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Abstract— In this work, we propose an emergent dynamics
based tool to approximate the synchronized behavior in large
networks of interconnected linear systems with switching inter-
connection topologies and linear coupling. We assume that the
networks are heterogeneous, but the states of all systems are
of the same dimension. The goal of this paper is to show that,
in the case of sufficiently large coupling gains, the network is
practically synchronized, and its’ synchronized behavior can be
approximated by a reduced order switching system independent
of the control gains. The results are ensured for strongly
connected networks under fairly mild assumptions by introduc-
ing a minimum dwell-time between two consecutive switches.
Numerical simulations illustrate the theoretical results.

I. INTRODUCTION

Due to its application in various disciplines such as
physics, biology, economics, medicine, telecommunication,
etc, synchronization got significant attention in the liter-
ature. Both networks with homogeneous/identical [7] and
heterogeneous/nonidentical agent dynamics [5], [6], [16]
have been considered with the objective to provide condi-
tions that guarantee systems synchronization. Heterogeneous
networked systems have more complex dynamic behavior
and asymptotic synchronization may not be guaranteed, for
example, for linear networked systems the internal model
principle, [17] is necessary to ensure asymptotic synchro-
nization. In this case a good trade-off is a practical synchro-
nization [11], [13], which requires synchronization error to
be ultimately bounded by arbitrarily small positive bounds.
Other Lyapunov-based bounded synchronization results are
provided in [10], [16].

Another difficulty that arises when dealing with complex
dynamical network is related to the size of the network.
Even if the network synchronizes, in many applications it is
important to have an approximation of the network behaviour
while avoiding simulation of the full system. Therefore, an
important problem in large-scale networks analysis is the ap-
proximation of the dynamic behavior of the overall network
by using a computationally tractable reduced order system.
An effective method to develop such reduced order system
uses the singular perturbation theory and is based on the
time-scale separation and system analysis for interconnection
gains tending to infinity. To the best of our knowledge,
for the first time, a singular perturbations approach was
used for the analysis of networked systems in [2], where
resulting reduced order system had an asymptotically stable
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equilibrium point. In [8], where a network of nonlinear
oscillators was considered, the resulting reduced order model
is an oscillator with asymptotically stable limit cycle. In
[5], the authors use limiting equations to characterize the
behavior of the reduced order system.

In the case of sheer size of the network, if the
interconnection topologies are sparse and exhibit clusters
[2], [12], [15], then the higher convergence speed within the
clusters can be exploited to analyze the network behavior
as shown in [2] for linear dynamics or in [1] for nonlinear
ones. The time-scale separation can be used also in the case
of time-varying topologies, as in [9], where the authors use
a slowly varying weighted average of the clusters to define
the slow variable of the overall network.

In this paper, we consider the case of heterogeneous linear
systems with switching interconnections and we show that
the synchronized behavior of the agents can be approximated
by the emergent dynamics even if the topology switches.
Precisely, using the approach presented in [8], it is shown
that the emergent dynamics is a good approximation of the
mean field dynamics as far as one uses a large enough gain
in the decentralized feedback control law. Therefore, the
main contribution of this work is twofold. First, we define
the emergent dynamics in the more general case when the
interconnection structure is not fixed. Second, we prove that
this switching emergent dynamics approximates the overall
behavior of the network dynamics with boundedness of the
emergent dynamics as a sufficient condition. The proof is
based on the notion of measure of a matrix as defined in [3].
The boundedness property is required to ensure the closeness
of solutions for the mean-field dynamics of the network and
the associated emergent dynamics.
The rest of the paper is organized as follows. Section II
presents the problem formulation. The collective dynamics
is presented and re-written in term of mean-field and error
dynamics in Section III. The time scale separation between
the two is highlighted in Section IV. In Section V, the
approximation of the mean-field dynamics by the emergent
dynamics is proven. This approximation holds under some
mild conditions ensuring the stability of the fast dynamics
and the boundedness of the emergent one. A numerical
example illustrates our result before concluding.
Notation. In the sequel, N,R+,Rn,Rn×m denote the set of
natural numbers, non-negative real numbers, the space of
real n-dimensional vectors and the set of all real matrices of
dimension n×m, respectively. The identity matrix of dimen-
sion n×n is represented as In, 1N is a column vector of ones



and 0n,m is a matrix with dimension n ×m whose all the
components are zero. The symbol ⊗ denotes the Kronecker
product and ‖ · ‖ is the 2-norm unless otherwise stated. The
transpose and the inverse of a matrix A are denoted as A>

and A−1. We also use x(t−) := lim
δ→0,δ>0

x(t− δ). We say

function η : (0,∞) → Rn is O(ε) iff there exists c > 0,
such that ‖η(t)‖ ≤ cε.

