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Passivity-based tracking control of
multiconstraint complementarity Lagrangian

systems
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Abstract

In this study one considers the tracking control problem afass of nonsmooth fully actuated
Lagrangian systems subject to frictionless unilateralst@ints. A passivity-based switching controller
that guarantees some stability properties of the closed-8ystem is designed. A particular attention
is paid to transition (impacting) and detachment phasesaifam. This paper extends previous works

on the topic as it considers multiconstraintdegree-of-freedom systems.
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. INTRODUCTION

The control of mechanical systems subject to unilateralsttamts has been the object of
many studies in the past fifteen years. Such systems, whiekistoof three main ingredients
(see (1) below) are highly nonlinear nonsmooth dynamicatesys. Theoretical aspects of their
Lyapunov stability and the related stabilization issuesehbeen studied in [10], [21], [19],
[33]. The specific yet important task of the stabilizationiofpacting transition phases was
analyzed and experimentally tested in [18], [30], [31],][385], [36]. From the point of view of
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tracking control of complementarity Lagrangian systenasiglgeneral constrained/unconstrained
paths, such studies focus on a module of the overall contablem. The problem of robust
impact detection with only position measurement receitgzhéion in [6]. One of the first works
formulating the control of complete robotic tasks via ut@lal constraints and complementarity
conditions was presented in [17]. In that work the impactsewsonsidered inelastic and the
control problem was solved using a time optimal problem. fraeking control problem under
consideration, involving systems that undergo transgitstom free to constrained motions, and
vice-versa, along an infinity of cycles, was formulated andlied in [9] for the 1-dof (degree-
of-freedom) case and in [5] for the-dof case. Both of these works consider systems with only
one unilateral frictionless constraint. In this paper we oy consider the multiconstraint case
but the results in Section VII relax some very hard to veribyditions imposed in [5] to assure
the stability. Moreover the accurate design of the conta@l that guarantees the detachment
from the constraints is formulated and incorporated in ttadibty analysis for the first time.
Considering multiple constraints may be quite importanamplications like virtual reality and
haptic systems, where typical tasks involve manipulatibgpats modelled as rigid bodies [12]
in complex environments with many unilateral constraift¥® note that in the case of a single
nonsmooth impact the exponential stability and boundedtilounded state (BIBS) stability
was studied in [26] using a state feedback control law. Aysfod a multiple degree-of-freedom
linear systems subject to nonsmooth impacts can be foun@7h That approach proposes a
proportional-derivative control law in order to study BIBSability via Lyapunov techniques.
Other approaches for the tracking control of nonsmooth meiclal systems can be found in
[13], [25], [29], [37] and in [20]. The analysis and control systems subject to unilateral
constraints also received attention in [4].

This paper focuses on the problem of tracking control of dementarity Lagrangian systems

[28] subject to frictionless unilateral constraints whalymamics may be expressed as:
M(X)X +C(X, X)X + G(X) =U + VF(X)\x
0<\Ax LF(X)>0, Q)
Collision rule

where X (t) € R" is the vector of generalized coordinatéd(X) = M7(X) € R™" is the

positive definite inertia matrixf’(X) € R™ represents the distance to the constraifitsy, X)
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is the matrix containing Coriolis and centripetal forcés,X) contains conservative forces,
Ax € R™ is the vector of the Lagrangian multipliers associated &dbnstraints an@’ € R" is
the vector of generalized torque inputs. For the sake of ¢etepess we precise th&t denotes
the Euclidean gradienVF(X) = (VFi(X),...,VF,(X)) € R where VF;(X) € R"
represents the vector of partial derivatives 8f-) w.r.t. the components oK. We assume
that the functionsF;(-) are continuously differentiable and th&tF;(X) # 0 for all X with
F;(X) = 0. It is worth to precise here that for a given functigi-) its derivative w.r.t. the
time ¢ will be denoted byf(-). For any functionf(-) the limit to the right at the instartt will
be denoted byf(¢*) and the limit to the left will be denoted by(¢~). A simple jump of the
function f(-) at the moment = ¢, is denoteds(t,) = f(t) — f(t;).

Definition 1: A Linear Complementarity Problem (LCP) is a system given by:

A>0
AN+D5>0 2)
MN(AN+Db) =0
which is compactly re-written as
0<ALAN+b>0 3)

Such an LCP has a unique solution for @lif and only if A is a P-matrix [11].
The admissible domain associated to the system (1) is tleedleetd where the system can
evolve and it is described as follows:
O={X|F(X)>0}= (] @,
1<i<m

where ®; = {X | F;(X) > 0} considering that a vector is non-negative if and only if &l i
components are non-negative. In order to have a well-posgldlgm with a physical meaning
we consider thatb contains at least a closed ball of positive radius.

Definition 2: A singularity of the boundarnp® of ® is the intersection of two or more
codimension one surfaces = {X | F;(X) = 0}.
The presence of® may induce some impacts that must be included in the dynaafitse
system. It is obvious that > 1 allows both simple impacts (when one constraint is invojved
and multiple impacts (when singularities or surfaces ofim@esion larger than 1 are involved).

