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Abstract— Given a social network where the individuals know
the identity of the other members, we present a model of
opinion dynamics where the connectivity among the individuals
depends on both their current and past opinions. Thus, their
interactions are not only based on the present states but also on
their past relationships. The model is a multi-agent system with
active or inactive pairwise interactions depending on auxiliary
state variables filtering the instantaneous opinions, thereby
taking the past experience into account. When an interaction
is (de)activated, a jump occurs, leading to a hybrid model. The
proven stability properties ensure that opinions converge to
local agreements/clusters as time grows. Simulation results are
provided to illustrate the theoretical guarantees.

I. INTRODUCTION

Motivated by the growing importance of digital social
networks, opinion dynamics has received an increasing at-
tention from the control community e.g., [1], [3], [17],
[19], [21]. The multi-agent systems formalism is well-suited
for modelling these networks, as a node can model the
individual’s opinion and an edge describes the interaction
between two given individuals e.g., [4], [7], [13], [18].

Two main models provide convergence towards local
agreement or disagreement patterns. One of them (FJ) [12]
essentially filters the consensus dynamics by using the initial
opinions of the agents. The idea is that, although individuals
influence each other, a major role in the opinion update is
played by their culture, belonging to a community (social
class, political party, etc), principles and beliefs, as captured
by the initial condition of each individual. The second one
is the bounded confidence model (HK) described in [16],
which formalizes the idea that only individuals with similar
opinions actually interact.

Social psychologists agree that both the FJ and HK models
are relevant, depending on the context, see [9] for a detailed
survey. Nevertheless, as pointed out in [9], opinion dynamics
in social networks is a complex phenomenon, whose key
features cannot be completely captured by any of these mod-
els separately. This has motivated the development of other
deterministic models e.g., [1], [4], [10], [19], [21], as well as
stochastic models e.g., [6], [18], [25]. It is noteworthy that
most of the aforementioned works provide either empirical or
rigorous convergence results but stability is eluded in general.
The recent work in [11] provides a Lyapunov analysis of the
HK model and reveals that only an attractivity property can
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be guaranteed. This motivated developing in [11] a variant of
the HK model where the connectivity depends on adaptive
thresholds, instead of fixed ones as in [16]. In this way, a link
is activated when the opinions mismatch between two given
agents is small compared to the average opinion mismatch
with their other neighbours. This strategy ensures stability
of the emergent clusters.

This paper is a further step in the direction paved by
[11]: we propose a model where connectivity also depends
on the past history. With this, we merge the features of
the FJ model (where importance is given to the past, the
initial conditions) and those of the HK model (the bounded
confidence mechanism based on current opinions). It is
indeed reasonable to assume that the interactions within
a social network do not only depend on the current state
but also on the past relationships, when the members are
aware of the identity of their neighbours. To this end, we
account for the past by linearly filtering the instantaneous
(de)activation functions (de)activating a link only when both
the adaptive threshold and its filtered version reach certain
thresholds. Our model uses the hybrid formalism of [15]. A
new Lyapunov function is constructed, which guarantees a
suitable KL-stability property ensuring asymptotic conver-
gence to opinion clusters. In addition, solutions are proved
not to generate Zeno phenomenon and to stop jumping in
finite-time. Simulation results illustrate the behaviour of the
model and the impact of the filters and their parameters.

The technical proofs of this work emerge from some inter-
esting analogy between the adaptive threshold connectivity
as in [11] and the event-triggered control technique of [23].
These two domains - a priori unrelated - have actually much
in common in terms of modelling and analysis tools. As a
result, the memory-based connectivity proposed in this paper
is inspired by the dynamic event-triggering control policy
proposed in [14].

Background and problem statement are given in Section II.
The main results, including the new hybrid model and its
stability analysis, are presented in Section III. Illustrative
simulations results are reported in Section IV and Section V
concludes the paper.
Notation. R represents the real numbers, R≥0 := [0,∞),
R>0 := (0,∞). |x| is the Euclidean norm of vector x ∈ Rn.
Moreover, (x, y) stands for [x> y>]>. A continuous function
β : R≥0 × R≥0 −→ R≥0 is of class-KL (β ∈ KL), if it
is non-decreasing in its first argument, non-increasing in its
second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,
and lims→∞ β(r, s) = 0 for each r ∈ R≥0. U◦(x; v) :=
lim suph→0+, y→x(U(y+hv)−U(y))/h denotes the Clarke
generalized directional derivative at x in the direction v of a



Lipschitz function U [5].