II. PROBLEM FORMULATION

Let us consider a network of N heterogeneous linear
systems called agents. To the agent i we assign the state
xi ∈ Rn whose dynamics is described by

ẋi(t) = Aixi(t) + ui(t) ∀i ∈ N := {1, · · · , N} , (1)

where ui ∈ Rn is the control input and Ai ∈ Rn×n is the
state matrix.
We suppose that the agents are interconnected through a
switching network defined by the following family of graphs
Gσ(t) =

(
V,Eσ(t), Gσ(t)

)
, σ(t) ∈ I := {σ1, . . . , σm}

where by abuse of notation the node set V = {x1, . . . , xN}
represents the set of agents, the edge set Eσ(t) indicates
the active interactions when using topology σ(t), and Gσ(t)

is the weighted adjacency matrix associated with topology
σ, i.e. Gσ(t) :=

[
g
σ(t)
ij

]
i,j∈N

with g
σ(t)
ij ≥ 0 representing

the interconnection strength. We will also use the Laplacian
matrix Lσ(t) whose off-diagonal elements are −gσ(t)ij while
the diagonal ones are

∑N
j=1 g

σ(t)
ij . Notice that the system can

have m different behavior, characterized by σ, in the sequel
we will call these behaviors modes. We also consider that ui
is a decentralized state feedback law defined as

ui(t) = −γ
N∑
j=1

g
σ(t)
ij (xi − xj) (2)

where γ ∈ R represents the controller’s strength. It is
noteworthy that σ : R+ 7→ I := {σ1, . . . , σm} is a piecewise
constant function defining the switching topology signal.

Assumption 1: All the graphs Gσk , σk ∈ I are directed
and strongly connected (i.e. there exists a path between any
two nodes).

Goal: Our objective in this work is to define a switching
emergent dynamics and show how well it can approximate
the overall behaviour of the large scale network.

III. COLLECTIVE BEHAVIOR

Throughout the paper we use x, uσk ∈ RnN to denote the
vectors collecting the states xi, i ∈ N and the controllers
uσki , i ∈ N , σk ∈ I respectively. With this notation one has

uσk = −γ(Lσk ⊗ In)x, (3)
and the collective closed-loop dynamics expressed as

ẋ(t) = (A− γ(Lσk ⊗ In))x(t), (4)

where A := blkdiag(A1, A2, . . . , AN ) ∈ RnN×nN is the
collective block diagonal state matrix. For any σk ∈ I let us
denote in the following by λσk` , ` ∈ {1, . . . , N} the eigen-
values of Lσk ordered such as 0 = λσk1 < <(λσk2 ) ≤ . . . ≤
<(λσkN ). Let us also denote by vσkl1 the left eigenvector of Lσk
associated with the eigenvalue 0 and whose components sum

up to 1 i.e., vσkl1
T ·1N = 1. It is worth emphasizing that under

Assumption 1 one has that <(λσk2 ) > 0 and all components
of vσkl1 ∈ RN are real and strictly positive. In the sequel
the left and right eigenvectors of Lσk associated with the
eigenvalue 0 are given by

vσkl1 =
[
ϑσk1 , . . . , ϑσkN

]T
, vσkr1 = 1N (5)

Furthermore, there exists a Jordan decomposition of the
Laplacian Lσk , of the form Lσk = UσkΛσkUσk−1, where
Uσk ∈ RN×N is non-singular and due to Assumption 1
Λσk ∈ CN×N is the diagonal matrix with the eigenvalues of
Lσk on the main diagonal. Additionally, the matrix Uσk is
composed of generalized right eigenvectors of the Laplacian
matrix Lσk among which the first is vσkr1 = 1N . For further
purpose, we decompose the matrix Uσk as

