is concerned with system identifi-
cation of network topologies [15], [16] and their identifiability
[17], [18]. Our graph learning component shares with the
Wiener filters used in [15] the same mean squared error
objective, but is not limited to recovering graph topology
(whether two nodes are connected) and allows for addi-
tional constraints on the learned coefficients. Furthermore, our
method does not assume independent white noise sources on
each node that drive identification. Other lines of work, such
as [16], [17], assume stationary policies, which we do not. The
methods above resort to orthogonalization procedures that can
be numerically unstable in the low-data regime that we require,
which we avoid with our gradient based learning.

Several works formulate the control of consensus as a
reinforcement learning (RL) problem, e.g. [19]–[21], usually
also in the unknown-graph setting. To avoid the large sample
complexity of RL methods, resulting from the need to directly
learn control policies, we focus instead on estimating the graph
from data and using it for control.

The works of [22], [23] solve supervised learning problems
on graph-structured data using neural networks optimized by
gradient descent. We concern ourselves with the generative
problem [24]: given observations from a process that has an
underlying graph structure, we aim to recover the underlying
graph. Similarly to [25], we parametrize the weights between
graph nodes. However, instead of using an attention mech-
anism for inferring the relations between nodes, we simply
learn the weights from data, taking advantage of the linear
interactions between agents and the sparsity of the graph.

Our main contributions are the following. 1) We develop an
algorithm to learn the interaction graph from state transition
observations, and combine it with a technique to allocate
marketing budget to the agents across multiple campaigns so
as to sway the opinion in a desired direction. 2) We analyze
the optimality loss induced in the opinion by the learned
graph approximation, showing how this loss decreases with the
errors made in the centrality of the nodes. 3) We provide an
extensive numerical analysis on randomly generated Barabási-
Albert graphs that: confirms the relationship from our analysis;
shows that for most graphs, performance with the learned

graph is close to the known-graph optimum; and for the
edge-case graphs that are difficult to learn, proposes an extra
regularization term to improve performance.

II. PROBLEM FORMULATION

Consider a directed graph G = (V, E), with the vertex set
V := {1, . . . , N} and edge set E ⊂ V × V . The state of each
vertex i ∈ V at time t is denoted xi(t). In this work we
only consider scalar states, however our method generalizes
to higher dimensions as well. In the sequel we normalize the
states of the agents such that xi(0) ∈ [0, 1] ,∀i ∈ V . Since we
are using standard consensus dynamics, it follows that xi(t) ∈
[0, 1] ,∀i ∈ V, t ≥ 0. Specifically, the states of the agents
evolve according to the following linear consensus dynamics:

ẋi(t) =
∑
j∈Ni

aij
(
xj(t)− xi(t)

)
, (1)

where Ni is the set of neighbors influencing i and aij > 0
is an entry in a weighted adjacency matrix A ∈ RN×N . Note
that aij = 0 iff node i is not influenced by the node j. A is
row-stochastic, i.e.

∑
j aij = 1,∀i and it’s diagonal is zero.

Assumption 1: The graph G = (V, L) is weakly connected
(sometimes referred to as quasi-strongly connected) i.e., it
contains at least one directed spanning tree.

The linear dynamics in (1) lead to a state trajectory xi(t)
for each node in the graph. We observe, with some sam-
pling period s, samples xil = xi(t

l) at discrete time indices
l ≥ 0, such that tl = sl.1 For convenience, we stack all
the node states at time index l, resulting in a sequence of
vectors x0, ..., xL, of size N . We further shorthand sequence
[x0, ..., xL] to X ∈ RL×N . “Slicing” this object is possible,
so we refer to observations [xl, ..., xl+p] as Xl:l+p.

Given observations generated by the unknown graph G,
we aim to find an optimal allocation of interventions on
the individual states xi(t) such that the distance to some
desired target value ω is minimized. We consider a plausible
scenario where an agent external to the graph computes and
applies a (sparse) action on nodes in the graph, at certain time
intervals referred to as campaigns. The number of campaigns
M + 1 is finite and generally small, with k ∈ {0, ...,M},
and campaigns are distributed in time by h = tk+1 − tk.
At time tk, the agent computes sparse actions ui(tk), with
ui ∈ {0, ū} and ū ∈ [0, 1], such that the cumulative actions
over all campaigns and agents stays within the total budget
B:
∑M
k=0

∑N
i=0 ui(tk) ≤ B. The action at campaign time k

is applied as follows:

xi(tk) = ui(tk)ω + [1− ui(tk)]xi(t
−
k), (2)

where xi(t
−
k) is the state of the network just before the

campaign. In contrast to previous work [12], we do not have
access to the adjacency matrix of G, which increases the
difficulty of the problem. Consequently, in our setup the time
t0 of the first campaign is non-zero and usually chosen to be
h, so that we give time for the graph-learning component of
the method to find an initial approximation of the graph.

