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Abstract— We propose two new optimistic planning al-
gorithms for nonlinear hybrid-input systems, in which the
input has both a continuous and a discrete component,
and the discrete component must respect a dwell-time
constraint. Both algorithms select sets of input sequences
for refinement at each step, along with a continuous or
discrete step to refine (split). The dwell-time constraint
means that the discrete splits must keep the discrete mode
constant if the required dwell-time is not yet reached. Con-
vergence rate guarantees are provided for both algorithms,
which show the dependency between the near-optimality of
the sequence returned and the computational budget. The
rates depend on a novel complexity measure of the dwell-
time constrained problem. We present simulation results
for two problems, an adaptive-quantization networked con-
trol system and a model for the COVID pandemic.

Index Terms— Optimal control, hybrid-input systems,
switched systems

I. INTRODUCTION

WE consider optimal control of hybrid-input systems in
which the discrete input is subject to a minimum dwell-

time constraint. A hybrid input has both a continuous and a
discrete component, and the dwell-time is the number of steps
elapsed before the discrete input changes its value. The dwell-
time constraint is motivated by preventing fast switches, either
due to physical limitations or to increase performance [1],
[7]. Hybrid-input systems occur e.g. in robotics [3], indus-
trial multiple-tanks systems [16] or the automotive industry
[13]. Moreover, in networked control systems (NCS), the
continuous input can be dynamically quantized [12], where
the quantization mode is the discrete input. Several methods
can be used to solve hybrid-input problems without dwell-
time constraints, among which branch-and-bound approaches
[3], switching control [14], or MPC [16]. Optimal control
of switched systems is also presented in [9], [18] (see also
references therein), which however do not consider hybrid
inputs or dwell-time constraints. For linear dynamics, [4]
jointly designs a dwell-time constrained mode sequence and
the continuous input.

Differently from these methods, our focus here is on hybrid-
input systems with dwell-time constraints, in which dynamics
can be general nonlinear and cost functions arbitrary, as long
as both are Lipschitz with respect to the state and the contin-
uous input. The latter input must be scalar, a restriction that
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can be relaxed at extra computational cost. For such systems,
in a first main contribution of this paper (C1), we propose two
methods, called OPHIS∆ and SOPHIS∆: Optimistic Planning
for Hybrid-Input Systems with dwell-time, and Simultaneous
OPHIS∆. Both algorithms produce at each step an open-loop
sequence, and are meant to be applied in receding horizon.
They are an extension to handle dwell-time constraints of the
existing OPHIS and SOPHIS methods [10]. This extension is
nontrivial since it impacts the way the computational budget is
used and thus also the convergence to a near-optimal solution.

Both algorithms belong to the optimistic planning (OP) class
[8] and iteratively partition the space of infinitely long hybrid-
input sequences, by choosing for refinement (splitting) one or
several sets at each iteration. Dwell-time constraints in OP
were addressed before in problems with only discrete inputs
[2], or autonomous switched systems [7]. In contrast, here
we focus on hybrid-input systems. In the methods proposed,
for each chosen set, a time step is also selected, together
with the type of split (continuous or discrete). The dwell-
time constraint is handled during discrete splits, by checking
whether enough steps have passed since the last switch (in
which case the discrete input can take any possible value) or
the constraint is not yet satisfied (in which case the discrete
input must be equal to its previous value). In OPHIS∆, a single
set is expanded, one that has the maximum upper bound on
the value. SOPHIS∆ refines any sets that may be optimistic
regardless of the Lipschitz constants. Thus, the dependence
on these constants is eliminated from set selection, but still
remains in step selection. In practice, this gives a performance
boost for large horizons.

The second contribution (C2) is a convergence analysis of
(S)OPHIS∆, driven by a novel complexity measure for the
dwell-time constrained problem, which requires analyzing the
worst-case complexity. Exploiting this new measure, we tailor
results from [10] to find convergence rates of the two methods
to the optimal value as computation increases.