Uσk = [1N V σk ] (6)

where V σk ∈ RN×(N−1). Similarly, the first row of the
(Uσk)−1 corresponds to the left eigenvector of Lσk , i.e.,

(Uσk)−1 =

[
vσkl1

T

V σk†

]
. (7)

We also define the weighted average of the systems’ states
xs:

xs =

N∑
i=1

ϑσki xi,

N∑
i=1

ϑσki = 1. (8)

Here, we remark that the weighted average term xs is
switching with the change in network topology σk. In the
above network behavior (4), when N is small, it is feasible
to study the asymptotic behavior of the agents. However,
when the number of agents in the network is large i.e., N is
very large, the computational complexity increases and the
problem becomes intractable. The main focus of this work
lies in developing the reduced order model that approximates
the network model (4).
In the following, we consider {tk}k∈N the unbounded
sequence of switching instants. Next, using the mode-
dependent coordinate transformation [13], we express the
collective behavior of the network in terms of the mean-field
xs and synchronization error ev . It is also shown that due to
this mode-dependent transformation, impulses are introduced
to the dynamics in addition to the switching, leading to
a switching-impulsive system. Explicitly, we introduce the
following mode-dependent coordinates:

x̄(t) := (Uσk)−1x(t), t ∈ [tk, tk+1) (9)

where Uσk = (Uσk ⊗ In) ∈ RnN×nN . Moreover, using
equation (7) the collective state of the network in the new
coordinates is:

x̄(t) =

[
x̄1(t)
x̄2(t)

]
:=

[
vσkl1

T ⊗ In
V σk† ⊗ In

]
x(t), t ∈ [tk, tk+1).

By remarking that weighted average is defined using the
left eigenvectors vσkl1 , similarly to (8), the coordinate x̄1
represent the weighted average of the systems states, for all
t ∈ [tk, tk+1) , k ∈ N, as follows

xs(t) = (vσkl1
T ⊗ In)x(t), (10)



and the synchronization error is defined as the difference
between the individual states and the average xs (see [8])

e(t) = x(t)− (1N ⊗ In)xs(t). (11)

Notice that x̄2 is the projection of the synchronization error
(11) onto the subspace orthogonal to vσkl1 . We also introduce
ev ∈ Rn(N−1) defined ∀t ∈ [tk, tk+1) , k ∈ N as

ev(t) = (V σk† ⊗ In)x(t) (12)

= (V σk† ⊗ In)(e(t) + (1N ⊗ In)xs(t)) = (V σk† ⊗ In)e(t).

Let us remark that e(t) = (V σk ⊗ In)ev(t). Although
the underlying topology in the original dynamics (4) is
only switching, as a consequence of the mode-dependent
coordinate transformation (9), jumps are introduced in the
new variables xs and ev (see also [14]). The resulting jumps
in xs and ev , for each k are:

xs(tk) = xs(t
−
k ) +

(
(vσkl1

T − vσk−1

l1

T
)⊗ In

)
x(tk)

ev(tk) = ev(t
−
k ) +

(
(V σk† − V σk−1†)⊗ In

)
e(tk).

Replacing the values of x(tk) and e(tk) from equations (11)
and (12) along with the properties from (6) and (7), we have,

xs(tk) = xs(t
−
k ) + (vσkl1

T
V σk−1 ⊗ In)ev(t

−
k ) (13)

ev(tk) =
(
V σk†V σk−1 ⊗ In

)
ev(t

−
k ). (14)

A. Mean-Field Dynamics

In the new coordinates, ∀t ∈ [tk, tk+1) , k ∈ N we obtain

ẋs = (vσkl1
T ⊗ In)ẋ = (vσkl1

T ⊗ In) (A− γ(Lσk ⊗ In))x(t)

= (vσkl1
T ⊗ In) (A− γ(Lσk ⊗ In)) (e+ (1N ⊗ In)xs)

=
(
(vσkl1

T ⊗ In)A(1N ⊗ In)
)
xs + (vσkl1

T ⊗ In)Ae (15)
and using e(t) = (V σk ⊗ In)ev(t), we get

ẋs =
(
(vσkl1

T ⊗ In)A(1N ⊗ In)
)
xs

+ (vσkl1
T ⊗ In)A(V σk ⊗ In)ev

(16)

representing the mean-field dynamics.