II. BACKGROUND AND PROBLEM STATEMENT

Following [11], we consider a set of individuals V :=
{1, . . . , n}, also referred to as agents, connected through a
social network. The opinions of individuals are modelled by
a scalar variable yi ∈ R for any i ∈ V . The dynamics of
opinion yi, i ∈ V , depends on the interactions of individual
i with its neighbours. We define

E+ := {(i, j) ∈ V × V | i < j} (1)

and, for each (i, j) ∈ E+, variable aij defines whether agents
i and j interact or not, i.e. whether or not they are neighbours.
Thus, aij is the connectivity variable for link (i, j), satisfying

aij = aji :=

{
1 if i and j interact
0 otherwise. (2)

The graph is undirected as aij = aji. Interaction changes,
if any, are described by a jump of the variable aij . The
corresponding hybrid behavior is well represented with the
formalism of [15]. Variables yi and aij obey the next
continuous-time dynamics between two successive jumps

ẏi =
∑n
j=1 ϕij(yj − yi), ∀i ∈ V, (3)

ȧij = 0, ∀(i, j) ∈ E+, (4)

where di := 1 +
∑
j 6=i aij ≥ 1 is the degree of agent i

augmented by 1, ϕij :=
aij
didj

when i 6= j and ϕii :=

−
∑
j 6=i ϕij . We omit the dependence of di and ϕij on

the connectivity variables. By construction we have that
ϕij = ϕji and

∑n
j=1 ϕij = 0 for any i ∈ V . The variable

ϕij is such that Φ := [−ϕij ](i,j)∈V2 defines a normalized
Laplacian matrix. Dynamics (4) means that aij is constant
between jumps (along flowing solutions) and that the time-
derivative of yi is given by the weighted average of the
opinion mismatch between agent i and its neighbours.

When a jump occurs over the network, i.e. when one of
the variables aij for some (i, j) ∈ E+ is updated, solutions
obey the following discrete dynamics,

y+
h = yh, ∀h ∈ V

a+
hk =

{
ahk if (h, k) 6= (i, j)
1− ahk if (h, k) = (i, j),

∀(h, k) ∈ E+ (5)

Dynamics (5) states that the opinions yi do not change across
jumps and that the connectivity variable aij toggles between
0 and 1 according to (de)activation. It simplifies notation to
write the second equation of system (5) as

a+ = gij(y, a), (6)

where y := (y1, . . . , yn) ∈ Rn is the opinions vector, and
a := (a12, . . . , a1n, a23, . . . , an−2,n, an−1,n) ∈ {0, 1}

n(n−1)
2

is the connectivity variables vector.
To complete the model, we present the memoryless

(de)activation criterion (jump dynamics) for each link be-
tween two agents, as proposed in [11, §4]. The adaptive
thresholds idea of [11] is that two agents interact when their
opinions are close relative to their respective neighbours’

opinions (an alternative to the fixed threshold HK model
[16]). Roughly speaking, given (i, j) ∈ E+:
• Deactivation. If aij = 1, link (i, j) is active. Deactivation
is then enabled when Γoff

ij (y, a) ≤ −ε, where ε > 0 is
a regularization parameter and η > 0 is a connectivity
parameter, while Γoff

ij is defined in (7) at the top of the next
page. This means that link (i, j) is cut when yi and yj are
too far apart, as compared to other neighbours’ opinions.
Parameter1 ε > 0 rules out Zeno solutions, i.e. solutions that
jump indefinitely in a finite continuous time interval. It is
typically set to a small value.
• Activation. If aij = 0, link (i, j) is not active. Activation
is enabled when Γon

ij (y, a) ≥ ε with Γon
ij defined in (7). The

underlying idea is that link (i, j) should be activated when
the difference between opinions i and j, namely |yi − yj |
is small as compared to the average opinion mismatch of
agents i and j with their respective neighbours (individuals
with relatively close opinions influence each other).

Parameter η determines how big the mismatch |yi − yj |
needs to be with respect to the average opinions mismatch
of agents i and j with their neighbours to (de)activate the
link.

