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Abstract

In this paper, we present a geometric method for describing the effects of
the delay induced uncertainty on the stability of a standard Smith Predictor
control scheme. The method consists of deriving the stability crossing curves
in the parameter space defined by the nominal delay, and delay uncertainty,
respectively. More precisely, we start by computing the crossing set, which
consists of all frequencies corresponding to all points on the stability cross-
ing curve, and next we give their complete classification, including also the
explicit characterization of the directions in which the zeros cross the imagi-
nary axis. This approach complements existing algebraic stability tests, and
it allows some new insights in the stability analysis of such control schemes.
Several illustrative examples are also included.

1 Introduction

The stability and control of time-delay systems are subject of recurring interest
since the delay is inherently present in various applications, from signal propagation
in networks to population dynamics (see, for instance, [14, 7] for further references,
and examples).
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†Laboratoire de Signaux et Systèmes (L2S), Supélec, 3, rue Joliot Curie, 91190, Gif-sur-Yvette,
France. E-mail: Silviu.Niculescu@lss.supelec.fr ; On leave from HeuDiaSyC (UMR CNRS
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It is well-known that the presence of delays in a dynamical system often results
in poor performance or even in closed-loop instability, especially if the feedback
control is designed based on the system without delays. To overcome such problems,
various techniques have been proposed in the literature, starting with the well-
known Smith predictor in the 1950s [17], and its modifications (see, for instance,
the overview of Palmor [16]). The idea behind the Smith predictor is to define
an appropriate interconnection transformation in the following way: first, finding
a controller for the system without delay, and then defining a new compensator
for the overall system such that the overall system is equivalent to a closed-loop
system for the system without delay coupled with a corresponding delay element
outside of the loop. It is also largely known that such a construction works perfectly
when the delay is known exactly (see, for instance, [16] and the references therein).
Further discussions on Smith predictors, and their sensitivity with respect to delay
uncertainty can be found in [14].

The aim of this paper is to present some new interpretations of the Smith
predictors [17] subject to delay uncertainty. Such a problem have been treated in
the literature since 1980s (see, for instance, [15], [20], [19], [16], and the references
therein), and it was reconsidered recently [13], in response to the increasing interest
in applications, such as the control of congestions in high-speed networks [12] and
the motion synchronization in virtual environments with shared haptics [1].

The approach considered in the paper makes use of some simple geometric
idea (triangles inequality), and it is inspired by some recent work devoted to the
characterization of the stability crossing curves [8]. The novelty of the results lies
in a simple, and easy to follow classification of all the situations when uncertainty
on the nominal delay value will induce instability. Unlike [8], the degenerate cases
are also discussed. The results complements the algebraic characterizations in [14],
and [13].

The remaining part of the paper is organized as follows: Section 2 presents
the problem formulation and preliminaries. Section 3 discusses the identification
of the crossing points, and both regular and degenerate cases are treated. The
characterization of the crossing curves (tangent, smoothness, direction of crossing)
is presented in Section 4. Two illustrative examples from the control literature are
presented in Section 5. Some concluding remarks end the paper.

2 Problem formulation, and preliminaries

Consider a SISO system with a delayed input

H(s) = H0(s)e−sτ , (2.1)

where H0(s) is a rational transfer function.
Assume that, due to some modeling errors, there exists some delay uncertainty

∆ on the nominal delay value τ0 satisfying the constraint | ∆ |< δ, with δ > 0.
As a consequence, the real delay τ can be written as τ = τ0 + ∆. Let C(s) be the
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controller for the system without delay, and let C0(s) be the corresponding Smith
controller for the nominal delay system H0(s)e−sτ0

C0(s) =
C(s)

1 + C(s)H0(s)(1− e−sτ0)
.

The presence of delay uncertainty ∆ leads to the following closed-loop system

Hcl,∆(s) =
C(s)H0(s)

1 + C(s)H0(s)− C(s)H0(s)e−sτ0(1− e−s∆)
e−s(τ0+∆). (2.2)

For ∆ = 0, (2.3) recovers to closed-loop transfer function under the standard Smith
predictor:

H0cl,∆(s) =
C(s)H0(s)

1 + C(s)H0(s)
e−sτ0 . (2.3)

It is important to note that the open-loop transfer function without delay C(s)H0(s)
has an important impact on the sensitivity with respect to delay uncertainty.