Finally, (C3) simulation results are given for two problems,
using SOPHIS∆. First, we consider an NCS framework in
which the network can be configured to transmit more or
less data. Switching between these modes cannot happen
too fast, due to an inability to change the configuration of
the network too often. Therefore, a dwell-time constraint is
imposed. To exemplify this general NCS framework, we chose
an inverted pendulum which must be brought upright. The
motor command is the continuous input, while the way in
which we quantize this value is the discrete input. Then, we
discuss a Susceptible-Infectious-Removed (SIR) model [11],
for pandemic evolution, where SOPHIS∆ is used to determine



an optimal strategy to vaccinate the population and choose the
level of quarantine needed. When only the vaccination strategy
is given as a discrete control input, we recover the results from
[11], while adding a continuous input to represent the level of
quarantine gives better results.

Summarizing, we provide two novel algorithms for opti-
mal control of dwell-time constrained hybrid-input systems,
and analyze their relation between computation and near-
optimality. The key analytical novelty is the dwell-time con-
straint on the discrete input, which adds complexity to the
structure of the tree expanded compared to [10], and requires
a closer look into how discrete and continuous splits are inter-
spersed. A different complexity measure is therefore obtained
than in [10], leading in turn to different convergence rates.
Compared to [2], the continuous input makes the problem
significantly more challenging. Finally, the practical relevance
of the algorithms is illustrated in two interesting problems
from very different domains.

Next, Section II formalizes the problem, and Section III
describes the two algorithms. The convergence rate analysis
is given in Section IV, followed by the simulation results in
Section V. Conclusions are presented in Section VI.

II. PRELIMINARIES

We consider a discrete-time nonlinear hybrid-input system:

xk+1 = f(xk, uk), uk = [ck, dk]
T (1)

where x ∈ X ⊆ Rm is the state and u ∈ U is the input, which
consists of both a continuous action ck ∈ R and a discrete
mode dk ∈ {0, 1, ..., p}, p ∈ N. Thus, U = R × {0, 1, ..., p}.
We define a switch as a change from one value of d to
another at consecutive steps. The dwell time constraint ∆
is the number of steps during which the discrete input must
remain unchanged after a switch. We also define a reward
function ρ : X×U → R, representing immediate performance
(negative cost) for each state-action pair (xk, uk): rk+1 =
ρ(xk, uk). Given an initial state x0 and an infinitely-long
sequence of actions (inputs) u∞ = (u0, u1, ...), its infinite-
horizon discounted value is:

v(u∞) =

∞∑
k=0

γkρ(xk, uk) (2)

with γ ∈ (0, 1) the discount factor (γ = 1 is excluded).
Denote by S∞

∆ the set of infinitely-long action sequences
that respect the dwell-time constraint. The objective is to find
the constrained optimal value v∗∆ := supu∞∈S∞

∆
v(u∞) and a

sequence u∞ ∈ S∞
∆ that achieves v∗∆. Note that generally the

constrained optimal value is worse than the unconstrained one,
so enforcing a dwell-time constraint may lead to a performance
loss. We make the following assumptions.

Assumption 1. (i) We have rk ∈ [0, 1] and ck ∈ [0, 1].
(ii) Both the dynamics and the rewards are Lipschitz
with respect to the state and the continuous action, i.e.,
∃Lf , Lp s.t. ∀x, x′ ∈ X and c, c′ ∈ [0, 1]:

∥f(x, [c, d]T )− f(x′, [c′, d]T )∥ ≤ Lf (∥x− x′∥+ |c− c′|)
|ρ(x, [c, d]T )− ρ(x′, [c′, d]T )| ≤ Lρ(∥x− x′∥+ |c− c′|)

(iii) γLf < 1.