B. Error Dynamics

Similarly, to obtain the dynamics of the error we start by
differentiating on both sides of equation (12) and substituting
from (11). For all t ∈ [tk, tk+1) , k ∈ N it follows:

ėv = (V σk†⊗In)ė(t) = (V σk†⊗In)
(
ẋ(t)−(1N⊗In)ẋs(t)

)
and replacing the value of ẋ and ẋs from equations (4) and
(16), respectively, we have the following,

ėv = (V σk† ⊗ In)
{(
A− γ(Lσk ⊗ In)

)
(V σk ⊗ In)ev(t)

+A(1N ⊗ In)xs(t)− (1Nvσkl1
T ⊗ In)A(1N ⊗ In)xs

+ (1Nvσkl1
T ⊗ In)A(V σk ⊗ In)ev

}
. (17)

Since V σk†1N = 0 (see (6) and (7)), it follows that

ėv = −γ(V σk†LσkV σk ⊗ In)ev + (V σk† ⊗ In)A(1N ⊗ In)xs

+ (V σk† ⊗ In)A(V σk ⊗ In)ev

and finally, the error dynamics is obtained as follows,

ėv = −γ(Λσ
′
k ⊗ In)ev + (V σk† ⊗ In)A(1N ⊗ In)xs

+ (V σk† ⊗ In)A(V σk ⊗ In)ev (18)

where, Λσ
′
k = diag (λσk2 · · ·λ

σk
N ).

Let us write (16) and (18) in a compact form as follows(
ẋs(t)
ėv(t)

)
=

(
Aσk0 Bσk1
Bσk2 γAσk22 +Bσk3

)(
xs(t)
ev(t)

)
, (19)

∀t ∈ [tk, tk+1) , k ∈ N, where for all σk ∈ I one has

Aσk0 = (vσkl1
T ⊗ In)A(1N ⊗ In) =

N∑
i=1

ϑσki Ai,

Bσk1 = (vσkl1
T ⊗ In)A(V σk ⊗ In), (20)

Bσk2 = (V σk† ⊗ In)A(1N ⊗ In),

Bσk3 = (V σk† ⊗ In)A(V σk ⊗ In), Aσk22 = −(Λσ
′
k ⊗ In).

Property 1: The matrix Aσk22 = −(Λσ
′
k ⊗ In) is Hurwitz

for all σk ∈ I since the diagonal matrix Λσ
′
k = diag

(λσk2 , · · ·λσkN ) has all positive eigenvalues.
We highlight that some of the matrices Aσk0 ,∀k ∈ N may

not be Hurwitz.

IV. TIME-SCALE SEPARATION

In the sequel we assume that γ is a high gain. Let us denote
ε = 1/γ which is a small parameter since γ is large. Dividing
both sides of (18) by γ, we obtain ∀t ∈ [tk, tk+1) , k ∈ N(

ẋs(t)
εėv(t)

)
=

(
Aσk0 Bσk1
εBσk2 Aσk22 + εBσk3

)(
xs(t)
ev(t)

)
. (21)

Notice that the ε term multiplied to ėv is the perturbation
parameter, that emphasizes the time-scale separation between
the dynamics of xs and ev . At the same time, the jumps
described by (13)-(14) for the systems are encapsulated in the
following impulsive dynamics for the singularly perturbed
system (21) (

xs(tk)
ev(tk)

)
= Jσk−1→σk

(
xs(t

−
k )

ev(t
−
k )

)
(22)

where for all i, i′ ∈ I ,

J i→i
′
=

(
J i→i

′

11 J i→i
′

12

J i→i
′

21 J i→i
′

22

)
=

(
In (vi

′

l1

T
V i ⊗ In)

0n(N−1),n
(
V i
′†
V i ⊗ In

)) .
Later on, the matrix J will be used to represent the jump on
the states of the singularly perturbed system (21) due to the
change of network topology.
Hence, the system is written in the standard singular pertur-
bations form with reduced (slow) variable xs and boundary
layer (fast) variable ev . This time scale separation of the
dynamics of networked linear heterogeneous systems is due
to the large coupling parameter γ and the coordinate trans-
formation (9) which are intrinsic of the network. The most
important characteristic of the singularly-perturbed problems
is that they can be decomposed into reduced (slow) and
boundary-layer (fast) problems, which is dictated by the
time-scale separation.