As discussed in [14, 13], the closed-loop stability problem of a system was Smith
Predictor with delay uncertainty reduces the following characteristic equation:

P (s) + Q(s)e−sτ0 −Q(s)e−s(τ0+∆) = 0,

where τ0 represents the nominal delay; P (s) and Q(s) are appropriate polynomials
depending on the plant without delay and the controller, and ∆ ≥ 0 is the delay
uncertainty.

Based on the characteristic equation above, let us introduce the following aux-
iliary quasipolynomial:

D(s, τ1, τ2) = P (s) + Q(s)e−sτ1 −Q(s)e−sτ2 = 0. (2.4)

It is easy to see that by choosing τ1 = τ0, τ2 = τ0 + ∆, we completely recover
(2.4). Next, let G = {(x, y) | 0 ≤ x ≤ y}. Then, obviously, (τ1, τ2) ∈ G. The main
objective of this paper to study the change of the number of right-hand solutions
of (2.4) or equivalently of (2.4) as (τ1, τ2) varies G.

Since the main interest lies in identifying the regions of (τ1, τ2) in G such that
D(s, τ1, τ2) is stable (the roots of the characteristic equation are located in C−),
we will exclude some trivial cases, and make the following assumptions on the
polynomials P and Q:

Assumption 2.1. The polynomials P and Q are such that deg(Q) ≤ deg(P ).

Assumption 2.2. The polynomial P does not have any roots at the origin, that
is P (0) 6= 0.

Assumption 2.3. The polynomials P and Q do not have common zeros.

Assumption 2.4. The polynomials P and Q satisfy the following condition:

lim
s→∞

∣∣∣∣
Q(s)
P (s)

∣∣∣∣ <
1
2
.

For discussions on the implications of these assumptions the readers are referred
to [8].
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3 Identification of the crossing points

Let T denote the set of all points of (τ1, τ2) ∈ G such that D(s, τ1, τ2) has at least
one zero on the imaginary axis. Any (τ1, τ2) ∈ T is known as a crossing point. The
set T , which is the collection of all crossing points, is known as the stability crossing
curves. Let Tω denote the set of all (τ1, τ2) ∈ G such that the quasipolynomial D
has at least one zero for s = jω. Let Ω the set of all ω > 0 for which there exists a
pair (τ1, τ2) such that D(jω, τ1, τ2) = 0. We will refer to Ω as the crossing set.

Obviously
T = {Tω|ω ∈ Ω}.

We will first consider the non-degenerate case satisfying the following assumption:

Assumption 3.1 (Non-degeneracy). The polynomials P and Q satisfy the follow-
ing frequency-domain condition:

P (jω) ·Q(jω) 6= 0 for all ω ∈ Ω (3.1)

The degenerate case will be presented in the later part of the paper.

3.1 Regular cases

In the sequel, we consider

h(s) =
Q(s)
P (s)

and
H(s) = 1 + h(s)e−sτ1 − h(s)e−sτ2 (3.2)

For given τ1 and τ2, as long as Assumption 3.1 is satisfied, D(s, τ1, τ2) and H(s)
share all the zeros in a neighborhood of the imaginary axis. Therefore, we may
obtain all the crossing points and direction of crossing using H(s) = 0 instead of
D(s, τ1, τ2) = 0. We may also consider the three terms in H(s) as three vectors in
the complex plane, with the magnitudes 1, |h(s)| and |h(s)| respectively. So when
we adjust the values of τ1 and τ2 in fact we adjust the directions of the vectors
represented by the second and the third terms. Equation (3.2) simply means that
if we put the first two vectors head to tail then we get the third vector. In other
words these vectors form an isosceles triangle. These remarks allow us concluding
with the following proposition.