Let us introduce the following notion gf.-impact.
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Definition 3: Let ¢ > 0 be a fixed real number. We say thapaimpact occurs at the instant
tif

IFx @)l <e  J[F(x

1€l
wherel C 1,...,m, card(l) = p.
If ¢ = 0 the p surfacesY;, i € I are stroked simultaneously. Wher> 0 the system collides
0® in a neighborhood of the intersecti¢n,_, >
Definition 4: [28], [22] The tangent cone t& = {X | F;(X) >0, Vi=1,...,n} atg € R"
is defined as:
Ts(q) = {z € R" | 2TV F(q) >0, Vi = J(q)}

whereJ(q) = {i € {1,...,n} | F;(q¢) < 0}. Whenq € ®\0® one has/(q) = ) andTy(q) = R".
The normal cone t@ at ¢ is defined as the polar cone 1G (-):

Na(q) = {y € R" | Vz € Ta(q),y" = < 0}

The collision (or restitution) rule in (1), is a relation &ten the post-impact velocity and the
pre-impact velocity. Among the various models of collistaes, Moreau’s rule is an extension
of Newton’s law which is energetically consistent [15] aschumerically tractable [1]. For these
reasons throughout this paper the collision rule will berdsfiby Moreau’s relation [28]:

X(t) = (1+e) argmin o[z — X()] x M(X(0))[z —~ X(57)] —eX(t) (@)

z€Ta(X ()

where X (¢;) is the post-impact velocityX (¢, ) is the pre-impact velocity and ¢ [0, 1] is the
restitution coefficient. Denoting b§" the kinetic energy of the system, we can compute the
kinetic energy loss at the impatt as [23]:

1—e
2(1+e)
The collision rule can be rewritten considering the vectogeneralized velocities as an element

Ty(te) = - X(t]) = X ()" M(X (1)) x [X(t]) = X ()] <0 (5)

of the tangent space to the configuration space of the systgaipped with the kinetic energy

metric. Doing so (see [76.2), the discontinuous velocity componedfs,,., and the continuous
y T
. —MmX, M= " | M(x) wheren ¢
Xtang tT

M (X)VFi(X) =1
VVE(X)TM-1(X)VFi(X)’
t represents: — m mutually independent unitary vectots such thatt! M (X)n; = 0, Vi, j.

onesXm”g are identified. Precisely

R™ represents then unitary normal vectora; = .,m and
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In this case the collision rule (4) at the impact timebecomes the generalized Newton’s

XnOT’m t+ Xnm“m t_ .
rule (t) = —p (1) , 1 = diag(e, ..., em,0,...,0) wheree; is the

Xtang(tz_) Xtang(tg_)
restitution coefficient w.r.t. the surface;. For the sake of simplicity we consider in this paper

that all the restitution coefficients are equal, ke= ... =e¢,, 2 e.
Remark 1: 1) If X € ¥, X, and the angle/(%;, ;) < w then in the neighborhood of
X one hast ~ Tp(X).

2) Letm = 1. The cases = 0 is called a plastic impact and the case- 1 is called an elastic
impact. In the first case the normal component of the veldsggomes zero and in the
second case the normal component of the velocity changgsterdirection and preserves
its magnitude. As we can easily see from (5) in the second ttese is no loss of kinetic
energy at the impact moment.

3) One recalls that we deal with frictionless unilateral stoaints. Some frictional contact laws
that fit within the nonsmooth mechanic framework (1) can hentbin [19].

The structure of the paper is as follows: in Section Il onespnés some basic concepts
and prerequisites necessary for the further developm8etdion Il is devoted to the controller
design. In Section IV one defines the desired (or "exogerduagectories entering the dynamics.
The desired contact-force that must occur on the phasesewvther motion is constrained, is
explicitly defined in Section V. Section VI focuses on theattgy for take-off at the end of the
constraint phases. The main results related to the clasgaldtability analysis are presented in
Section VII. One example and concluding remarks end therpape

The following standard notations will be adopté: || is the Euclidean normj, € R? and
b,—, € R""? are the vectors formed with the firstand the last: — p components ob € R",
respectively.No (X, = 0) is the normal coneVy(X) to ¢ at X [28], [22] when X satisfies

X, =0, \in(+) @and A4, () represent the smallest and the largest eigenvalues, teshec

Il. BASIC CONCEPTS
A. Typical task

In the casem = 1 (only one unilateral constraint) the time axis can be spiib iintervals
Q. and I,, corresponding to specific phases of motion [9]. Precisely, corresponds to free-

motion phasesH(X) > 0) and ., corresponds to constrained-motion phasegX) = 0).
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Between free and constrained phases the dynamical systaysapasses into a transition phase
I, containing some impacts. Since the dynamics of the systees dot change during the
transition between constrained and free-motion phasekgitime domain one gets the following

typical task representation:
Rt =QoUILUQ UQULU...UQuUILUQy 1 U... (6)