1Note that for x we move the agent index i to the superscript so we can
conveniently refer to sample index l in the subscript (but tl has l in superscript
to avoid confusion with the campaign times tk).

III. METHODS

When G is known, [12] provides algorithms for optimal
discrete intervention on the belief state of the network, under
a given budget. Usually however, one does not have access to
the structure of the network but may only observe the evolution
of the states of each node in time.

In what follows, we propose a method that exploits the
knowledge about the structure of the transition dynamics in
(1), our light assumptions regarding the adjacency matrix, and
observations X , in order to approximate the graph, and design
budget allocations based on this approximation.

A. Graph learning from observations

The state of the graph at the l+1 observation instant can be
written in terms of the state at the previous time, xl and the
adjacency matrix using (1). We approximate these dynamics
with Euler integration between observation instants:

xil+1 = f
(
xil, A

)
= xil + s

∑
j∈Ni

aij(x
j
l − xil) (3)

Next, we propose treating the adjacency matrix as trainable
weights and learn them from data. Therefore, we formulate
the following learning objective:

Ldyn(θ) =

N∑
i

(
xil+1 − f

(
xil, Aθ

))2
, (4)

where Aθ is an approximation of the real adjacency matrix
A that generated the observations, parameterized by Aijθ =
exp(Θij)/

∑
j exp(Θij), with Θ ∈ RN×N . This softmax

parameterization encodes the row-stochasticity assumption we
made about A. Objective (4) encodes the goal of learning
weights Θ such that the dynamics of the data-generating
process are closely matched.

To encode the lack of self-connections in the graphs we
consider, we add a regularization term to the objective driving
the diagonal of Aθ to be zero, ending up with:

L(θ) = Ldyn(θ) +

N∑
i

Θii (5)

We optimize this objective using stochastic gradient descent
(SGD). At each iteration of the algorithm, we sample a small
batch of pairs of observations at consecutive time-steps and use
them to compute the gradient of the objective with respect to
the parameters Θ. To update parameters we use Adam [26].

Algorithm 1 Graph Learning from Observations (GLO)
1: procedure GLO(X)
2: Aθ ∈ RN×N U . Kaiming uniform init. [27]
3: while L(θ) < ε do
4: Xl, Xl+1 X . sample consequtive states
5: X̂l+1 ← f(Xl, A

i
θ) . run dyn. with Aiθ

6: L(θ) =
[
X̂l+1 −Xl+1

]2
7: Ai+1

θ ← SGD(L(θi)) . update the weights
8: end while
9: return Aθ

10: end procedure

The full procedure is described in Alg. 1. To avoid a
heavier notation, in this subsection we write the approximate
dynamics (3), loss functions (4)–(5), as well as pseudocode
instructions (e.g., sampling state pairs in line 4) for individual
data samples, leaving implicit the fact that in reality we apply
them to mini-batches of data. Our method acquires only a few
new observations (4 in the experiments) between consecutive
campaigns. This data scarcity, relative to the large number
of estimated coefficients, would be problematic to most con-
strained optimization solutions due to numerical instabilities.

B. Optimal control in known graphs
We adapt prior work for finding the optimal allocation under

a budget constraint for known graphs. A complete description
and analysis of the algorithm can be found in [12]. We provide
a brief description here, after which we extend the method
to the case of learned graphs in Sec. III-C, and analyze the
extension in Sec. IV.

For the sake of simplicity and without loss of generality we
consider ω = 0. The dynamics of the network becomes:{

ẋ(t) = −Lx(t), t ∈ [tk, tk+1)

x(tk) =
(
I − U(tk)

)
x(t−k), ∀k ∈ {0, . . . ,M} (6)

where U(tk) = diag(u(tk)). We denote the normalized left
eigenvector of L associated with the 0 eigenvalue by v,
meaning that v>L = v> and v>1 = 1. Further denote the
budget at each campaign k with βk. The objective we are
interested in minimizing at each campaign is the distance
between the desired state and the agent states once consensus
would be reached after an allocation at time k, which are
all equal to scalar x∞k = v>x(tk). This objective writes
J∞k (u(tk)) = x∞k (recalling that ω = 0 and x∞k ≥ 0). The
optimal allocation in this case is then characterized as follows.