Proposition 3.1. For some (τ1, τ2) ∈ G, H(s) has an imaginary zero s = jω, ω 6=
0 if and only if

|h(jω)| ≥ 1
2
. (3.3)

Proof. The relation (3.3) is straightforward from the geometric point of view: a
triangle can be formed by three line segments with arbitrary orientation if and only
if the length of any one side does not exceed the sum of the other two sides. In the
case of an isosceles triangle this condition simply becomes: the sum of the equal
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Figure 3.1: Triangle formed by 1, h(s)e−sτ1 and h(s)e−sτ2

sides exceed the other side. Notice also that ∠[h(s)e−jωτl ], l = 1, 2 can take any
value by adjusting τl, l = 1, 2. ¤

Due to the symmetry and Assumption 2.2, we only need to consider positive ω. So
Ω is the set of all ω > 0 satisfying (3.3). Also, for a given ω ∈ Ω we may find all
the pairs (τ1, τ2) satisfying H(jω) = 0 as follows:

τ1 = τu±
1 (ω) =

∠h(jω) + (2u− 1)π ± q

ω
, (3.4)

u = u±0 , u±0 + 1, u±0 + 2, ...

τ2 = τv±
2 (ω) =

∠h(jω) + 2vπ ∓ q

ω
, (3.5)

v = v±0 (u), v±0 (u) + 1, v±0 (u) + 2, ...

where q ∈ [o, π] is the internal angle of triangle in Figure 3.1 which can be calculated
by the cosine law as

q(jω) = cos−1

(
1

2|h(ω)|
)

(3.6)

and u+
0 , u−0 are the smallest integers (may be dependent on ω) such that the corre-

sponding values τ
u+

0 +
1 , τ

u−0 −
1 are nonnegative, and v+

0 and v−0 are integers dependent

on u such that τ
v+
0 +

2 ≥ τu+
1 , τ

v−0 −
2 > τu−

1 are satisfied. The position in Figure 3.1
corresponds to (τu+

1 , τv+
2 ) and the mirror image about the real axis corresponds to

(τu−
1 , τv−

2 ). If we define T +
ω,u,v and T −ω,u,v as the singletons (τu+

1 (ω), τv+
2 (ω)) and

(τu−
1 (ω), τv−

2 (ω)) respectively, then we can characterize Tω as follows:

Tω =


 ⋃

u≥u+
0 ,v≥v+

0

T +
ω,u,v


 ⋃


 ⋃

u≥u−0 ,v≥v−0

T −ω,u,v
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Proposition 3.2. The crossing set Ω consists of a finite number of intervals of
finite length including the cases which may violate Assumption 3.1.

Proof. First, one can easily observe that the number of points in Ω violating (3.1)
is always finite. In conclusion, we only need to show that the set of all points
satisfying (3.3) consists of a finite number of intervals of finite length. Since

|h(jω)| = 1
2
⇔ |P (jω)| = 2|Q(jω)|

is a polynomial equation of variable ω2, it always has a finite number of positive
solutions. Therefore the solution of (3.3) consists of a finite number of intervals.

Next, due to the Assumption 2.4, any sufficiently large ω violates the condition
(3.3). Therefore, the lengths of all intervals are finite. ¤

In what follows we will denote these intervals as Ω1, Ω2, ..., ΩN and without
loss of generality we may suppose that the intervals are ordered such that for any
ω1 ∈ Ωk1 , ω2 ∈ Ωk2 , k1 < k2 we have ω1 < ω2.

Remark 3.1. If (3.3) is satisfied for ω = 0 and sufficiently small positive value of
ω then we will take 0 as the left end of Ω1, and Ω1 = (0, ωr

1].
Any other end point ω∗ must satisfy |P (jω∗)| = 2|Q(jω∗)|, which corresponds

to the limiting case when internal angle q of the triangle is 0. In this case, we
obtain

−−→
OB = −−−→AB on the real axis.

We will not restrict ∠h(jω) to be within the 2π range, but make it a continuous
function of ω within each Ωk. Thus, for each fixed u, v and k, (3.4) and (3.5)
describe two continuous curves denoted as T k+

u,v and T k−
u,v respectively. We should

keep in mind that, for some u, v and k, part or the entire curve T k+
u,v (or T k−

u,v ) may
be outside of the range G, and therefore, may not be physically meaningful.

The collection of all the points in T corresponding to Ωk may be expressed as

T k =
∞⋃

u=−∞

∞⋃
v=−∞

[(T k+
u,v ∪ T k−

u,v

) ∩ G]

=
⋃

ω∈Ωk

Tω (3.7)

Obviously

T =
N⋃

k=1

T k

Our previous discussions allow us concluding:

Proposition 3.3. The end points of Ωk must be in one of the following situation:

Type 1. It satisfies the equation |h(x)| = 1
2
.