A. Slow Subsystem

The slow subsystem is obtained from the original system
(21)-(22) by setting ε = 0. Let us use the notation xe and es
to represent the variable of the original system (21)-(22) in
the slow time scale. It is clear from equation (21) that setting
ε = 0 results in es = 0 and the slow dynamics is obtained
as follows,

ẋe(t) = Aσk0 xe(t) ∀t ∈ [tk, tk+1) , k ∈ N (23)

xe(tk) = xe(t
−
k ), ∀k ≥ 1. (24)

Notice that the jumps does not occurs in the slow dynamics
during network switch. Sometimes, the dynamics (23)-(24)
is also referred to as emergent dynamics, which is the mean-
field dynamics restricted to the synchronization manifold,
where ev = 0.

Remark 1: We note that the emergent dynamics requires
the global information of the network and we assume that
such information is available at every switching instance.

B. Fast Subsystem

The behavior of the fast subsystem is obtained by changing
the time scale and setting ε = 0. Let ef , τ and xf represent
the error, time and mean-field in fast time scale. The repre-
sentation of the fast dynamics assumes that the emergent
dynamics (xf ) is constant during the fast transients i.e.,
ẋf = 0. As a result, we obtain the fast subsystem as follows,

def (τ)

dτ
= Aσk22 ef (τ), ∀τ ∈ [τk, τk+1),∀k ∈ N (25)

ef (τk) = J
σk−1→σk
22 ef (τ−k ), (26)

where, we recall that Jσk−1→σk
22 =

(
V σk†V σk−1 ⊗ In

)
and τk = tk/ε. We know from Property 1, the matrix
Aσk22 ,∀k ∈ N is Hurwitz. This fast subsystem is usually called
the boundary-layer dynamics [4].

V. APPROXIMATE MODELS

In order to prove that the switching emergent dynamics
(23)-(24) provides a good dynamic approximation for the
average behaviour of the overall behavior of the closed-
loop dynamics (4) we adapt the results in [4]. In contrast
to [14], where all the slow and fast subsystems are as-
sumed to be asymptotically stable, here it is assumed that
the slow subsystems are not necessarily all asymptotically
stable. Therefore, we next introduce a dwell-time condition
between two consecutive switching in order to guarantee the
boundedness of the emergent dynamics trajectory. To this
aim we first recall the following definition of the measure of
a square matrix [3].

Definition 1: The measure of a square matrix M is de-
fined as ν(M) = 1

2λmax(M + MT ), where λmax is the
largest eigenvalue of the symmetric matrix M +MT .

Lemma 1 ([3]): For any square matrix A the following
holds: ‖eAt‖ ≤ eν(A)t.

Then from the definition of the measure and from equation
(20) for the state matrices of the slow dynamics, we have,

ν(Aσk0 ) =
1

2
λσkmax(Aσk0 +Aσk0

T
), ∀σk ∈ I. (27)

We notice that ν(Aσk0 ) may be positive or negative. Let S̃
and Ũ be the set of stable and unstable modes, respectively.
We will say that during the interval [tk, tk+1), the system
is in the stable mode (i.e., σk ∈ S̃) iff ν(Aσk0 ) < 0 and
the system is in unstable mode (σk ∈ Ũ ) iff ν(Aσk0 ) ≥ 0.
Moreover, S̃

⋃
Ũ = I.

A. Boundedness of Emergent Dynamics

Let δk = (tk+1−tk) be the time spent in mode σk for any
k ∈ N . For any t ∈ R+ we define ts(t) =

⋃
k,σk∈S̃ δk and

tu(t) =
⋃
k,σk∈Ũ δk be the total amount of time before t the

system remains in the stable and unstable modes, respectively
and [t0, t) = ts(t)

⋃
tu(t) where t0 is the initial time. Also,

we define the following,

λs = max
σk∈S̃

ν(Aσk0 ) < 0, λu = max
σk∈Ũ

ν(Aσk0 ) > 0. (28)

Lemma 2: The trajectory xe(t, xe(t0)) of the slow subsys-
tem (23)-(24) is bounded for all t ∈ R+ and all xe(t0) ∈ Rn
if ∃ t∗ > 0 such that

ts(t)

tu(t)
≥ −λu

λs
, ∀t > t∗. (29)

Remark 2: Inequality (29) can be considered as a stabi-
lizing condition for the slow dynamics (23)-(24).