Bounded costs like in (i) are typical in e.g. reinforcement
learning for control [17], and together with discounting they
ensure boundedness of the sequence values. The bounded
continuous action is needed because we will numerically refine
its interval, and is often naturally satisfied due to physical
limitations, while the unit interval can be reached by scaling
other intervals. Note that now U = ([0, 1] × {0, 1, ..., p}). In
(ii), Lipschitz continuity is only imposed w.r.t. the continuous
component c of the action, whereas the variation w.r.t. d can be
arbitrary. Note also that (ii) allows nondifferentiable dynamics
and rewards, helping to model e.g. saturations, actuator dead-
zones, etc. and is not a greatly restrictive property, since usual
dynamics and cost functions satisfy it. The relationship in
(iii) means that the dynamics should become contractive when
combined with a shrink rate equal to γ. This condition is the
strongest among the three; it may be relaxed in future work
using stability, see [6].

The next property applies to constrained as well as uncon-
strained sequences.
Lemma 2. [10] For any two sequences u∞,u′

∞ ∈ U∞:

|v(u∞)− v(u′
∞)|

≤ Lρ

D−1∑
k=0

|ck − c′k|γk 1− (γLf )
D−k

1− γLf
+

γD

1− γ
(3)

where D is the first step k at which dk ̸= d′k.
The two terms on the right-hand side of the inequality

correspond to the continuous and discrete actions, respectively.

III. (S)OPHIS WITH A DWELL-TIME CONSTRAINT

This section introduces two new algorithms for the hybrid-
input problem with dwell-time constraints of Section II. These
algorithms are generalizations of (S)OPHIS [10], and sim-
plify to them when the problem is unconstrained (∆ = 1).
Moreover, when the continuous input does not exist, OPHIS∆
specializes to OPδ from [2]. The set and step selection rules,
as well as continuous-input refinements, are similar to those
for (S)OPHIS. The novelty in (S)OPHIS∆ is the way in which
a discrete split is carried out, which is different depending on
whether the minimum dwell-time has been surpassed. This
will have non-trivial consequences for the complexity of the
algorithms in the analysis.

A set of hybrid inputs consists of a continuous-action
interval µ and a discrete action set σ for each step k:

Si =
∞∏
k=0

(µi,k, σi,k) (4)

where
∏

means the repeated application of the cross-product
×, and notation (µ, σ) means a set in which c ∈ µ and d ∈ σ.
For clarity, from now on we will refer to the set per step k,
(µi,k, σi,k), as a pair, and the infinite-horizon Si as a set.

For a set i, Di and Ci are respectively the discrete and
continuous horizons (numbers of refined discrete and contin-
uous steps). Any step k < Ci has already been refined and
its interval is thus strictly smaller than [0, 1], whereas for all
k ≥ Ci, µi,k = [0, 1]. For all k < Di, σi,k = di,k, a single,



definite value, and for all k ≥ Di, σi,k = {0, 1, ..., p}. A
sequence of actions in set i is then (ui,0, ui,1, ui,2, ...), where
ui,k =

[
ci,k, di,k

]T
and ci,k ∈ µi,k, di,k ∈ σi,k.

Each set has a corresponding dwell-time ∆i, equal to the
number of steps since the last switch for the discrete input:

∆i = max
∆′

s.t. di,Di−∆′′ = di,Di ,∀∆
′′
≤ ∆

′
(5)

Consider now reward ri,k+1 = ρ(xi,k, ui,k), where we refer
by ci,k to the specific action that is at the center of interval
µi,k. Define then the sample value of a set i:

v(i) =

Di−1∑
k=0

γkri,k+1 (6)

Each continuous interval µi,k has a length ai,k. For k ≥ Ci,
ai,k = 1. For each set, we define its diameter δ(i) in the
semimetric of (3), so that:

sup
u∞,u′

∞∈Si
|v(u∞)− v(u′

∞)| ≤ δ(i)

δ(i) = Lρ

∑Di−1
k=0 ai,kγ

k 1−(γLf )
Di−k

1−γLf
+ γDi

1−γ

(7)

For compactness, denote the contribution of step k in the con-
tinuous part of the diameter with λk := Lρakγ

k 1−(γLf )
D−k

1−γLf
.