In the casen > 2 (multiple constraints) things complicate since the numifetypical phases
increases due to the singularities that must be taken intoust. Explicitly, the constrained-
motion phases need to be decomposed in sub-phases wheresgeaifec constraints are active.
Between two such sub-phases a transition phase occurs Whemumber of active constraints
increases. Nevertheless, a typical task can be representkd time domain as:
we - (asuro (Ua )
k>0 i=1 (7
Je C Ji1; Jk1 C Jomy, C Jemp—1 C -2 Ik
where the superscriph, represents the set of active constrainfs€ {i € {1,...,m} | F;(X) =0})
during the corresponding motion phase, aﬁ;jd denotes the transient between t@p phases
when the number of active constraints increases. When tmbauof active constraints decreases
there is no impact, thus no other transition phases are de®de note that/, = () corresponds
to free-motion.
For the sake of simplicity and without any loss of generalitie replace J™ Qj};j’rl by Qj,éH
where J,, C J;, and J,;, C J;. Therefore the typical task simplifies as:
we = (oo ua.)
= ®)
Jp C iy Jes1 C G
Since the tracking control problem involves no difficultyrithg the 2, phasesthe central issue
is the study of the passages between them (the design oftivanshases!; and detachment
conditions), and the stability of the trajectories evotyialong (8)(i.e. an infinity of cycles).

Throughout the paper, the sequerizg U I;* U Qg,éﬂ will be referred to as the cyclgé of the

1As we shall see in Section VIII we can also consider more caratgd tasks without influencing the stability results oee

in the paper.
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system’s evolution. For robustness reasons during trangihased, we impose a closed-loop

dynamics (containing impacts) that mimics somehow the bimgpball dynamics (see e.qg. [7]).

B. Stability analysis criteria

The system (1) is a complex nonsmooth and nonlinear dynarmysiem which involves
continuous and discrete time phases. A stability frameworkthis type of systems has been
proposed in [9] and extended in [5]. This is an extension efifimpunov second method adapted
to closed-loop mechanical systems with unilateral comggaSince we use this criterion in the
following tracking control strategy it is worth to clarihé framework and to introduce some
definitions.

Let us introduce the trajectories playing a role in the dyitarand the design of the controller:

« X"¢(-) denotes the desired trajectory of the unconstrained sy§tenthe trajectory that the
system should track if there were no constraints). We supfes /(X "(t)) < 0 for some
t, otherwise the problem reduces to the tracking control ofsdesn with no constraints.

« Xi(-) denotes the signal entering the control input and playirg risle of the desired
trajectory during some parts of the motion.

« X,4(-) represents the signal entering the Lyapunov function. Sigisal is set on the boundary

0 after the first impact of each cycle.

These signals may coincide on some time intervals as we sballater.

Next, let us defing) as the complement iR* of I = U I,;]’“ and assume that the Lebesgue
k>0

measure of2, denoted\[(?], equals infinity. Consider(-) the state of the closed-loop system
in (1) with some feedback controlléf(X, X, X*, X, X*).

Definition 5 (Weakly Stable System [5]Jhe closed loop system is called weakly stable if for
eache > 0 there exist$)(¢) > 0 such that|z(0)|| < d(e) = ||z(t)|]| < eforallt >0, t € Q. The
S%%rioox(t) = 0. Finally, the

practical weak stability holds if there exifis< R < +o0o andt* < +oo such that||z(t)|| < R
forall t > t*, t € Q.

system is asymptotically weakly stable if it is weakly stealahdtE

Considerl/s £ 75, 5] and V(-) such that there exists strictly increasing functier(s) and
B(-) satisfying the conditionsx(0) = 0, 3(0) = 0 anda(||z||) < V(z,t) < B(||z]]).
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Definition 6: A transition phasé,fk is called finite if it involves a sequence pf-impact times
(t5)o<e<n, N < oo with the accumulation pointé, < oo (for the sake of simplicity we shall
denote the accumulation point Y even if N < c0).

In the sequel, we consider that each cykleontains only finite transition phases which implies
thate < 1 (in [3] it is shown thate = 1 implies thatt® = +o0).

The following criterion is inspired from [5], and will be uddor studying the stability of
system (1).

Proposition 1 (Weak Stability)Assume that the task admits the representation (8) and that

a) I < 400, VkEN,

b)  outside the impact accumulation pha§ést” | one hasV (z(t),t) < —~V (x(t),t) for

some constany > 0,
0 > [Vt = V()] < KaVP (%), Vk € N for somep; > 0, K; > 0,

>0
d)  the system is initialized of2, such thatl’' (7)) < 1,

& ) ov(th) < KoV (rf) + ¢, Vk € N for somep, > 0, Ky > 0 and{ > 0.
>0
If p=min{p;,po} < 1thenV () < (v, €), Vk > 1, whered(v,¢) is a function that can be

made arbitrarily small by increasing the valueyofThe system is practically weakly stable with

R=a7(0(7,€)).
Proof: From assumptiorib) one has

V(th) < vtk )e )
It is clear that conditior{c) combined with(e) leads to
V(ts,) < V(rg) + KV (15) + Ko VP2(15) + €