Proposition 1: Define the influence power of Agent i as
pki = vi|ω − xi(t

−
k)| = vixi(t

−
k). Denote by πk : V → V

a bijection which sorts the agents decreasingly by pki , i.e.,
pkπk(1)

≥ pkπk(2)
≥ · · · ≥ pkπk(N). Under Assumption 1 the

cost J∞k (u(tk)) is minimized by the investment profile:

u∗π(i)(k) =


ū if i ≤ bβk/ūc
βk − ū bβk/ūc if i = bβk/ūc+ 1
0 else

Consequently, the trajectory of system (6) is described by:

x?(t−k+1) = e−Lh
(
I − U?(tk)

)
x?(t−k) (7)

with u?(tk) designed according to Prop. 1 and using “?” to
signify the allocation with perfect knowledge of the graph.

However, when the interaction network is unknown and
approximated by the learning algorithm, one uses a Laplacian
L̃k with a centrality vector ṽk to design the budget allocation
in Prop. 1. This new budget allocation at time tk is denoted
u(tk), in contrast to u?(tk). Applying the dynamics of the
network (6) with these allocations leads to the trajectory:

x(t−k+1) = eLh
(
I − U(tk)

)
x(t−k) (8)

To find the budget allocation for each campaign βk, we
apply brute-force search from [12]. We denote the overall
procedure by u(tk) = PLAN(x(t−k), Aθ, B, k) where B is the

budget to apply for the remaining horizon of M−k campaigns,
and we have already applied Prop. 1 to Aθ to obtain the per-
agent allocation.

C. Near-optimal control in unknown graphs
We next combine the algorithms described in the previous

two subsections. The main intuition is that we alternate the
graph learning and allocation procedures. In-between alloca-
tion steps (marketing campaigns) we observe the evolution of
the states of the unknown graph and use these observations
to approximate it; while at the time of a new allocation, we
execute the planning procedure on the approximated graph.

Our method starts with a random initialisation of the pa-
rameters Θ, receives observations of the node states for the
time steps preceding the first marketing campaign, and uses
these observations to approximate the adjacency matrix using
Alg. 1 in Sec. III-A. Having obtained an initial approximation
of the adjacency matrix, we compute the budget allocation
of the first marketing campaign by employing the method
described in Sec. III-B. We apply the computed actions to
the states of the graph and we continue expanding the dataset
of observations up to the next marketing campaign, at which
point we find a new approximation of the adjacency matrix
using stochastic gradient descent. The algorithm, summarized
in Alg. 2, continues in this way until the final campaign.

Algorithm 2 Control in Unknown Graphs

1: X = [] . all the observations so far
2: for k ← 0,M do
3: Xnew ← G . observe states for the time interval

between two campaigns
4: X ← [X|Xnew] . concatenate observations
5: Aθ ← GLO (X) . approximate A
6: u← PLAN (X−1, Aθ, B, k) . plan with Aθ from the

last observed state X−1
7: apply action u to the state of G using (2)
8: B ← B −∑

i u
i . remaining budget

9: end for

Due to the limited amount of observations, we use very
small batch sizes, both aspects adding up to the error when
estimating the gradient of the objective. Consequently, this
affects the quality of the graph approximation and therefore
the accuracy of the planning. Nevertheless, we find that we
get a sufficiently good approximation for planning.

IV. NEAR-OPTIMALITY ANALYSIS

In this section we aim to quantify the optimality loss
induced by the learned approximation of the interaction graph.
Note that marketing campaigns happen with a sufficiently high
frequency that the opinions do not necessarily have time to
reach consensus in-between.

The objective is to evaluate the difference between the final
opinion x∞?M = v>x?(tM) of the network when the marketer
knows the graph and the final opinion x∞M = v>x(tM) when
the marketer learns the graph. We require that the learning
algorithm performs well, in the following sense:

Assumption 2: There exist finite εk > 0 such that |vi −
ṽki | ≤ εk, ∀i ∈ {1, . . . , N}.