The algorithms work by iteratively (a) selecting sets to
refine, (b) choosing a continuous or discrete step to split, and
(c) performing a split accordingly. These 3 stages are repeated
as long as budget is still available and they are detailed below,
followed by an example. For both methods, budget n is the
allowed number of calls to f and ρ.
(a) Set selection:A set Si† is selected for refinement, differ-
ently in OPHIS∆/SOPHIS∆. In OPHIS∆, given the sample
value and diameter of set i, define the upper bound:

B(i) = v(i) + δ(i) (8)

so that v(u∞) ≤ B(i),∀u∞ ∈ Si, which follows from
Lemma 2. OPHIS∆ selects for refinement at each iteration
an optimistic set, by maximizing the upper bound:

i† = arg maxi∈AB(i) (9)

where A is the collection of all sets created so far.
In SOPHIS∆, we eliminate the dependency of the set

selection rule on the Lipschitz constants. To this end, we
expand at each iteration all sets that may be optimistic for
any value of this constant (note however that Assumption 1
(ii) is still required). Denote by H the depth in the tree created
by both methods, equal to the total number of continuous and
discrete expansions done to reach a certain set. Since all sets
at depth H have the same shape, their diameters δ(i) are the
same, so the maximum-upper-bound set at that depth can only
be a set with the largest value v(i). Thus, at each depth H
that still has unexpanded nodes, we expand set i† with the
greatest v value among all sets at that depth. We also configure
a maximum depth Hmax(n) up to which the expansions are
allowed to continue, in order to prevent expanding indefinitely.
If Hmax grows fast with budget n, the algorithm will favour
deep searches, whereas a slower growth with n focuses the
search on breadth. See the convergence rates in Section IV
for more insight on how to select Hmax.

(b) Step and split type selection: After selecting a set Si† ,
we must choose a step to refine, and decide whether we
split discretely or continuously. To this end, we look at the
contribution of each step k up to Di† − 1 to the diameter
(7), as well as at the contribution γ

D
i†

1−γ of the first unrefined
step (at the discrete horizon). Whichever contribution is the
greatest dictates where we split. Thus:

k† = arg maxk∈{0,1,...,D
i†−1

}λ
†
k (10)

If λ†
k ≤ γ

D
i†

1−γ , we split discretely, at horizon Di† . Otherwise,
we make a continuous split, along step min(k†, Ci†). By this
rule, we always have Di ≥ Ci for any set i.

Step selection for SOPHIS∆ remains the same as for
OPHIS∆, so it will unfortunately still depend on the Lipschitz
constant, and there is no way to avoid this.
(c) Performing a split: A continuous split can be done along
any step k ≤ Ci, by dividing the interval µi,k into M equal
pieces and thus generating M new sets. A discrete split is
always done at horizon Di. If ∆i < ∆, the dwell-time
constraint is active, and only one new set is added, making
discrete action dk definite and equal to dk−1, since a switch
from the value of dk−1 to another is not yet possible. If
∆i ≥ ∆, the dwell-time constraint is satisfied, any discrete
action is eligible, and a discrete split adds p + 1 new sets
that make discrete action dk definite, one set for each discrete
possibility. Overall, a tree structure is created, each node being
a set. To each set chosen for refinement, children are added
corresponding to either distinct intervals for continuous splits,
or distinct discrete actions.
Example: An example of the constructed tree is given in Figure
1, with M = 3, d ∈ {0, 1}, ∆ = 2. In the figure, the full blue
lines correspond to discrete splits, while the red dotted lines
mean continuous refinements. For the discrete splits, 0 and 1
are added to the branches, to signify the last discrete action.
The grey-filled nodes correspond to sets that have ∆i < ∆,
and are therefore constrained. For those sets, if a discrete split
is chosen, the algorithm will only add one child. Any children
added by a continuous split of a grey node will also be grey,
because continuous action changes do not impact the dwell-
time.