Considering < 1, the assumptiofd) guarantees thahax{V (), VP (r5), VP2 (15)} < VP(rf) <

1 and we get

k_

V() < e 1 4 K+ Ko + € V()

< eGR4 Ky + Ky + €] 2 5(7,€)

From assumptiorfb) one hasV (r;*") < V/(t%) and thusV (7}) < 6(v,€), Vk > 1. The term
d(7,¢) can be made as small as desired increasing eitlwrthe length of the intervat? , 7.
The proof is completed by the relatior(||x||) < V(x,t), Vz, t. n
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Remark 2:Since the Lyapunov function is exponentially decreasingtten(), phases, as-
sumption(d) in Proposition 1 means that the system is initializedSgnsufficiently far from
the moment when the trajectory”(-) leaves the admissible domain.

Precisely, the weak stability is characterized by an "altndecreasing” Lyapunov function

V(z(-).-) as illustrated in Figure 1.

e

o Ex = = a s

Fig. 1. Typical evolution of the Lyapunov function during one cycdfa weakly stable system.

Remark 3:It is worth to point out the local character of the stabilityterion proposed by
Proposition 1. This character is firstly given by conditidnof the statement and secondly by
the synchronization constraints of the control law and tltiom phase of the system (see (8)
and (11) below).

The practical stability is very useful because attainingngstotic stability is not an easy task
for the unilaterally constrained systems described by &beeially whenn > 2 and M (q) is

not a diagonal matrix (i.e. there are inertial couplingsjolihis the general case).

C. Dissipativity and tracking versus stabilization

Let us make a parenthesis to highlight the major discrepaetyeen the trajectory tracking
problem and the stabilization problem. To this aim let ug fiexall that the dynamics in (1)
and (4) can be equivalently rewritten as tineasure differential inclusiofi], [7], [23], [28]:

—M(q(t))dv — [C(X (), v(#))o(tT) — G(X(t)) + U()]dt € Nry(x ey (w(t))

w(t) = v@*);r:(t’)

(9)
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wheredv is the differential measure associated with the veloeity that is a right-continuous
function of local bounded variation,(-) is equal almost everywhere 16(-), X (-) is absolutely
continuous andX () — X (0) = f[o,t
cone, where the cones are as in Definition 4. As shown in [16][8n§3.9.4, 6.8.2, 7.2.4], a

} v(s)ds. The right-hand-side is the normal cone to the tangent

crucial property for stabilization is that thmne complementarity problem
Nryxan(w(t)) 3§ Lw(t) € To(X (1)) (10)

defines a monotone mappifig— w, because the two con&$(-) andNe(-) are polar cones [22],
andNr, x ) () € Na(-). This monotonicity property allows one to use dissipaigitguments in
an absolute stability framework to derive a Lyapunov fumctiLet us consider now the tracking
control problem. The new (closed-loop) state vecto(r)i’s )L(). Therefore the right-hand-side of
the closed-loop measure differential inclusion becomesritrmal coneVy, ;)1 x, ) (@(t) +
wa(t)), ith wy(t) = L) The setdly, () = To(+Xa(t)) andNyy (-) £ Na,, (-+wa(t))
are now time-varying, and the monotonicity property is gal lost. This explains why the
trajectory tracking problem is much more intricate thangtabilization counterpart, as even
passivity-based controllers generally fail to preserve passivity of the overall closed-loop
system. We shall however call the controller that is desigimethe next Section a passivity-
based controller, because the closed-loop stability w8katially rely on the use of an energy-like

function (see (14) below).

[1l. CONTROLLER DESIGN

In order to overcome some difficulties that can appear in cimeroller definition, the dynamical
equations (1) will be expressed in the generalized cootelnatroduced by McClamroch &
Wang [24]. We suppose that the generalized coordinatesftnanation holds globally ind,
which may obviously not be the case in general. However, thdysof the singularities that
might be generated by the coordinates transformation iobthe scope of this paper. Let us
considerD = [I,,, : O] € R™*", [, € R™*™ the identity matrix. The new coordinates will be

T
q1

q=Q(X) € R*, with ¢ = ,q1= | + | suchthatd = {q| Dq > 0}2 The tangent
q2

%In particular it is implicitly assumed that the functidn(-) in (1) are linearly independent.
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coneTs(q1 =0) = {v | Dv > 0} is the space of admissible velocities on the boundarg.of
The controller used here consists of different low-levehtool laws for each phase of the

system. More precisely, the switching controller can beresged as

U forte QY
T(QU=4q U/ fortel! (11)
Ul forteQf

[

T
whereT(q) = 1a) € R™™ is full-rank under some basic assumptions (see [24]). The

T>(q)
dynamics becomes:

(

My (q)gi + Mi2(q)de + Ci(q, )+ 91(q) = Ti(q)U + A
Mar(q)g1 + Maz(q)Ga + Ca(q, 4)q + g2(q) = Ta(q)U

| | (12)

Collision rule
where the set of complementary relations can be written roonepactly ag) < A 1. Dg > 0.