As a result, the overall hybrid model is given by[
ẏ
ȧ

]
=

[
−Φy

0

]
, (y, a) ∈ Cinst

[
y+

a+

]
∈


y⋃

(y,a)∈Dij,inst

(i,j)∈E+

gij(y, a)

 , (y, a) ∈ Dinst,
(8a)

where we recall that Φ = [−ϕij ](i,j)∈V2 and E+ is in (1),
and Xinst := Rn × {0, 1}

n(n−1)
2 , and

Don
ij,inst :=

{
(y, a) ∈ Xinst | aij = 0, Γon

ij (y, a) ≥ ε
}

Doff
ij,inst :=

{
(y, a) ∈ Xinst | aij = 1, Γoff

ij (y, a) ≤ −ε
}
,
(8b)

Dinst :=
⋃

(i,j)∈E+ Don
ij,inst ∪ Doff

ij,inst, and Cinst := X \Dinst.
The main stability result of [11] is to prove that all maximal
solutions to (7), (8) are complete and eventually continuous
(i.e, they perform a finite number of jumps) and all enjoy a
desirable global asymptotic stability property for the follow-
ing set Ainst, measured by the following function ω0,

Ainst := {(y, a) ∈ X | aij(yi − yj)2 = 0, ∀(i, j) ∈ E+},
ω0(y, a) := min

(z,a)∈Ainst

|y − z|. (9)

Since ω0 is not a Euclidean norm in the extended (y, a)
space (because a is fixed when defining ω0 in (9)), we deem
it more appropriate to use in this paper the following notion
of KL-stability, which combines the approach in [24] with
the KL results in [2, §3.5].

Definition 1: Let ω : Rnq → R≥0 be continuous. A
hybrid system is KL-stable with respect to ω if there exists

1Constant ε is the same for every link of the network in [11], however
the results do hold mutatis mutandis when it is link dependent, i.e. when
we have different εij > 0 for each (i, j) ∈ V2.



Γon
ij (y, a) :=

∑
` 6=i, 6̀=j

[
(dj + 1)ϕi`(yi − y`)2 + (di + 1)ϕj`(yj − y`)2

]
−
(

1 +
η2

didj

)
(yi − yj)2

Γoff
ij (y, a) :=

∑
` 6=i, 6̀=j

[ djai`
(di − 1)d`

(yi − y`)2 +
diaj`

(dj − 1)d`
(yj − y`)2

]
−
(

1− η2

didj

)
(yi − yj)2

(7)

β ∈ KL such that all maximal solutions φ are complete
and satisfy ω(φ(t, j)) ≤ β(ω(φ(0, 0)), t+ j) for all (t, j) ∈
domφ. �

It is proven in the text beneath [11, Lemma 5] that system
(8) is KL-stable with respect to ω0. Due to the structure
of Ainst where aij(yi − yj)2 = 0, this property means that
solutions asymptotically form clusters [11, Section 4.3].

A possible criticism of the result of [11] summarized
above is that the connectivity variables aij are only based
on the instantaneous opinions mismatch, see (8b). If two
agents had or had not been in agreement for a long time,
their current interaction status is not affected by the past. The
main contribution of this paper is to introduce a novel model
with memory-based connectivity features. In the next section,
we formalize this intuition via a new hybrid model where
the past memory is captured by additional state variables.
For this model, we will prove a generalization of the above
mentioned KL-stability property.

III. MEMORY-BASED CONNECTIVITY

A. Hybrid model

We define the connectivity between agents i and j, for
(i, j) ∈ E+, using Γon

ij or Γoff
ij in (7), but also based on a new

memory state variable θij ∈ R that is a filtered version of
the instantaneous threshold criterion reviewed in Section II.
Loosely speaking, θij reflects the history of the interaction
between agents i and j.

More precisely, for each (i, j) ∈ E+, the flow dynamics
for θij is selected as

θ̇ij = −βijθij + (1− aij)Γon
ij (y, a) + aijΓ

off
ij (y, a)

=: fθ,ij(y, a, θij), (10)

where βij > 0 are tunable parameters associated to how fast
each agent “forgets” the past, and Γon

ij and Γoff
ij are given

in (7). When link (i, j) is active, aij = 1 according to
(2) and θ̇ij = −βijθij + Γoff

ij (y, a) in view of (10). Hence,
variable θij filters Γoff

ij (y, a), which is indeed the right term
to be monitored for deciding whether link (i, j) should be
deactivated, see Section II. Conversely, when link (i, j) is
not active, aij = 0 and θ̇ij = −βijθij + Γon

ij (y, a) so that
Γon
ij (y, a) is filtered to infer whether or not the link should

be activated.
Parameters βij in (10) represent how “nostalgic” each pair

of agents are with respect to their common past. When βij
is very large, the past is not given much credit and, as βij →
∞, we recover the criterion of Section II. Conversely, when
βij is small, the past values of Γoff

ij or Γon
ij matter more, as

compared to the instantaneous ones.