To better understand set splitting, we start by looking at the
root node 0; all continuous intervals are [0, 1] and all discrete
actions are not yet defined. Then, by a discrete split, we get
two new sets, where the first discrete action is defined as
0 for one set, and 1 for the other. Sets 1 and 2 are now:
S1 = ([0, 1], 0) × ([0, 1], {0, 1})∞ and S2 = ([0, 1], 1) ×
([0, 1], {0, 1})∞. Both sets have ∆i = 0 and are unconstrained,
because no switch has yet occurred. Then, set 1 is split
discretely, getting two children nodes 3 and 4. Set 3 is uncon-
strained, since the last two values of d are equal. However, set
4 is now constrained, since a switch has been done. Say now
that when 4 is chosen for refinement, a continuous split on
step 0 is done. This adds 3 constrained children, 7, 8, and 9,
each corresponding to a third of interval for the first contin-
uous step: S7 = ([0, 1/3], 0) × ([0, 1], 1) × ([0, 1], {0, 1})∞,
S8 = ([1/3, 2/3], 0) × ([0, 1], 1) × ([0, 1], {0, 1})∞, S9 =
([2/3, 1], 0)× ([0, 1], 1)× ([0, 1], {0, 1})∞. Since they inherit
the discrete input sequence from set 4, they all have ∆i = 1.
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Fig. 1. Example of tree for M = 3, d ∈ {0, 1}, ∆ = 2

Therefore, when a discrete split is done next for sets 7, 8, or
9, only one child corresponding to d1 = d0 = 1 is added;
denote these children by 16, 17, and 18. Now, ∆16 = ∆17 =
∆18 = 2, so these nodes are no longer constrained, and the
next discrete split from these nodes will again have 2 branches,
for 0 and 1.

Due to space limits, the pseudocode of the two methods is
presented in supplementary material, at https://arxiv.
org/abs/2305.08760.

IV. ANALYSIS

In this section, we aim to prove that the sub-optimality of
the algorithms converges to 0 as budget n increases. Due to
the introduction of the minimum dwell-time, the analysis from
the unconstrained case [10] cannot be directly applied. We
must instead characterize the more complicated tree expanded
by the (S)OPHIS∆ algorithms. To do this, a novel problem
complexity measure (branching factor of the constrained tree)
is defined that takes the minimum dwell-time into account.
The range of values of this measure is dictated by the largest
possible tree. By exploiting the new measure, we are then able
to tailor the unconstrained-case results to obtain convergence
rates of the new algorithms.

First, recall that we want to find the constrained discounted
optimal value v∗∆, and a dwell-time respecting sequence i∗ that
approximately achieves it. Similarly to [10], we have that:

v∗∆ − v(i∗) ≤ δmin (11)

i.e. the algorithm is near-optimal up to the smallest diameter
of any set expanded. Thus, deeper trees give better solutions.

The main part of the analysis focuses on the description
of the near-optimal constrained tree, a sub-tree of the full
tree that only contains optimistic nodes obeying the dwell-
time constraint. This subtree is in fact the one expanded
by (S)OPHIS∆, so characterizing its size is important as it
describes the amount of computationrequired. Define then the
set of constrained near-optimal nodes at depth H as:

∆T ∗
H ={i at H | v(i) + δH ≥ v∗∆,

and ∀k < Di for which dk−1 ̸= dk,

dk−j = dk−1, for 1 ≤ j ≤ ∆, k − j ≥ 0}
(12)

The constrained near-optimal tree has branching factor K:

Definition 3. The asymptotic branching factor is the smallest
K such that ∃C ≥ 1 for which |∆T ∗

H | ≤ CKH/∆, ∀H , where
|.| represents set cardinality.