In the sequell,,. coincides with the fixed-parameter controller proposedli@],[[32] and
the closed-loop stability analysis of the system is base®rmposition 1. First, let us introduce
some notationsj = ¢ — qu, = q—qj, s = {+724 5 = G+ 720, 4 = Ga — 12§ Wherey, > 0 is
a scalar gain and,, ¢; represent the desired trajectories defined in the previecisos. Using

the above notations the controller is given by

Une = M(q)de +C(q,4)de + G(q) — m1s

p

A UtJ = U;L]c? t S té
TUu=q . N ] ) (13)
Ul = M(@)de+C(q,4)Ge + G(q) —5,, t >t

| U/ = Upe— Pi+ Ky(P,— Py)
where~; > 0 is a scalar gaink; > 0, P, = D"\ and P, = D)\, is the desired contact force
during persistently constrained motion. It is clear thatmw(2; not all the constraints are active
and, therefore, some components)oénd \; are zero.

In order to prove the stability of the closed-loop system){13) we will use the following

positive definite function:

. 1 s
VwawzigM@ﬁ+%wfq (14)
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IV. TRACKING CONTROL FRAMEWORK

In this paper we treat the tracking control problem for thesed-loop dynamical system (11)—
(13) with the complete desired path a priori taking into astahe complementarity conditions
and the impacts. In order to define the desired trajectorydetonsider the motion of a virtual
and unconstrained particle perfectly following a trajegtrepresented by "<(-) on Figure 2)
with an orbit that leaves the admissible domain for a givenope Therefore, the orbit of the
virtual particle can be split into two parts, one of them Ipglmg to the admissible domain
(inner part) and the other one outside the admissible doaeaiter part). In the sequel we deal
with the tracking control strategy when the desired trggcts constructed such that:

() when no activated constraints, it coincides with thgetttory of the virtual particle (the
desired path and velocity are defined by the path and velaxfitthe virtual particle,
respectively),

(i) when p < m constraints are active, its orbit coincides with the progec of the outer
part of the virtual particle’s orbit on the surface of codm®np defined by the activated
constraints ¥, betweenA” and C' in Figure 2),

(i) the desired detachment moment and the moment when ittheal particle re-enters the
admissible domain (with respect o< m constraints) are synchronized.

Therefore we have not only to track a desired path but alsmpmse a desired velocity allowing

the motion synchronization on the admissible domain.

The main difficulties here consist of:

« stabilizing the system o6® during the transition phasef,gfk and incorporating the velocity
jumps in the overall stability analysis;

« deactivating some constraints at the moment when the utregred trajectory re-enters the
admissible domain with respect to them;

« Mmaintaining a persistently constrained motion betweenntibenent when the system was
stabilized ono® and the detachment moment.

Remark 4:The problem can be relaxed considering that we want to trabka desired path

like X™<(-) (without imposing a desired velocity on the inner part of desired trajectory and/or

a given period to complete a cycle). In this way the synctration problem (iii) disappears and

we can assume there exists a twice differentiable desiggelctory outsidetj, ] that assures
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the detachment when the force control is dropped. In othedsyon this case we have to design

the desired trajectory only duringf’“ phases.

A. Design of the desired trajectories

Throughout the paper we considgf = [7f, t5], where7} is chosen by the designer as the
start of the transition phasQ”“ and t’} is the end ofI,;”“. We note that all superscripfs)® will
refer to the cycle: of the system motion. We also use the following notations:

« t is the first impact during the cycle,

. tk is the accumulation point of the sequereg} -, of the impact instants during the cycle

k(th > th),

. 7 will be explicitly defined later and represents the instahewthe signaX;(-) reaches a
given value chosen by the designer in order to impose a cllasgddynamics with impacts
during transition phases,

. tk is the desired detachment instant, therefore the phaféeg can be expressed &§,t}].

It is noteworthy thatf, % t* are state-dependent where@sandr} are exogenous and imposed
by the designer. To better understand the definition of tkpseific instants, in the Figure 2 we
simplify the system’s motion as follows:

« during transition phases we take into account only the caimss that must be activated
T\ .

. at the end of)y;,; phases we take into account only the constraints that muithetivated
T\ i1

The pointsA, A’, A” and C' in Figure 2 correspond to the moment§, ¢(, t% and ¢} re-
spectively. We have seen that the choicerpfplays an important role in the stability criterion
given by Proposition 1. On the other hand in Figure 2 we seedfiaating from A the desired
trajectory X,(-) = X;(-) is deformed compared t&"(-). In order to reduce this deformation
7% and implicitly the pointA must be close t@® (see also Figure 4). Further details on the
choice ofr¥ will be given later. Taking into account just the constraift\ J;; we can identify

tk with the moment whenX,(-) and X™<(-) rejoin atC'
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X1(t) = X3(0) = X,0)

ch(t)