Type 2. It equals 0.
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If one end of Ωk is of type 1 then q = 0 and T k+
u,v is connected with T k−

u,v at this
end. So, if both ends of Ωk are of type 1 we get T k is a series of closed curves.

Obviously, only the left end of Ω1 can be of type 2. In this case, as ω → 0, both
τ1 and τ2 approach ∞. In fact, T 1+

u,v and T 1−
u,v approach ∞ with asymptotes with

slopes of

m±
u,v =

τv±
2

τu±
1

=
∠h(0) + 2vπ ∓ q(0)

∠h(0) + (2u− 1)π ± q(0)

where q(0) is evaluated using (3.6).
In the sequel, we will say that an interval is of type 11 if both ends are of type

1, and Ω1 is of type 21 if his left end is 0. Therefore, the crossing set Ω consists of
a finite number of intervals of type 11, with the possibility of the first interval Ω1

of type 21.
In conclusion, based on the remarks above, we have:

Proposition 3.4. The set T k consists of a series of curves belonging to one of the
following categories:

A) A series of closed curves (Ωk is of type 11)

B) A series of open ended curves with both ends approaching ∞ (Ωk is of type 21)

We continue this section with some illustrative examples regarding the above
discussion and characterization.

Example 3.1. (type 11) Consider a system with

h(s) =
4s + 1

4(s2 + s + 1)
(3.8)

Figure 3.2 (left) plots 2|h(jω)| against ω. The crossing set can be easily identified
from this figure. It contains one interval Ω1 = [0.39, 2.21] of type 11. Correspond-
ingly T 1 consists of a series of closed curves as illustrated in Figure 3.2 (right).

Example 3.2. (type 21) Consider a system with

h(s) =
s +

√
2

2s3 + s2 + 8s + 1
(3.9)

Figure 3.3 (left) plots |h(jω)| against ω. The crossing set Ω can be easily identified
from the Figure 3.3, and it contains two intervals: Ω1 = (0, 0.364] of type 21, and
Ω2 = [1.673, 2.198] of type 11. Figure 3.3 (right) illustrates T 1 corresponding to
Ω1. It consists of a series of open ended curves.
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Figure 3.2: Left: The crossing set for the system (3.8) Right: Some crossing curves of

system (3.8) are plotted
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Figure 3.3: Left: The crossing set for the system (3.9) Right: Some crossing curves of

system (3.9) are plotted

3.2 Degenerate cases

In the following we focus on the cases that are not satisfying the assumption 3.1.
Obviously, the interesting case is P (jω) = 0 has at least one positive solution. We
can easily state the following:

Remark 3.2. . For ω∗ 6= 0 satisfying Q(jω∗) = 0 it is obvious that increasing
of τ1 and/or τ2 has no effect regarding stability of the system. We note also that

h(jω∗) = 0 imply that h(jω) <
1
2
, for all ω in a neighborhood of ω∗.
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Next, we assume that P (jω∗) = 0 for ω∗ 6= 0. Using Assumption 2.3 we get

Q(jω∗) 6= 0 and therefore lim
ω→ω∗

|h(jω)| = ∞. So that, |h(jω)| >
1
2

for all ω in a

neighborhood of ω∗. This means that Ω contains one interval of type [ωl, ω∗] and
one of type [ω∗, ωr]. It is clear that the first interval is open to the left if ωl = 0.

In conclusion, we have the following result:

Proposition 3.5. For ω∗ 6= 0 satisfying P (jω∗) = 0, Tω∗ consists of the solutions
of

ω∗τ2 = ω∗τ1 + 2mπ, m ∈ Z in G.

and

lim
ω→ω∗

q(jω) =
π

2
;

lim
ω→ω∗

τ1(ω) =
2∠Q(jω∗) + (4u− 2± 1)π

2ω∗
;

lim
ω→ω∗

τ2(ω) =
2∠Q(jω∗) + (4v ∓ 1)π

2ω∗
.

Proof. Straightforward computations. ¤

Remark 3.3. We have the following properties:

1) Tω∗ consists of an infinite number of straight lines of slope 1 of equal distance.