The branching factor is a new measure of complexity for
the dwell-time constrained problem. In a simple problem, K

will be small, whereas a complex problem requires expanding
many nodes at each depth, leading to a large K. We formalize
this next.

Theorem 4. Branching factor K is in the range [K,K], where
K = 1 and K = max(∆(p+ 1),M∆)1/∆.

Proof: The smallest possible value K = 1 follows easily
from the case when the near-optimal tree consists of a single,
optimal path. To find the greatest possible value K, we look
at the situation in which all rewards are identical, therefore
all nodes at each depth have the same v and B and they
are all expanded. We want to find the maximum number
of nodes at depth H , taking into account the h continuous
expansions and the discrete number of splits D. Recall that a
continuous expansion adds M new nodes, and a discrete one
adds either p+1 new nodes or just 1, respecting the dwell-time
constraint. The number of nodes at depth H = h+D does not
depend on the order of continuous and discrete splits. We can
therefore consider a different tree, which has first D discrete
expansions, all respecting the dwell-time constraint, followed
by h continuous splits. This tree will have the same number
of nodes at depth H as the original one. Reference [2] proves
that |∆T ∗

D| ≤ (p+ 1)2∆[∆(p+ 1)]D/∆. Therefore:

|∆T ∗
H | ≤ (p+ 1)2∆[∆(p+ 1)]D/∆Mh

≤ (p+ 1)2∆[∆(p+ 1)]H/∆MH (13)

So, K = max(∆(p+ 1),M∆)1/∆, and K ∈ [K,K]. □
Let us now compare the complexity of the dwell-time-

constrained problem with the unconstrained case from [10].
In that setting, the unconstrained tree T ∗

H at depth H has size
roughly mH , where the branching factor is m ∈ [1,max(p+
1,M)]. Compared to mH , the constrained tree size KH/∆

intuitively emphasizes that discrete choices are made once
every ∆ steps. Further, note that the full constrained tree
is strictly smaller than the full unconstrained tree, so when
expanding full trees using the same budget, the constrained
algorithms will reach deeper and have better near-optimality.
Now, this is not immediately visible in the formula, since
to extract an easy to interpret branching factor we had to
make some conservative replacements (both h and D by H).
Therefore, to get more insight, consider two cases. In case (i)
∆(p + 1) ≫ M∆, so |∆T ∗

H | ≃ [∆(p + 1)]H/∆, significantly
smaller than |T ∗

H | = (p+1)H . In other words, since there are
many discrete actions, the reduction due to the constraints is
significant. Case (ii) M ≫ p+ 1, so |∆T ∗

H | ≃ MH , the same
as |T ∗

H |; since continuous expansions dominate, the reduced
number of discrete children is less important.

The above applies when in both types of problems (con-
strained and unconstrained), the full tree is expanded. In gen-
eral, when the two branching factors do not have their maximal
values, a clear relationship between the complexity of the
constrained and unconstrained problems cannot be established.
It could be that the introduction of the constraints makes
a constrained-optimal solution easier to distinguish, hence
reducing the branching factor/complexity; or, conversely, the
constraint could eliminate an optimal solution that would have
been easy to find, increasing complexity.



Next, denote m = K1/∆, meaning that m ∈ [1,max(∆(p+
1),M∆)]. We replace this equivalent branching factor in
Theorems 11 and 13 of [10] to get convergence rates of
(S)OPHIS∆, as follows. Recall that i∗ denotes the sequence
returned by either algorithm; and define f(n) = Õ(g(n)) to
mean that f(n) ≤ a(log g(n))bg(n) for some a, b > 0; i.e. f
behaves like g up to a logarithmic factor.
Convergence rate for OPHIS∆: For large budget n:

a) for K > 1: v∗∆ − v(i∗) = Õ

(
γ

√
2τ2(τ∗−1)∆ log n

τ∗2 log K

)
b) for K = 1: v∗∆ − v(i∗) = Õ

(
γn1/4 τ

τ∗

√
2(τ∗−1)