Fig. 2. The closed-loop desired trajectory and control signals

B. Design ofg;(-) and ¢4(-) on the phaseg;*

During the transition phases the system must be stabiliredido Obviously, this does not
mean that all the constraints have to be activated{j@) = 0, Vi = 1,...,m). Let us consider
that only the firstp constraints (eventually reordering the coordinates) defire border ofd
where the system must be stabilized. @f, &) we defineg;(-) as a twice differentiable signal
such thatg’(-) approaches a given point in the normal ca¥g(q, = 0) on [7¥, 7¥]. Precisely,
we defineg(-) such as:

« during a small period > 0 chosen by the designer the desired velocity becomes zero pre

serving the twice differentiability of(-). For instance we can use the following definition:

\ t—15 —0)%(t — 1)
i) = (b + =TT et
which meansy; (g +0) = q;(73) = ¢"*(75),  da(7§ +0) = 0 andj(75) = ¢"*(73))
t— (1 +90)

« choosingy > 0 and denoting’ = 7 the component$q’)”, i = 1,...,p of (q;)p

are defined as:
. )3 +as(t)? +ag, t€ [+ 6, min{rF;tk
(qé) (t) = as( )1 az(t')* + ag | 70 min{7y’; £ }] (15)
—V3(r5), t € (min{rf;tH}, tf]
whereV/(-) is defined in (14) and with the coefficients given by:
as = 2(¢")" (1) + V(1))
a; = =3[(¢")" (15) + oV (75)] (16)

a = (¢)"(75)
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. all the other components af;(-) are frozen:

(@3)n_p (t) = @i, (70), € () +6,t]] (17)

The rationale behind the choice gf(-) is on one hand to assure a robust stabilizatioro®n
mimicking the bouncing-ball dynamics; on the other hand nalde one to compute suitable
upper-bounds that will help using Proposition 1 (heh@é’(-) terms in (15) withV/(-) in (14)).

Remark 5:1) Straightforward computations show thgt(-) satisfies the following relations.
(4)" () = =eV3(), (@) () = 0,6 =1,...,p

2) Two different situations are possible. The first is giventp > 7F (see Figure 3) and we
shall prove that in this situation all the jumps of the Lyapuriunction in (14) are negative.
The second situation was pointed out in [5] and is givertfpy: 7. In this situation the first
jump att} in the Lyapunov function may be positive. It is noteworthgith’(-) will then have
a jump at the time” since (¢})*(t6") = —V'/3(7F), Vi = 1,...,p (see (15)).
In order to limit the deformation of the desired trajectqfy-) w.r.t. the unconstrained trajectory

q"“(+) during thel, phases (see Figures 2 and 3), we impose in the sequel

gy (w)]] < v (18)

wherey > 0 is chosen by the designer. It is obvious that a smallerads to smaller deformation
of the desired trajectory and to smaller deformation of teal trajectory as we shall see in
Section VIII. Nevertheless, due to the tracking erigicannot be chosen zero. We also note that
lqie(7§)]] < ¢ is a practical way to choosg.

During the transition phasds we define(qq),,_, (t) = (¢;),,_, (t). Assuming a finite accumu-

n—p
lation period, the impact process can be considered in soayeequivalent to a plastic impact.

Therefore,(¢a), () and(¢a), (-) are set to zero on the right of.

V. DESIGN OF THE DESIRED CONTACT FORCE DURING CONSTRAINT PHASES

For the sake of simplicity we consider the case of the comtghase(;], J # 0 with
J ={1,...,p}. Obviously a sufficiently large desired contact forBg assures a constrained
movement orf);. Nevertheless at the end of the, ., phases a detachment from some surfaces
Y; has to take place. It is clear that a take-off implies not anlyell-defined desired trajectory

but also some small values of the corresponding contace fooecnponents. On the other hand,
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k k
ty > T

Tk
( 2

(@ T v IR

Fig. 3. The design of;}, on the transition phases

if the components of the desired contact force decrease tamhra detachment can take place
before the end of th€; phases which can generate other impacts. Therefore we niescea
bound of the desired force which assures the contact duhie@f phases.
Dropping the time argument, the dynamics of the systenf2prcan be written as
M(q)G+ F(q,q) = U.+ DI,
0<¢q LA\>0

(19)

where F(q,q) = C(q,¢)q + G(q) and D, = [I, : O] € RP*™. On Q] the system is permanently
constrained which implieg,(-) = 0 and ¢,(-) = 0. In order to assure these conditions it is
sufficient to have\, > 0.