The budget allocation does not depend on the precise value
of the centrality vector v but only on the ordering of the
influence powers of the agents. In other words, if the re-
ordering defined by πk is the same when replacing v with
ṽk, then u?(tk) = u(tk), meaning that we obtain exactly
the same trajectory for the real opinion dynamics and the
ideal one (perfectly known social network). Let u? be the
sequence (u?(t0), u?(t1), . . . , u?(tM)) of budget allocations
over the M stages obtained by applying Prop. 1 to the real
graph. Similarly, u is the sequence (u(t0), u(t1), . . . , u(tM))
of allocations over the M stages obtained by applying Prop. 1
to the sequence of learned graphs. Recall that ui(tk) ∈ {0, ū}.
We will also overload the objective notation J (which earlier
only depended on the current-stage allocation u(tk), “hiding”
the dependence on x(tk) which in turn was generated by
all the allocations so far), to now explicitly depend on the
full sequence of allocations: JM (u?) or JM (u). Note we are
interested in this quantity at the final campaign.

We define the errors induced by learning as e(t) = x?(t)−
x(t) and eu(t) = u?(t)−u(t) and notice that the components
of eu belong to the set {−ū, 0, ū}. To simplify the presentation
we disregard the edge case in which one agent receives a
fraction of ū. In that case, the corresponding induced error
eu(t) is upper-bounded by u?(t) − u(t) and the analysis
becomes slightly conservative. Furthermore, if agent i is
selected by both v and ṽk to (not) be influenced at time tk,
then u?i (tk) = ui(tk) = ū (or 0) so the i-th component of
eu is zero. A component of eu is thus nonzero only if the
corresponding agent is selected to be influenced by v but not
by ṽk or vice-versa, in which case its value is either ū−0 = ū

or 0 − ū = −ū. Moreover,
N∑
i=1

u?i (tk) =

N∑
i=1

ui(tk), yielding

N∑
i=1

(eu)i(tk) = 0. Denote by S+ and S− the set of indices for

which the components of eu are ū and −ū, respectively. Then,
the cardinality c of S+ is equal to the cardinality of S− to

guarantee that
N∑
i=1

(eu)i(tk) = 0. Introduce also S = S+∪S−

and define γ(x?(t−k)) := 2cūmax
i∈S

xi(t
−
k).

The next result quantifies the loss induced by learning. The
main intuition is that this loss is roughly on the order of the
learning precision εk, although it is important to note that
γ(x?(t−k)) indirectly depends on the learned graph via e.g. S.

Theorem 1: Under Assumption 1 the cost J∞M (u) is a near-
optimal approximation of J∞M (u?), in the following sense:

|J∞M (u?)− J∞M (u)| ≤
M∑
k=0

εkγ(x?(t−k)) (9)

Proof: By definition the cost J∞M (u?) = v>x∞?M =
v>x?(tM) and J∞M (u) = v>x∞M = v>x(tM). Consequently
we will evaluate an upper-bound for |v>e(tM)|. From (7) and
(8) one deduces that

e(t−k+1) = e−Lh
[(
I − U?(tk)

)
x?(t−k)−

(
I − U(tk)

)
x(t−k)

]
= e−Lh

[(
I − U?(tk)

)
e(t−k) + eU (tk)x(t−k)

]
,

where eU (tk) = U?(tk)− U(tk). Thus,

|v>e(t−k+1)| =
∣∣∣v>e−Lh[(I − U?(tk)

)
e(t−k) + eU (tk)x(t−k)

]∣∣∣
=
∣∣v>(I − U?(tk)

)
e(t−k) + v>eU (tk)x(t−k)

∣∣
≤
∣∣v>(I − U?(tk)

)
e(t−k)

∣∣+
∣∣v>eU (tk)x(t−k)

∣∣
≤ |v>e(t−k)|+

∣∣v>eU (tk)x(t−k)
∣∣

≤ |v>e(t−k)|+
∣∣∣ ∑
i∈S+

ūvixi(t
−
k)−

∑
i∈S−

ūvixi(t
−
k)
∣∣∣

≤ |v>e(t−k)|+ ūmax
i∈S

xi(t
−
k)
∣∣∣ ∑
i∈S+

vi −
∑
i∈S−

vi

∣∣∣
(10)

For any i ∈ S+,∃ j ∈ S− such that vi > vj and ṽki < ṽkj .
We also recall that |vi − ṽki | ≤ εk, ∀i ∈ {1, . . . , N}. Thus,

vi − vj = vi − ṽki + ṽki − ṽkj + ṽkj − vj
≤ vi − ṽki + ṽkj − vj ≤ 2εk.