When a jump occurs, i.e. when a link is (de)activated,
the memory variable θij is unchanged, namely θ+

ij = θij for
each (i, j) ∈ E+. The proposed memory-based (de)activation
policy then intuitively generalizes the one of Section II:
• Activation. If aij = 0, link (i, j) is not active. Activation
is enabled when Γon

ij (y, a) ≥ ε and θij is non-negative.
Parameter ε plays the same role as in Section II, preventing
Zeno solutions, see footnote 1 on page 2.
• Deactivation. If aij = 1, link (i, j) is active. Deactivation
is then enabled when Γoff

ij (y, a) ≤ −ε and θij is non-positive.
The rationale is similar to the previous case.

The mechanism described above can be written in a com-
pact form extending the memoryless model (8). Introducing

θ := (θ12, . . . , θ1n, θ23, . . . , θn−2,n, θn−1,n) ∈ R
n(n−1)

2

x := (y, a, θ) ∈ Xmem := Rn × {0, 1}
n(n−1)

2 × R
n(n−1)

2 ,

the memory-based hybrid model is given byẏȧ
θ̇

 = f(x) :=

 −Φy
0

fθ(y, a, θ)

 , x ∈ Cmem

y+

a+

θ+

 ∈ g(x) :=


y⋃

(y,a)∈Dij,mem

(i,j)∈E+

gij(y, a)

θ

 , x ∈ Dmem,

(11a)

with x := (y, a, θ), with

Dmem :=
⋃

(i,j)∈E+

Don
ij,mem ∪Doff

ij,mem, Cmem := Xmem\Dmem

Don
ij,mem :=

{
(y, a, θ) ∈ Xmem | aij = 0, Γon

ij ≥ ε, θij ≥ 0
}

Doff
ij,mem :=

{
(y, a, θ) ∈ Xmem | aij = 1, Γoff

ij ≤ −ε, θij ≤ 0
}
.

(11b)

System (11) satisfies the hybrid basic conditions of [15,
As. 6.5], in view of the definition of the flow and jump maps
and the flow and jump sets. Then, from [15, Thm 6.30],
it is (nominally) well-posed, namely its solutions satisfy a
desirable sequential compactness property.

B. Main stability result

We establish here a KL-stability property for (11) gener-
alizing the one established for (8) at the end of Section II.
To this end, function ω0 in (9) is generalized to

ω(x) := ω0((y, a)) +
∑

(i,j)∈E+

(1− aij) max{0, θij}, (12)



for any x ∈ Xmem which incorporates the memory variable
θ.

Since ω0 is continuous, then ω is continuous too on Xmem.
Our main result below ensures the KL-stability property for
model (11) with respect to ω, as well as properties of the
hybrid time domains of its solutions. The proof of Theorem 1
is based on a novel hybrid Lyapunov function characterized
in the next section.

Theorem 1: All maximal solutions to system (11) are
complete and eventually continuous. For each maximal so-
lution x, there exists x? ∈ Xmem such that x(t, j) → x? as
t+j →∞. Moreover, system (11) is KL-stable with respect
to ω in (12).

Since the second term in (12) is non-negative, the conver-
gence to zero of ω(x) established in Theorem 1 immediately
implies that ω0((y, a)) → 0. As result, Theorem 1 ensures
that opinions converge to clusters as time grows. In addition,
(1− aij) max{0, θij} converges to zero for all (i, j) ∈ E+,
namely the memory variable θij associated to individuals
belonging to different clusters is not positive. The asymptotic
behavior of solutions is clarified in the following corollary,
which is an immediate consequence of eventual continuity
of solutions (a eventually settles to a clustering pattern) and
convergence of solutions (opinions settle to constant values
that coincide within each cluster because ω0((y, a))→ 0).

Corollary 1: Each maximal solution of (11) converges to
a clustering pattern with constant and equal opinions in each
cluster.