ZC

)
where τ = log(M)

log(1/γ) and τ∗ = ⌈τ⌉.
Convergence rate for SOPHIS∆: For large n:
a) for K > 1, we take Hmax = nϵ, with ϵ ∈ (0, 0.5) and we
have:
v∗∆ − v(i∗) = Õ

(
γˆ
(

τ
τ∗

√
(τ∗−1)(1−2ϵ)∆ logn

logK

))
b) for K = 1, we take Hmax = n1/3, and we have:

v∗∆ − v(i∗) = Õ

(
γˆ
(
n1/6 τ

τ∗

√
2(τ∗ − 1)min{ 1

CZ , 1}
))

where Z = max(M,p+ 1).
These results say that the sub-optimalities of both OPHIS∆

and SOPHIS∆ converge to 0 as n → ∞. The simpler the
problem (smaller K), the faster the convergence to 0. In
particular, for K = 1 convergence is exponential in a power
of n. For K > 1, the multiplication by ∆ at the numerator
of the power of γ for both algorithms intuitively says that
all other things being equal, a larger dwell-time leads to faster
convergence. SOPHIS∆ converges a bit slower than OPHIS∆,
shown by the different powers of n for K = 1, and by the
appearance of ϵ for K > 1. Further, the results point to a rule
for selecting Hmax: try first with Hmax = n1/3, and if that
does not work well, take Hmax = nϵ and tune ϵ ∈ (0, 0.5);
for small ϵ, SOPHIS∆ is nearly as fast as OPHIS∆. Note
that SOPHIS∆ expands sets for all possible Lipschitz constant
values, which intuitively means that it implicitly optimizes
the Lipschitz constant for the set selection component. In
practice, when larger budgets are available, SOPHIS∆ is
preferred, whereas for smaller budgets, the OPHIS∆ approach
of focusing this limited budget on one value of the Lipschitz
constant still pays off.

V. SIMULATION RESULTS

In this section, we present two examples, with the simu-
lations done with SOPHIS∆, since it provides better results
than OPHIS∆ for long time horizons. The first problem is a
quantized NCS framework, applied to an inverted pendulum,
and the second a model of the COVID pandemic evolution.
For both examples, the algorithm works in receding horizon,
so at each step in time, we use it to get an open-loop sequence
of actions, from which we apply the first action.

A. Quantized NCS framework

The first problem concerns a Networked Control System
(NCS), in which we must transmit commands to an actuator
via a network. The precision of the transmitted values is
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Fig. 2. Inverted pendulum: State showing the swingup required to reach
the target state, quantized continuous inputs, and quantization modes in
time

important for performance. By default, many bits are needed
in order to transfer a precise value. However, a network with
many bits is costly, so we consider sending a more precise
value when necessary, and a rougher quantization the rest of
the time. This determines a hybrid-input framework, where the
value to be transmitted is the continuous input, and the mode
of the network (quantization level) is the discrete input, chosen
adaptively by the algorithm. Moreover, a dwell time constraint
is needed because we cannot switch the configuration of the
network too fast.

In the algorithms, we use M = 3, and therefore, following
the tree structure, we use for convenience trits instead of bits.
One trit means the left, center or right interval in a continuous
split, and needs 2 bits to be represented. On the actuator’s
side, a decoding will be made to get the actual control value.
If t trits have been sent, this means the interval [0, 1] has been
split t times. For example, if we transmit the sequence of 3
trits: left, center, right, we get first [0, 1/3], then [1/9, 2/9],
and in the end [5/27, 2/9]. The actual control value will be
the center of this last interval, 11/54.