Consequently, (10) yields

|v>e(t−k+1)| ≤ |v>e(t−k)|+ 2εkūcmax
i∈S

xi(t
−
k)

= |v>e(t−k)|+ εkγ(x?(t−k)).
(11)

Applying (11) iteratively one obtains

|v>e(tM)| ≤ |v>e(t−0)|+
M∑
k=0

εkγ(x?(t−k))

and since e(t−0) = 0, (9) holds.
Remark 1: If the learning algorithm performs well, the

approximation of L improves from one iteration to the next,
meaning that εk+1 ≤ εk, ∀k ∈ {0, . . . ,M}.

V. EMPIRICAL RESULTS

We evaluate Alg. 2 using synthetic data since this allows for
controlling the difficulty of the problem. A classical choice
in the literature for studying the kind of scale-free, small-
world graphs is the Barabási-Albert model [28]. This has
been used extensively to model natural and artificial networks,
including social networks [29] and opinion dynamics [30]. In
all experiments, we generate fully-connected Barabási-Albert
graphs of size 15 and the attachment parameter (AP) set to the
(default) value of 2. Increasing the AP value leads to denser
graphs which are easier to approximate by our method. In
a social network a node is influenced by a relatively small
number of neighbours without necessarily influencing them
back, making them sparse and directed. Sparsity is controlled
by the AP value and we make the graph directed by pruning
randomly up to half of the edges. We further enforce the graphs
are quasi-strongly connected, by checking the Laplacian has
exactly one eigenvalue equal to 0. The states are initialized
with a random permutation of evenly spaced values in [0, 1].
We track several metrics of interest: the error (difference
between the desired and final opinion) δ̂ of the allocation
proposed by the approximated algorithm, executed on the true
graph the difference between δ̂ and the error of the optimal
allocation (when knowing the graph), δ̂−δ?, to which we refer
as the sub-optimality; and the largest distance encountered at

0

1

2

3

4

5

67

8

9
10

11

12

13

14

time time time

Fig. 1: Near-optimal allocation in a learned graph. Colours map to node indices. Detail of experiment in Fig. 2.

any campaign between the true centrality vector v and the
approximated one, maxk ‖v̂k − v‖. Hyperparameters we used
are: N = 15 agents, M + 1 = 5 campaigns, inter-campaign
time h = 2.0, desired opinion ω = 1.0, per-agent budget
ū = 0.2, observation sampling period s = 0.5, and learning
rate η = 0.001. At every graph learning phase, we perform up
to 50,000 SGD steps or until the mean absolute error between
the predicted and the target state reaches a threshold of 0.001.

a) Near-optimal allocation in unknown graphs: we begin
with a single graph of 15 nodes randomly generated by the
procedure described above. The second panel in Fig. 1 shows
the dynamics of the graph without control. The final two
panels show the state evolution under opinion control, with
the third panel illustrating the baseline operating on the known
graph, and the fourth panel showing the dynamics induced by
our method, which learns the graph from observations. Since
s = 0.5, graph learning only receives three observations before
the first planning stage and just 12 samples in total by the time
of the last campaign. Despite sample scarcity, our method is
able to identify the graph and use it for near-optimal allocation
of the budget. Our method achieves δ̂ = 0.341, compared to
the optimal allocation with δ? = 0.315.

b) Relation between approximation error and sub-optimality:
having shown our method can recover close-to-optimal control
in unknown graphs, we now investigate how its sub-optimality
scales with the distance between the true centrality vector v
and its learned approximation, connected to the analysis in
Sec. IV. We generate 500 directed graphs with N = 15 using
the same procedure as before. For each graph we conduct 10
runs of the algorithm starting from different permutations of
the equally-spaced initial states, and different initializations
of Aθ. While the algorithm is not overly sensitive to initial
conditions, we are interested in marginalizing over the noise
inherent in any stochastic optimization process, to more accu-
rately evaluate our method.