In the following let us denoté/~!(¢) = ’ ’ and
C(q7 Q)P7P C(q7 Q)p,n—p

C(q, Dn-pp C(@ Dn—pn—p
Proposition 2: On (] the constraint motion of the closed-loop system (19),(18),is assured

C(q,q) = where the meaning of each component is obvious.

if the desired contact force is defined by

55 M@ 1y :
()\d)p =p 1+ K, ([M (@]p.rCrn—p(a: 4)+ (20)

[M_l(q)]p,n—pcn—p,n—p(% Q) + M [M_l(q)]pm—p) Sn—p
where M, ,(q) = ([M~(q)l,,) " = (D][,M‘l(q)D;f)_1 is the inverse of the Delassus’ matrix
andg e R, 3> 0.
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Proof: First, we notice that the second relation in (19) impliestgn(see [14])
0<G, LA\ >00<D,jL >0 (21)
From (19) and (13) one easily gets:

G=M"(a)[ ~ F(g.d) + Une + (1 + K7) Dy (A = Aa)y]
Combining the last two equations we obtain the following L@fh unknown,,:

0 < DM~ (q)[ = F(q,4) + Une — (1 + K7) D} (M), |

+(1+ K;)D,M Y (q)DJX\, LA, >0

(22)

Since(1+ K;)D,M~'(¢q)D} > 0 and hence is a P-matrix, the LCP (22) has a unique solution
and one deduces thaf, > 0 if and only if
M, ,(q)
1 + Kf

DM~ (q)[Une — F(q,4) — (1+ K5)D] (Xg), ] <0

& (y > T2 DM ) U~ Pl

& 0, = 0+ 1220 DA ) U~ Fla.d) 29

with g € RP, g > 0. SinceU,. — F(q,4) = M(q)¢. — C(q,4)s — 1S, (¢.), = 0 and s, = 0,
(23) rewrites as (20) and the proof is finished. It is notelpthat

Ap = _jle_’p[(?f) DpM_l(Q) [Unc - F(q,q) — (1+ Kf)DZ ()\d)p]
= (M), = ]1\4+ I<(;

DyM~(q)[Une — F(q,9)] = 8
u
Remark 6: The control law used in this paper with the design\gfdescribed above leads to

the following closed-loop dynamics dn/.

My n—p(@)$n—p + Cpnp(q: @) S$n—p = (1 + K)(A = Aa)p

My —pn—p(@)$n—p + Crnpn—p(q, §)Sn—p + Y15n—p = 0

=0, A =0
It is noteworthy that the closed-loop dynamics is nonlinead therefore, we do not use the

feedback stabilization proposed in [24].
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VI. STRATEGY FOR TAKE-OFF AT THE END OF CONSTRAINT PHASES)),
We have discussed in the previous sections the necessityrajfeatory with impacts in order
to assure the robust stabilization 6@ in finite time and, the design of the desired trajectory
to stabilize the system ofi®. Now, we are interested in finding the conditions on the aintr
signalU; that assure the take-off at the end of constraint ph@ges . As we have already seen
before, the phas@y, ,, corresponds to the time intenva}, ;). The dynamics oft}, ¢f) is given

by (19) and the system is permanently constrained, whicHiésip,(-) = 0 andg,(-) = 0. Let
us also consider that the firstconstraints £ < p) have to be deactivated. Thus, the detachment

takes place at’ if §.(t5") > 0 which requires\,(t~) = 0. The lastp — r constraints remain

active which means,, .(t7) > 0.

To simplify the notation we drop the time argument in manyamuns of this section. We
decompose the LCP matrix (which is the Delassus’ matrix iplidd by 1 + K) as:

Ai(q)  Aq(q)

1+ K;)D,M " (q)D] =
LRI Aala)" Aylg)

with A, € R™", A, € R™*P=7) and A3 € RP—)x(p-7)
Proposition 3: For the closed-loop system (19),(11),(13) the passage wiremumber of

active constraints decreases frgno p — r (with » < p), is possible if
M), () | [ (A= A7 AD) 7 (b — A2AT'h,,) — O ”
(Aa),-, (td) Cy + A3" (bp-r — A7 (Na),)
— F(g,4)] >0

where
bil’ = b(Qv Cju Unc) £ DpM_1<Q)[UnC

and(C; € R", (5 € RP~" such thatC; > 0, C5 > 0.

Proof: From (13) and (19) one gets
Gp(t) = by + (1 + Ky) DM~ (@) Dy (A = Aa)

Therefore the LCP (21) rewrites as:
Ar b, + Ai1( A — Ag)r + As( A — Ag)pr
0< N 1 a) 2( d)p >0 (25)
Apr by + AT (XN = Xg)r + Az(X — Aa)per
Under the conditions,, = 0 and A\,_, > 0 one has
0< Ay Lby o —AT(Ng)r + As( A = Ng)pr >0
DRAFT
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with the solution
Aoy = =AY (byr — AT (Na)r — A3(Na)p—r) (26)

Thus \,_, > 0 is equivalent to
Addp-r > A3 (by-r = A (Ma),)

which leads to the second part of definition (24). Furtheemeeplacing(A;),—. in (26) we get
Ap—r = Cy andb, + A1 (A — A\g), + Aa(A — A\g)p—r > 0 yields the first part of definition (24). To

0
conclude, the solution of the LCP (25) ls = € R? and(\,;), is defined by (24).m
Cy

Proposition 4: The closed-loop system (19),(11),(13) is permanently waimed on[t’},t’;)
and a smooth detachment is guaranteedtprt” + ¢) (¢ is a small positive real number chosen
by the designer) if

(i) (Aa), () is defined onlt}, t)) by (24) whereC, is replaced byC (t — t}).