This NCS framework is general: it works for any single-
continuous-input system. Next, we apply it to an inverted
pendulum, with the nonlinear model given as α̈ = 1/J ·
[mgl sin(α) − bα̇ − K2α̇/R + Ku/R], with J = 1.91 ·
10−4kgm2, m = 0.055kg, g = 9.81m/s2, l = 0.042m,
b = 3 · 10−6Nms/rad, K = 0.0536Nm/A, R = 9.5Ω. We
have two states, the angle α and the angular velocity α̇. The
angle wraps in [−π, π] and α̇ ∈ [−15π, 15π]. The DC motor
voltage u ∈ [−3, 3]V . The sample time is Ts = 0.05s and we
use Euler integration. We use the quadratic reward function
ρ(xk+1, uc) = 1−0.75x2

1,k+1/π
2−0.25(uc)

2/9. We start from
x0 = [−π, 0] (pendulum down) and want to get to xf = [0, 0]
(pendulum up). We set our discrete modes to either 0 – which
means sending a sufficiently large number of trits (60) to
represent the continuous value after any number of splits made



in practice by the algorithms, or 1 – sending just one trit.
We use SOPHIS∆ with M = 3, Lρ = 1.2, Lf = 0.8, γ =
0.8, n = 20000. As baselines, we look at always sending one
trit or 60. Figure 2 shows the states, the applied quantized
control voltage, and the modes over time for 4 cases: one
trit always, adaptive quantization with dwell-time 4, adaptive
quantization with dwell-time 1, and 60 trits always. Constantly
using large amount of trits of course gives the best results, but
with high network usage. However, the results with adaptive
quantization are very similar, and having ∆ = 4 does not lead
to a loss in performance compared to ∆ = 1, while switching
is significantly reduced. Transmitting only one trit all the time
degrades the precision of the continuous input and reduces
performance. Note that the unquantized input (not shown) is
approximately the same as the quantized one, so the algorithm
does not waste time refining it more than needed.

B. Susceptible-Infectious-Removed (SIR) model
We apply SOPHIS∆ for a pandemic evolution model, to

design the vaccination and quarantine strategy. The model is
taken from [11] and its states are: the number of susceptible
(S), infectious (I), removed (R) people. In addition, when
we include the vaccination control, a new state is introduced:
vaccinated (W ) and the model becomes SIRW. The control
variable is ud ∈ {0, 1}, with 0 meaning no vaccines are
administered, and 1 that the maximum percentage of S persons
are vaccinated. First, we use OPD [2] (the method OPHIS spe-
cializes to when there is no continuous action) just to validate
the correctness of our class of methods. As in [11], we take the
values of the parameters: βbaseline = 0.3566, γ = 0.0858 and
start from the same initial conditions: In0 = 0.0038, Sn0 =
1− In0, Rn0 = 0,Wn0 = 0. With OPD, we recover the same
results as [11], for the mono-objective setting there (achieving
the minimum number of infected persons). Then, we add the
continuous control variable, equivalent to the level of quaran-
tine. A higher level decreases the infection rate of the virus β
[15]. We set the new value as βbaseline−0.5∗uc. The reward
function used is r = 1 − 0.9998I − 0.0001uc − 0.0001ud,
focusing mostly on reducing the number of infections, but still
including small penalties for vaccination (due to its costs) and
quarantine (as it impacts the economy). The simulation results
for dwell-time 2 are given in Figure 3, in which the algorithm
works well. Compared to

∫ 70

0
I = 8945.42, the objective

function in [11], we now get 6167.6. However, recall that
we use an additional control variable, which helps reducing
the number of infections. In the unconstrained case, we get
5762.5.1

VI. CONCLUSION

This work presented two new optimistic planning algo-
rithms, OPHIS∆ and SOPHIS∆, suited for hybrid-input sys-
tems in which the discrete input must respect a dwell-time
constraint. The analysis proved that the sub-optimality for
each algorithm converges to 0, as the budget increases. Two
simulation examples were given. In the future, we plan to
analyze the stability of the algorithms.

1SOPHIS∆ also outperforms [5] on the SIR model in that paper, which
natively has 2 control variables. Details are skipped due to space limits.
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Fig. 3. SIR: States and inputs in time with dwell-time 2
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