C. Lyapunov function and proof of Theorem 1

Consider the following candidate Lyapunov function,

U(x) := V (x) + γ
∑

(i,j)∈E+

(1− aij) max{0, θij}, (13)

for each x = (y, a, θ) ∈ Xmem, γ > 0 to be selected, and

V (x) :=
1

2
y>Φy =

1

4

∑
(i,j)∈V2

ϕij(yi − yj)2. (14)

The second equality above arises from the Dirichlet form
[8, Prop. 1.9] and the definition of Φ after (4). Function V
is the Lyapunov function used in [11, eqn. (18)], while the
second term in (13) accounts for the new dynamics θ. The
next proposition states key properties of U .

Proposition 1: Given system (11), there exist γ > 0 in
(13) and c1, c2, cF , cJ > 0 such that the following holds.

(i) U is locally Lipschitz on Xmem and satisfies c1ω(x) ≤
U(x) ≤ c2ω(x) for all x ∈ Xmem.

(ii) For all x ∈ Cmem, U◦(x; f(x)) ≤ −cFU(x).
(iii) For all x ∈ Dmem, and υ ∈ g(x), U(υ)−U(x) ≤ −cJ .

Proof. We prove the three items one by one.
Proof of item (i). Function U is locally Lipschitz on Xmem
in view of its definition in (13). According to [11, eqn.
(19)], there exist c̃1, c̃2 > 0 such that for any (y, a) ∈ Xinst,
c̃1ω0((y, a))2 ≤ V (x) ≤ c̃2ω0((y, a))2. As a result, by the
definition of ω in (12), we obtain the inequality in (i) with
c1 := min{c̃1, γ} and c2 := max{c̃2, γ}.

Proof of item (ii). Given any x = (y, a, θ) ∈ Cmem, introduce
the sets (below, for simplicity, the dependence on x is
sometimes omitted)

Ec>0(x) := {(i, j) ∈ E+ | aij = 0 and θij > 0},
Ec=0(x) := {(i, j) ∈ E+ | aij = 0 and θij = 0},
EcΓ(x) := {(i, j) ∈ E+ | Γon

ij (y, a) ≥ 0}.
(15)

According to [20, Prop. 1.1], in view of (10), (11), (13) and
the definition of fθ, we have that

U◦(x; f(x)) = 〈∇V (x), f(x)〉
+γ
∑

(i,j)∈Ec>0

(
−βijθij + Γon

ij (y, a)
)

+γ
∑

(i,j)∈Ec=0
max

{
0,−βijθij + Γon

ij (y, a)
}

= 〈∇V (x), f(x)〉+ γ
∑

(i,j)∈Ec>0

(
−βijθij + Γon

ij (y, a)
)

+γ
∑

(i,j)∈(Ec=0∩EcΓ) Γon
ij (y, a)

= 〈∇V (x), f(x)〉+ γ
∑

(i,j)∈Ê
(
−βijθij + Γon

ij (y, a)
)
,

where Ê(x) := Ec>0(x) ∪ (Ec=0(x) ∩ EcΓ)(x)). Note that [11,
eqn. (20)] holds because variables (y, a) obey the same
flow dynamics as in (8) and (11). Then 〈∇V (x), f(x)〉 ≤
−c̃FV (x) for some c̃F > 0. Consequently,

U◦(x; f(x)) ≤ −c̃FV (x)− γ
∑

(i,j)∈Ê

βijθij + γ
∑

(i,j)∈Ê

Γon
ij (y, a).

The expression of Γon
ij in (7), together with (14) yields

∑
(i,j)∈Ê

Γon
ij (y, a) =

∑
(i,j)∈Ê

(
−
(

1 +
η2

didj

)
(yi − yj)2

+
∑

` 6=i, ` 6=j

(
(dj + 1)ϕi`(yi − y`)2 + (di + 1)ϕj`(yj − y`)2

))
≤ n

∑
(i,j)∈Ê

∑
` 6=i, 6̀=j

(
ϕi`(yi − y`)2 + ϕj`(yj − y`)2

)
≤ n

∑
(i,`)∈V2

ϕi`(yi − y`)2 + n
∑

(j,`)∈V2

ϕj`(yj − y`)2

= 4nV (x) + 4nV (x) = 8nV (x), (16)

which can be substituted in the preceding inequality to get

U◦(x; f(x)) ≤ −(c̃F − 8nγ)V (x)− γ
∑

(i,j)∈Ê

βijθij . (17)