Remark 3: It is easy to show that if all the modes are
at least marginally stable, then the trajectories of the slow
subsystem will be bounded as well.
Proof: Let {tk}k∈N be the switching time for the switching
event σk. Then for any t ∈ [tk, tk+1), from equations (23)-
(24) we can express xe(t) as a function of xe(tk−1) as,

xe(t) = eA
σk
0 (t−tk)eA

σk−1
0 (tk−tk−1)xe(tk−1).

Recursively, we have

xe(t) = eA
σk
0 (t−tk)eA

σk−1
0 (tk−tk−1) · · · eA

σ0
0 (t0−t1)xe(t0).

(30)
Then from Lemma 1 and equation (30), with δk = (tk+1 −
tk), k ∈ N we get,

‖xe(t)‖ = ‖eA
σk
0 (t−tk) · · · eA

σ0
0 (t1−t0)xe(t0)‖

≤ ‖eA
σk
0 (t−tk)‖ · · · ‖eA

σ0
0 (t1−t0)‖‖xe(t0)‖

≤ eν(A
σk
0 )(t−tk)+···+ν(A

σ0
0 )(t1−t0)‖xe(t0)‖

= e

(∑
σj∈Ũ

ν(A
σj
0 )δj

)
+
(∑

σj∈S̃
ν(A

σj
0 )δj

)
‖xe(t0)‖

≤ eλutu+λsts‖xe(t0)‖.

Using (29) we conclude the proof. �

B. Stability of the Fast Dynamics

Since we know that all the fast modes are stable (see
Property 1), the measure ν(Aσk22 ) < 0, for all k ∈ N. Next
we introduce

λf := −max
σk∈I

ν(Aσk22 ) > 0 (31)

and γ22 = max
σk,σk−1∈I,

‖Jσk−1→σk
22 ‖. (32)

Lemma 3: Consider the fast dynamics (25)-(26) with ini-
tial condition ef (t0/ε) ∈ Rn(N−1) and switching time



sequences {tk}k≥0 satisfying the dwell time condition 0 <
τ∗ ≤ δk, ∀k ∈ N. Then the following conditions holds:

1) if γ22 ≤ 1 then the fast dynamics is exponentially
stable for any τ∗ > 0 and

2) if γ22 > 1 then the fast dynamics is exponentially
stable for any τ∗ satisfying the following,

τ∗ >
ε ln (γ22)

λf
. (33)

Proof: Using the same idea from Lemma (2) and integrating
(25) - (26) one has that
ef (τ) = eA

σk
22 (

t−tk
ε )J

σk−1→σk
22 eA

σk−1
22 (

tk−tk−1
ε )ef (

tk−1
ε

),

(34)
∀τ ∈

[
tk/ε, tk+1/ε

)
, k ∈ N. This recursively yields

ef (τ) = eA
σk
0 (

t−tk
ε )J

σk−1→σk
22 · · · Jσ0→σ1

22 eA
σ0
0 (

t1−t0
ε )ef (

t0
ε

).

(35)
Let τ∗ > 0 such that τ∗ ≤ (tk+1−tk),∀k ∈ N then we have
the following

‖ef (τ)‖ = ‖eA
σk
0 ( τ

∗
ε )J

σk−1→σk
22 · · · Jσ0→σ1

22 eA
σ0
0 ( τ

∗
ε )ef (

t0
ε

)‖

≤ γk22eν(A
σk
22 ) τ

∗
ε +ν(A

σk−1
22 ) τ

∗
ε +···+ν(Aσ022 ) τ

∗
ε ‖ef (

t0
ε

)‖ (36)

≤ γk22e−λf (k+1) τ
∗
ε ‖ef (

t0
ε

)‖ = ek ln γ22e−λf (k+1) τ
∗
ε ‖ef (

t0
ε

)‖

If γ22 ≤ 1, it is clear from (36) that condition 1) holds.
When γ22 > 1, continuing from equation (36), we have