2) lim
ω→ω∗

τ2(ω)− lim
ω→ω∗

τ1(ω) = 2mπ, m ∈ Z

Let Ωk = [ωl, ω∗] and Ωk+1 = [ω∗, ωr].
In this case, using Proposition 3.3, we get T k+

u,v is connected with T (k+1)+
u,v and

T k−
u,v is connected with T (k+1)−

u,v at the end corresponding to ω∗.
Using (3.7) and Remark 3.3, we obtain that each crossing curve in T k±

u,v consists
of an union of one straight line of slope 1 and the curve corresponding to Ωk \{ω∗}.

From Remark 3.3, we deduce that one end of the curve corresponding to Ωk \
{ω∗} is on the line in Tω∗ which correspond to the pair (u, v).

In the sequel, we shall say that ω∗ is an end point of type 0 if P (jω∗) = 0.

Example 3.3. (type 20 and 01) Consider a system with

h(s) =
s + 2
s2 + 2

(3.10)

Figure 3.4 (left) plots
1

2|h(jω)| against ω. The crossing set Ω contains two inter-

vals: Ω1 = (0,
√

2] of type 20, and Ω2 = [
√

2, 3.046] of type 01. Figure 3.4 (right)
plots T 2±

3,4 which are two curves of type 01.
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4 Crossing curves, characteristic roots behavior

In this section, we discuss some qualitative aspects regarding the crossing curves
and the characteristic roots. More precisely, we study the smoothness of the cross-
ing curves, and we give the characterization of the way the roots cross the imaginary
axis.

4.1 Tangent and Smoothness

For a given k, we will discuss the smoothness of the curves in T k and thus T =
N⋃

k=1

T k. In this part, we use an approach based on the implicit function theorem.

For this purpose, we consider τ1 and τ2 as implicit functions of s = jω defined
by (2.4).

Next, for a given k, as s moves along the imaginary axis within Ωk, (τ1, τ2) =
(τu±

1 (ω), τv±
2 (ω)) moves along T k.

For a given ω ∈ Ωk, let

R0 = Re

(
j

s

∂D(s, τ1, τ2)
∂s

)

s=jω

=
1
ω

Re
{
[h′(jω)− τ1h(jω)] e−jωτ1 + [τ2h(jω)− h′(jω)] e−jωτ2

}
,

I0 = Im

(
j

s

∂D(s, τ1, τ2)
∂s

)

s=jω

=
1
ω

Im
{
[h′(jω)− τ1h(jω)] e−jωτ1 + [τ2h(jω)− h′(jω)] e−jωτ2

}
,
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and

Rl = Re

(
1
s

∂D(s, τ1, τ2)
∂τl

)

s=jω

= (−1)l−1Re
(
h(jω)e−jωτl

)
,

Il = Im

(
1
s

∂D(s, τ1, τ2)
∂τl

)

s=jω

= (−1)l−1Im
(
h(jω)e−jωτl

)
,

for l = 1, 2. Then, since D(s, τ1, τ2) is an analytic function of s, τ1 and τ2, the
implicit function theorem indicates that the tangent of T k can be expressed as

( dτ1

dω
dτ2

dω

)
=

1
R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
, (4.1)

provided that
R1I2 −R2I1 6= 0. (4.2)

It follows that Tk is smooth everywhere except possibly at the points where either
(4.2) is not satisfied, or when

dτ1

dω
=

dτ2

dω
= 0. (4.3)

From the above discussions, we can conclude:

Proposition 4.1. The curve T k is smooth everywhere except possibly at the points
corresponding to s = jω a multiple solution of (2.4).

Proof. Straightforward computation. More details can be found in [8] for a more
general case. ¤

4.2 Direction of crossing

Next, we will discuss the direction in which the solutions of (2.4) cross the imaginary
axis as (τ1, τ2) deviates from the curve T k. We will call the direction of the curve
that corresponds to increasing ω the positive direction. We will also call the region
on the left hand side as we head in the positive direction of the curve the region on
the left.