Now, θij = (1−aij) max{0, θij} for (i, j) ∈ Ê ⊂ Ec>0∪Ec=0,
and (1 − aij) max{0, θij} = 0 for (i, j) ∈ E+\Ê , because
either aij = 1 or θij ≤ 0 for those edges. Then,

U◦(x; f(x)) ≤ −cFU(x), (18)

where cF = min{c̃F − 8nγ, β} and β := min(i,j)∈E+ βij >
0, which implies item (ii) with any γ ∈ (0, c̃F8n ).
Proof of item (iii). From (11b), for each x ∈ Dmem and
υ ∈ g(x), there exists (i, j) ∈ E+ such that x ∈ Don

ij,mem ∪
Doff
ij,mem, and a+ ∈ gij(y, a). Since Don

ij,mem and Doff
ij,mem are

disjoint, then two cases may occur: case “on” and case “off”
below.
Case “on”: x ∈ Don

ij,mem. In this case, aij = aji = 0,
Γon
ij (y, a) ≥ ε and θij ≥ 0. Since link (i, j) is activated at this



jump, a+
ij = a+

ji = 1 and from (5), (6), the other connectivity
variables, as well as all the memory variables in view of (11),
remain constant across the jump. Consequently,

U(υ)− U(x) = V (υ)− V (x)− γmax{0, θij}. (19)

Following the proof [11, Lemma 5], we get V (υ)−V (x) =
1

2(di + 1)(dj + 1)

(
−Γon

ij (y, a)− η2

didj
(yi − yj)2

)
.

Thus, (19) yields

U(υ)− U(x) ≤ 1

2d+
i d

+
j

(
−ε− η2

didj
(yi − yj)2

)
,

where d+
i = di+1 and d+

j = dj +1. Taking cJ ∈
(

0,
ε

2n2

]
,

characterizing the least possible decrease with n agents, we
prove item (iii) for the case “on”.
Case “off”: x ∈ Doff

ij,mem. In this case, aij = aji = 1,
Γoff
ij ≤ −ε and θij ≤ 0. Link (i, j) is deactivated at this jump

and a+
ij = a+

ji = 0. The other connectivity variables and the
memory variables remain constant. Then (19) holds again
and following again the proof of [11, Lemma 5], we deduce

that V (υ) − V (x) =
1

2didj

(
Γoff
ij (y, a)− η2

didj
(yi − yj)2

)
.

Thus, (19) yields

U(υ)− U(x) ≤ 1

2didj

(
−ε− η2

didj
(yi − yj)2

)
.

Selecting cJ ∈
(

0,
ε

2n2

]
, item (iii) holds in case “off”.

Thus, item (iii) holds with cJ :=
ε

2n2
. �

Proof of Theorem 1. To prove that maximal solutions to (11)
are complete, we invoke [15, Prop. 6.10]. First, the viability
condition is satisfied in view of the system definition. Sec-
ondly, g(Dmem) ⊂ Cmem ∪Dmem. Moreover, using W (x) =
y>y, we have 〈∇W (x), f(x)〉 = −2y>Φy ≤ 0, therefore
the y components are bounded. Also the memory variables θ
are bounded, because they are constant across jumps and the
components of its flow map are exponentially stable filters
with integrable inputs. Consequently, maximal solutions do
not escape in finite time and [15, Prop. 6.10] establishes their
completeness. Eventual continuity follows from the fact that
the decrease of U across jumps in item (iii) of Proposition 1
is constant at each jump and that U does not increase on
flows in item (ii) of Proposition 1, therefore any solution
jumping forever would eventually lead to a negative U(x),
contradicting item (i) of Proposition 1. About convergence of
solutions, state a settles due to eventual continuity, y settles
too because 〈∇W (x), f(x)〉 = −2yTΦy = 0 and symmetry
of Φ implies −2ẏ = Φy = 0, finally θ converges too because
it is a linear filter with a converging input.