‖ef (τ)‖ ≤ e− ln (γ22)+(k+1) ln (γ22)e−λf (k+1) τ
∗
ε ‖ef (t0/ε)‖

= e− ln (γ22)e(k+1)
(
ln (γ22)−λf τ

∗
ε

)
‖ef (t0/ε)‖. (37)

Consequently (37) ensures the fast subsystem is exponen-
tially stable if

(
ln (γ22) − λf

τ∗

ε

)
< 0 and using (33) we

conclude that condition 2) holds. �

C. Closeness of the Approximate Model

We are now ready to prove the slow model (23)-(24) and
the fast model (25)-(26) provide a good approximation of
the overall dynamics (21)-(22) under the stability conditions
proposed in Lemmas (2) and (3). The next result gives the
approximation of synchronization error dynamics ev of the
original system in terms of the synchronization error ef for
the fast dynamics and the parameter ε .

Proposition 1: For any t ≥ t0 the following approxima-
tion holds true

ev(t) = ef (τ) +O(ε), τ =
t

ε
. (38)

Proof: Remarking that the fast dynamics are asymptotically
stable for each mode, before the first switch t1, the following
approximation holds

ev(t) = ef (τ) +O(ε), ∀t ∈ [t0, t1). (39)
Also, we know for any t ∈ [t0, t1), the fast dynamics is

ef (τ) = ef (t/ε) = eA
σ0
22 (

t−t0
ε )ef (t/ε) (40)

and from (39) and (40), one gets
ev(t) = eA

σ0
22 (

t−t0
ε )ef (t0/ε) +O(ε). (41)

From Lemma (3), for all t ∈ [t1, t2), we obtain,

ev(t) = eA
σ1
22 (

t−t1
ε )Jσ0→σ1

22

(
eA

σ0
22 (

t1−t0
ε )ef (

t0
ε

) +O(ε)
)

Continuing the reasoning, for any k, for all t ∈ [tk, tk+1)
one has
ev(t) = eA

σk
22 (

t−tk
ε )J

σk−1→σk
22 · · · Jσ0→σ1

22 eA
σ0
22 (

t1−t0
ε )ef (

t0
ε

)

+ eA
σk
22 (

t−tk
ε )J

σk−1→σk
22 . . . eA

σ1
22 (

t−t1
ε )Jσ0→σ1

22 O(ε)
(42)

We show that the second term in (42) is of order O(ε).
Assuming that the switching-impulsive systems satisfy the
dwell-time condition (33) from (31), (32) we establish the
upper-bound on the second term of (42) as follows

‖eA
σk
22 (

t−tk
ε )J

σk−1→σk
22 . . . eA

σ1
22 (

t2−t1
ε )Jσ0→σ1

22 ‖

≤ ‖eA
σk
22 (

t−tk
ε )‖‖Jσk−1→σk

22 ‖ . . . ‖eA
σ1
22 (

t2−t1
ε )‖‖Jσ0→σ1

22 ‖

≤ γk22e
(
ν(A

σk
22 )+...+ν(A

σ1
22 )
)
( τ
∗
ε ) ≤ γk22e−λfk(

t−t1
ε )

= ek ln (γ22)−λfk( τ
∗
ε ) = ek

(
ln (γ22)−λf τ

∗
ε

)
< 1. (43)

It is clear from (43) that the second term from (42) is
bounded and tends to zero as t → ∞, when the dwell-
time condition (33) is satisfied. Consequently, (38) holds
meaning that, the error is approximated by the boundary-
layer state and it is stable when the dwell-time condition
(33) is satisfied. �

It is noteworthy that the error in the slow time scale
es(t) is zero and hence the overall error dynamics ev(t) is
approximated by the error in the fast time scale ef (τ) only.
The next result provides the approximation of the mean-field
dynamics xs(t) in term of the emergent dynamics xe(t).