Fig. 2 plots the correlation between the sub-optimality
δ̂ − δ? and the approximation error of the centrality vector
maxk ‖v̂k − v‖. Each data-point is the average of the 10
different initializations. The marginal density estimates along
the top and right sides of Fig. 2 show that for most graphs
our algorithm is able to learn a good approximation of the
underlying adjacency matrix as measured by the error with
respect to the centrality vector, leading, in turn, to a small
sub-optimality error. Crucially, Fig. 2 supports the conclusions
of our analysis in Sec. IV, in that the sub-optimality error is
mainly driven by how far the centrality vector of the learned
graph deviates from the ground-truth. Indeed, we found no
cases of graphs that are very well approximated but for which

0.2 0.3 0.4 0.5 0.6 0.7

maxk ‖v̂k − v‖

0.1

0.2

δ̂
−
δ∗

Fig. 2: The sub-optimality (y-axis) decreases with the approximation
error of the centrality vector (x-axis). Only for a few graphs the sub-
optimality is large and the approximation error is medium, eg.: trial

. The experiment closest to optimal allocation is marked .

allocation fails. We now direct our attention to the few cases
of average learning errors driving a larger sub-optimality.

c) The case of sparse centrality vectors: closely looking at
the data points in the top region of Fig. 2 reveals that many
have very sparse centrality vectors, containing only one or two
large, non-zero values. When learning with Alg. 1, in these
cases the approximate centrality vectors often contain small
values instead of the zero elements in the ground truth. We
hypothesize these small non-zero value are an artefact of our
gradient-based method that leads to sub-optimal allocations.
We therefore run experiments with an additional regularization
of our objective that drives Aθ to be sparse, by adding the term
λ
∑N
ij Θ2

ij to the objective in (5). Preliminary results suggested
slightly larger errors with L1 penalty, so we settled for L2
regularization. The results in Tbl. I suggest that increasing the
value of λ drives a decrease in the average sub-optimality
error, as well as — more importantly — a reduction in
the upper quartile of errors, Q3, associated with the more
difficult cases. Fig. 3 further illustrates the importance of
sparsity-inducing regularization when learning the graph. For
λ = 0.5, many graphs that had medium approximation error
but relatively large sub-optimality now correlate strongly with
the approximation error.

TABLE I: Effect of L2 regularization on sub-optimality
λ min max mean median Q3
0.01 0.030 0.258 0.098 0.069 0.153
0.10 0.025 0.253 0.098 0.068 0.152
0.50 0.026 0.248 0.089 0.065 0.113

d) Random policy and noisy observations: a control law
that optimises for consensus can induce a data distribution
unconducive to graph identification. We set up an experiment
in which the control is performed with the random policy.

0.2 0.3 0.4 0.5 0.6 0.7

maxk ‖v̂k − v‖

0.1

0.2

δ̂
−
δ∗

Fig. 3: Sub-optimality and approximation error correlation, λ = 0.5

The aim is to check whether a random control is able to
correct the data distribution to such extent that the graphs are
better approximated. Fig. 4 shows no indication this is the
case. Further experiments with noisy observations (which also
indirectly make the learning-based inputs more informative)
fail to show meaningful improvements.

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

maxk ‖v̂k− v‖

de
ns

ity

control
learned random

Fig. 4: Approximation error with learned and random control.
e) Scalability: the graph learning component of our

method takes advantage of the good scalability properties of
backpropagation and SGD. A comparison on graphs with a
doubling number of nodes, N ∈ {15, 30, 60, 120, 240}, reveals
only a linear increase in the time required to identify the graph:
13.1, 13.1, 16.3, 35.3 and 95.6 seconds.

VI. CONCLUSION AND FUTURE WORK

We proposed and characterized an algorithm to influence
opinion dynamics that works on observations from an un-
known graph. We proved that the sub-optimality of our method
is proportional to the approximation error of the learning algo-
rithm. We confirmed these findings empirically and introduced
an extra regularization term that improves performance. We
focused here on graphs with linear dynamics. Future inves-
tigation could characterize the conditions for identifiability
and convergence of our method, but also extend this work to
certain classes of non-linear interactions between the agents.

REFERENCES

[1] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic Net-
works. A Mathematical Approach to Motion Coordination Algorithms.
Princeton University Press, 2009.

[2] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, Princeton, NY, 2010.

[3] A. V. Proskurnikov and M. Cao, Consensus in Multi-Agent Systems.
John Wiley & Sons, 2016, pp. 1–16.

[4] M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[5] N. E. Friedkin and E. C. Johnsen, “Social influence and opinions,”
Journal of Mathematical Sociology, vol. 15, pp. 193–206, 1990.