Let us now prove the KL bound on the solutions. Since
the conditions of Proposition 1 are analogous to those of [11,
Lemma 5], we can proceed as in [11, eq. (23)] to obtain

ω(x(t, j)) ≤ β(ω(x(0, 0)), t, j)

:=
c2
c1

ecF ·t
(

1−min

{
1,

cJ
c2ω(x(0, 0))

})j
ω(x(0, 0)),

establishing a class KLL bound [2], which is easily trans-
formed into a class KL bound ω(x(t, j)) ≤ β̄(ω(x(0, 0)), t+
j) constructing β̄ from β as in [2, Lemma 6.1]. �

IV. SIMULATIONS

We consider n = 15 agents, ε = 0.01 and η = 3 in
(7). The initial topology is an Erds-Rnyi random graph, with
probability p of having an interconnection between each node
pair (i, j), while the initial values of yi, i ∈ {1, . . . , n}
are selected randomly in the interval [0, 1]. The result of
simulations2 done using model (8) is reported in Fig. 1.

Initial Graph Final Graph | jumps = 26

Fig. 1. Initial and final topologies for given y(0, 0), with p = 0.1. Nodes
have been sorted counterclockwise to clearly visualize the clusters appearing
in the final topology.

We then study model (11), the impact of the choices of βij
and the initial values of θij on the evolution of the opinions,
for the same y(0, 0) as in Fig. 1. In particular, we take for
βij = β with β ∈ {0.1, 50}, and θij(0, 0) = θo with θo ∈
{0, 0.01, 1} for aij(0, 0) = 1 and θo = 0 otherwise, as well
as the case where θo takes random values in [−1, 0), for all
(i, j) ∈ E+. The final graphs are depicted in Fig. 2 and 3.

We can see that the opinions converge to fixed agreement
values in each cluster, in agreement with Corollary 1. In
general these clusters are different from those obtained with
model (8). There is only one situation where the obtained
clusters are the same as in Fig. 1: when θo = 0, see Fig. 3.
This can be explained by the fact that the opinions converge
quickly to cluster formations and θ has no impact on it.

Final Graph |  = 50 | o = 1 | jumps = 44 Final Graph |  = 50 | o = 0.01 | jumps = 44

Final Graph |  = 0.1 | o = 1 | jumps = 35 Final Graph |  = 0.1 | o = 0.01 | jumps = 44

Fig. 2. Four different final topologies for different couples of (β, θ(0, 0)).

2The simulations have been carried out using the Matlab toolbox [22].



When comparing Fig. 2 and 3, we note that positive values
of θ tend to preserve the exiting initial interconnections,
leading to larger clusters. This suggests that agents remember
their mutual relationships with each other. On the other hand,
negative values generate clusters made of fewer agents in
general, see Fig. 2 compared to Fig. 3.

Final Graph |  = 0.1 | o = 0 | jumps = 26 Final Graph |  = 0.1 | 
o
  [-1,0) | jumps = 20

Fig. 3. Different final topologies for different, non positive θ(0, 0).

The evolutions of y and θ as functions of the continuous-
time t are depicted in Fig. 4 for β = 0.1 and θo = 1.
Two clusters appear as time grows, in agreement with the
corresponding plot in Fig. 2. When agents i and j are in
the same cluster, θij converges to 0 just as Γoff

ij (y, a) does in
this case. When agents i and j are not in the same cluster,
θij converges to the same values of Γon

ij (y, a)/βij in view of
(10). This ratio, Γon

ij (y, a)/βij , can take any constant value
in (−∞, ε] in view of (11b). Hence, in some cases we have
θij(t, j) → 0 as t + j → ∞ although agents i and j are
not in the same cluster. In this context, to distinguish agents
from the same clusters, it is more relevant to monitor σij
defined as:

σij := (2aij − 1)
|θij |

|(1− aij)Γon
ij (y, a) + aijΓ

off
ij (y, a)|

. (20)

At steady-state, σij either converges to 1/βij if agents i
and j belong to the same cluster, or to −1/βij otherwise.
The influence of βij is clear here: the smaller βij , the more
important the past is and the bigger σij , and vice versa.
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Fig. 4. Values of y (left) and θ (right) for β = 0.1 and θo = 1. Different
colors have been used for different clusters in the final topology.

V. CONCLUSIONS

We have presented a hybrid model of opinion dynamics
where the connectivity among individuals takes into account
both the present and the past values of the opinions of the
respective individuals. We believe that the idea of taking
into account the past when defining connectivity in opinion
dynamics is appealing and relevant, and that it has been
largely unexplored so far.
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[19] I.-C. Morărescu and A. Girard. Opinion dynamics with decaying
confidence: Application to community detection in graphs. IEEE
Transactions on Automatic Control, 56(8):1862 – 1873, 2011.
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