Proposition 2: Under Assumption (1), if the trajectory
of the emergent dynamics is bounded then the dynamics
of the original systems (21)-(22) is approximated for time
t ≥ t0 by emergent dynamics (23)-(24) with the order of
approximation O(ε), i.e.,

xs(t) = xe(t) +O(ε). (44)
Proof: For the continuous dynamics, we know from [4,
Theorem 5.1], the slow subsystem approximates the original
system on the finite time interval i.e., before the switching
event σ1, as follows,

xs(t) = xe(t) +O(ε) ∀t ∈ [t0, t1), (45)
and following from (23)-(24) the slow subsystem (emergent
dynamics) is

xe(t) = eA
σ0
0 (t−t0)x0 ∀t ∈ [t0, t1). (46)

Then, from equations (45) and (46), the mean-field dynamics
for all t ∈ [t0, t1) is

xs(t) = eA
σ0
0 (t−t0)x0 +O(ε). (47)

Hence, from the jump matrix (13) and (47), the mean-field
dynamics for all t ∈ [t1, t2) is

xs(t) = eA
σ1
0 (t−t1)(vσkl1

T
V σk−1 ⊗ In)ev(t1)

+ eA
σ1
0 (t−t1)eA

σ0
0 (t1−t0)x0 + eA

σ1
0 (t−t1)O(ε).

(48)

Since the error dynamics is exponentially stable for each
mode and ev(t)→ 0, the first term from equation (48) goes
to zero for sufficiently large t1 and we obtain the following

xs(t) = eA
σ1
0 (t−t1)eA

σ0
0 (t1−t0)x0 + eA

σ1
0 (t−t1)O(ε)

xs(t) = eA
σ1
0 (t−t1)xs(t1) + eA

σ1
0 (t−t1)O(ε) ∀t ∈ [t1, t2).



Now, by induction, for any k, and for all t ∈ [tk, tk+1)

xs(t) = eA
σk
0 (t−tk) · · · eA

σ1
0 (t2−t1)eA

σ0
0 (t1−t0)x0

+ e

(
A
σk
0 (t−tk)+...+A

σ1
0 (t−t1)

)
O(ε)

(49)

When the condition for the boundedness of the trajectories
i.e., the inequality (29) is satisfied, the propagation of O(ε)
as t→∞ holds and we have from (49), ∀t ∈ [tk, tk+1)

xs(t) = eA
σk
0 (t−tk) · · · eA

σ1
0 (t2−t1)eA

σ0
0 (t1−t0)x0 +O(ε)

xs(t) = eA
σk
0 (t−tk)e(tk) +O(ε) = xe(t) +O(ε),

(50)
under the assumption of the Lemma (2). This proves that the
emergent dynamics, which is the weighted average of the
systems states, approximate the mean-field dynamics with
O(ε) order of approximation. Also, it is important to that
the asymptotic stability of the fast dynamics is necessary for
the O(ε) approximation of the original variables. �
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Fig. 1: State trajectories of the collective (x), emergent (xe)
and mean-field dynamics (xs), dynamics of one of the nodes
in the absence of connections, vertical lines represent the
switches.

VI. NUMERICAL RESULTS

In this section, to numerically illustrate our results we
consider a network of 30 agents, their dynamics is given
by (1) and the state matrices are randomly generated 2D
rotational matrices. The initial conditions are also randomly
generated in the interval [-50, 50]. To illustrate typical
behaviour of the nodes we plotted one of them in the absence
of interconnections. The network structure is considered to
be randomly switching between two directed and strongly
connected topologies G1 and G2. They are chosen so that G1
results in stable and G2 results in unstable emergent dynam-
ics; the interconnection strength γ = 100 (i.e., ε = 0.01).
The dwell time τ∗ = 10 is chosen to satisfy boundedness
conditions (29). Simulation results are presented in the Fig.1,
where after a short transient that is zoomed in the subplot,
the trajectories evolve in (practical) consensus following
slow network dynamics and clearly the reduced order state
xe approximates the original state x. In the subplot, we
presented all agents trajectories during the initial interval

of 0.006 seconds to make clear the action of the boundary
layer dynamics that quickly forces the trajectories to the slow
dynamics. Notice that the blue trajectory corresponds to the
isolated node, it appears to be constant due to the difference
of time scales.

VII. CONCLUSIONS

In this paper, the synchronizing behavior of linear hetero-
geneous systems over switching topology is approximated
by a reduced ordered system. Using the mode-dependent
coordinate transformation, the network is transformed into
singular perturbation form and then the reduced-ordered
model is obtained using the time-scale separation. A dwell-
time conditions between two consecutive switching is es-
tablished to ensure the boundedness of the solution of the
reduced-ordered model and it is proven that this reduced
model approximates the collective dynamics.
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