[6] R. Hegselmann and U. Krause, “Opinion dynamics and bounded confi-
dence models, analysis, and simulation,” Journal of Artificial Societies
and Social Simulation, vol. 5, no. 3, 2002.

[7] I.-C. Morărescu and A. Girard, “Opinion dynamics with decaying
confidence: Application to community detection in graphs,” IEEE Trans.
on Automatic Control, vol. 56, no. 8, pp. 1862 – 1873, 2011.

[8] C. Altafini, “Consensus problems on networks with antagonistic interac-
tions,” IEEE Trans. on Automatic Control, vol. 58, pp. 935–946, 2013.

[9] P. Bonacich and P. Lloyd, “Eigenvector-like measures of centrality for
asymmetric relations,” Social Networks, vol. 23, pp. 191–201, 2001.

[10] S. Martin, I.-C. Morărescu, and D. Nes̆ić, “Consensus and influence
power approximation in time-varying and directed networks subject to
perturbations,” International Journal of Robust and Nonlinear Control,
vol. 29, no. 11, pp. 3485 – 3501, 2019.

[11] N. Booth and J. A. Matic, “Mapping and leveraging influencers in social
media to shape corporate brand perceptions,” Corporate Communica-
tions: An International Journal, vol. 16, no. 3, pp. 184–191, 2011.

[12] I.-C. Morărescu, V. Varma, L. Buşoniu, and S. Lasaulce, “Space-time
budget allocation policy design for viral marketing,” Nonlinear Analysis:
Hybrid Systems, vol. 37, p. 100899, 2020.

[13] D. R. Alkhorshid, E. S. Tognetti, and I.-C. Morărescu, “Saturated control
of consensus value under energy and state constraints in multi-agent
systems,” Automatica, vol. 169, 2024.

[14] C. Bernardo, L. Wang, M. Fridahl, and C. Altafini, “Quantifying
leadership in climate negotiations: A social power game,” PNAS, 2023.

[15] D. Materassi and M. V. Salapaka, “On the problem of reconstructing
an unknown topology via locality properties of the wiener filter,” IEEE
Trans. Autom. Control., vol. 57, no. 7, pp. 1765–1777, 2012.

[16] P. M. J. V. den Hof, A. G. Dankers, P. S. C. Heuberger, and X. Bombois,
“Identification of dynamic models in complex networks with prediction
error methods - basic methods for consistent module estimates,” Autom.,
vol. 49, no. 10, pp. 2994–3006, 2013.

[17] H. H. Weerts, A. G. Dankers, and P. P. van den Hof, “Identifiability in
dynamic network identification,” IFAC-PapersOnLine, vol. 48, 2015.

[18] M. Gevers and A. S. Bazanella, “Identification in dynamic networks:
Identifiability and experiment design issues,” in 54th IEEE Conference
on Decision and Control, 2015, pp. 4005–4010.

[19] S. Guo, H. Xu, G. Xie, D. Wen, Y. Huang, and P. Peng, Reinforcement
Learning-Based Consensus Reaching in Large-Scale Social Networks.

[20] D. L. Mingwei Wang and Z. Xu, “Consensus achievement strategy
of opinion dynamics based on deep reinforcement learning with time
constraint,” Journal of the Operational Research Society, vol. 73, no. 12,
pp. 2741–2755, 2022.

[21] V. S. Borkar and A. Reiffers-Masson, “Opinion shaping in social
networks using reinforcement learning,” IEEE Trans. on Control of
Network Systems, vol. 9, pp. 1305 – 1316, 2022.

[22] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in 2nd Int. Conf. on Learning
Representations, 2014.

[23] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Int. Conf. on Learning Representations.

[24] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol. 14, 2020.

[25] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in 6th Int. Conf. on Learning
Representations, ICLR, April 30 - May 3, 2018.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Int. Conf. on Learning Representations, 2015.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
IEEE Int. Conf. on Computer Vision, 2015, pp. 1026–1034.

[28] A. Ĺaszló Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286 5439, pp. 509–12, 1999.

[29] A. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek,
“Evolution of the social network of scientific collaborations,” Physica
A: Statistical Mechanics and its Applications, vol. 311, no. 3, 2002.

[30] D. S. M. Alencar and et al, “Opinion dynamics systems on Barabási-
Albert networks: Biswas-Chatterjee-Sen model,” Entropy, vol. 25, no. 2,
p. 183, 2023.