To establish the direction of crossing we need to consider τ1 and τ2 as functions
of s = σ + jω, i.e., functions of two real variables σ and ω, and partial derivative
notation needs to be adopted. Since the tangent of T k along the positive direction

is
(

∂τ1

∂ω
,
∂τ2

∂ω

)
, the normal to T k pointing to the left hand side of the positive

direction is
(
−∂τ2

∂ω
,
∂τ1

∂ω

)
. Corresponding to a pair of complex conjugate solutions

of (2.4) crossing the imaginary axis along the horizontal direction, (τ1, τ2) moves

along the direction
(

∂τ1

∂σ
,
∂τ2

∂σ

)
. So, if

(
∂τ1

∂ω

∂τ2

∂σ
− ∂τ2

∂ω

∂τ1

∂σ

)

s=jω

> 0, (4.4)
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then a pair of complex conjugate solutions of (2.4) crosses the imaginary axis to
the right half plane,as (τ1, τ2) moves from the region on the right to the region on
the left, i.e. the region on the left of T k gains two solutions on the right half plane.
If the inequality (4.4) is reversed then the region on the left of T k has two fewer
right half plane solutions as compared to the region on the right. Similar to (4.1)
we can express

( dτ1

dσ
dτ2

dσ

)

s=jω

=
1

R1I2 −R2I1

(
R0R2 + I0I2

−R0R1 − I0I1

)
. (4.5)

Using this, we arrive at the following:

Proposition 4.2. Let ω ∈ (ωl
k, ωr

k) and (τ1, τ2) ∈ T k such that jω is a simple
solution of (2.4) and D(jω′, τ1, τ2) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (τ1, τ2) is not an
intersection point of two curves or different sections of a single curve of T ). Then,
as (τ1, τ2) crosses T from the region on the right to the region on the left, a pair
of solutions of (2.4) cross the imaginary axis to the right, through s = ±jω if
R2I1 −R1I2 > 0. The crossing is to the left if the inequality is reversed.

Proof. Easy computation shows that
(

∂τ1

∂ω

∂τ2

∂σ
− ∂τ2

∂ω

∂τ1

∂σ

)

s=jω

=
(R2

0 + I2
0 )(R2I1 −R1I2)

(R1I2 −R2I1)2

Therefore (4.4) can be written as R2I1 −R1I2 > 0. ¤

5 Illustrative examples

In this paragraph we reconsider two examples already treated in the literature.

5.1 Neutral system example

The first example considers a system of neutral type treated in [13], but using a
different approach:

P (s) = (k1k2 + 1)s + (a + k1), Q(s) = k1(k2s + 1).

The authors in [13] assume a > 0 and (a+k1)/(k1k2+1) > 0, fact which guarantees
internal stability of the closed-loop system. The so-called “practical stability”

criterion is given by Assumption 2.4 which simply states
∣∣∣∣

k1k2

1 + k1k2

∣∣∣∣ <
1
2
⇔ −1/3 <

k1k2 < 1.
For a = 1, k1 = 2, k2 = 1/4 we get Ω = (0, 2.37], and, in conclusion, Ω consists

of only one interval of type 21. Correspondingly, T consists of a series of open
ended curves with both ends approaching infinity, conclusion which is exactly the
same to the one derived in [13], but using a different argument.
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Figure 5.1: Left: The crossing set for the above system Right: Some crossing curves of

this system

5.2 Smith predictor in virtual environments

The second example refers to the application of Smith predictor in motion syn-
chronisation in virtual environments with shared haptics, and large time delays as
presented, and discussed in [1]. Without entering in the details, the synchroni-
sation scheme makes use of an appropriate feedback controller to compensate the
state-error between geographically separated sites.

One of the problems discussed in [1] was the robustness of the scheme with
respect to perturbations in time delays, and the analysis was performed by charac-
terizing the crossing roots with respect to the imaginary axis. The method proposed
in our paper gives a different, and complementary point of view with respect to
such a robustness analysis problem.

More precisely, one of the models considered in [1] is given by:

P (s) = (s2 + 2s + 2)2, Q(s) = −(2s + 2)2.

Obviously, the system is of retarded type, so the practical stability conditions
mentioned above are automatically satisfied.

The crossing set Ω consists of only one interval of type 21, Ω = (0, 2.9]. This
means that the crossing curves have the shape as presented in the figure below.
Again, we obtain the same crossing curves and stability regions.

6 Concluding remarks

This paper focused on the stability crossing curves for a class of delay systems
controlled by a Smith predictor, subject to some uncertainty in the delay. More
precisely, the particular form of the closed-loop system allowed us an easy derivation
of the stability crossing curves (crossing set characterization, direction of crossing,
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Figure 5.2: Left: The crossing set for the above system Right: Some crossing curves of

this system

smoothness). Regular, and degenerate cases have been both treated. Various
illustrative examples completed the presentation.
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