(i) On [th, ¢ + ¢)
2(t) = qa(t) = 7 (1) ,
%lt) = at) (qgcr(t)

whereg?(-) is a twice differentiable function such that
g;(tg) = 0, q;(tg+e) = aqr(tq+e),
G:(tg) = 0, d;(tg+e) = dr(tg+e)
and 7 (th7) = a > max (0, —Ai(g) (\a), (t57)).

(27)

Proof: (i) The uniqueness of solution of the LCP (21) guarantees (2@ and (24) agree
if C; < 0. In other words, replacing’; by C,(t — t¥) in (24) we assure a constrained motion
on [t},t}) and the necessary conditions for detachmenftprt} + ¢).

(i) Obviously (27) is imposed in order to assure the twicéedentiability of the desired

trajectory. Finally, straightforward computations shdwatt

Tty = G (tg ) + Ar(a) (Na), (87)

which means that the detachment is guaranteed and no otlpacisnoccur when the desired
acceleration satisfieg (t}") > max (0, —A;(q) (\a), (t57)). |
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VIlI. CLOSED-LOOP STABILITY ANALYSIS

In the cased = R", the functionV' (¢, s, ¢) in (14) can be used in order to prove the closed-
loop stability of the system (12), (13) (see for instancg.[8] the case studied heré (C R")
the analysis becomes more complicated.

To simplify the notationV'(t, s(t), ¢(t)) is denoted ad/(¢). In order to introduce the main
result of this paper we make the next assumption, which igi@erin practice for dissipative
systems.

Assumption 1:The controllerU; in (13) assures that all the transition phases are finite (see
Definition 6) and the accumulation poitft, is smaller thant® for all & € N.

It is worth to precise that during the stabilization on theersection ofp surfaces; we do not
know which one and how many surfaces are stroked. Howevessumze that all the impacts are
pe-impacts in the sense of Definition 3. The proofs of the next tesults are in the Appendix.

Lemma 1:Consider the closed-loop system (11)-(13) witfj),(-) defined on the interval
(7%, tk] as in (15)-(17). Let us also suppose that conditiyrof Proposition 1 is satisfied. The

following inequalities hold:

7h
latit) L sl < 4 e
(28)
i H<(wﬁ B
Furthermore, iftf < 7% one has

- V()

¢k <e+ 0
[1(ga)p (o) P (29)

1(da)p(t5 )| < K + K'VYo(r5)
wheree is the real constant fixed in Definition 3 afl K’ > 0 are some constant real numbers
that will be defined in the proof (see Appendix A).
We now state the main result of this paper.

Theorem 1:Let Assumption 1 holde € [0,1) and(q}), defined as in (15)-(17). The closed-
loop system (11)-(13) initialized 0}, such thafi’ (7)) < 1, satisfies the requirements of Propo-
sition 1 and is therefore practically weakly stable with tiesed-loop state:(-) = [s(-), ¢(-)]
andR = \/ T (1 4+ Ky 4 Ky + €)/p where p = min{ A pin (M (q))/2; 1172} and K, Ko
are defined in the proof (see Appendix B).
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VIIl. | LLUSTRATIVE EXAMPLE
A. A planar two-link rigid-joint manipulator with one comatnt

The main issues of the control scheme proposed in this papdirst emphasized simulating
the behavior of a planar two-link rigid-joint manipulator presence of one unilateral constraint.
The admissible domain is the upper half plane 0 and the unconstrained desired trajectory
q"“(-) is given by a circle that violates the constraint. Precist#ig end effector must follow
a half-circle, stabilize on the constraing & 0) and move on the constraint until the point
where the circleg,"“(-) re-enters the admissible domain. The lendihd, of the manipulator’'s
links are set td).5m, and their masses:;, m, are set tolkg. The impacts are imposed using
the parameterp = 100 in (15)-(16). The numerical simulations are done with therdéw’s
time-stepping algorithm of theiSoNnoOs software platform [2]. The choice of a time-stepping
algorithm was mainly dictated by the presence of accunariatof impacts which render the use
of event-driven methods difficult [1]. A further reason taoose the 8 0NOS software platform
for the simulation of the complementarity systems condistsocapability to automatically and
quickly solve LCPS’.

Let us sete = 0.7, v; = 8, 7o = 7, 10 seconds the period of each cycle and 30 seconds the
final simulation time. First, let us point out (Figure 4 (}fthe influence ofy (i.e. the choice

of 7¥) on the degree of deformation of the real trajectory w.né tlesired unconstrained one.
As we have pointed out in Section IV the deformation gets Enalhen«) > 0 decreases. It

is noteworthy that the tangential approach corresponding & 0 lacks of robustness and is
unreliable due to the nonzero initial tracking errors.

For ¢» = 0.01 in Figure 4 (right) we illustrate the trajectory of the systeduring the
stabilization ono® = {(x,y) | y = 0}. The switches of the controller during the first cycle
are depicted in Figure 5 (left). Clearly since the velocitynps, the controller jumps as well.

The Figure 5 (right) presents the variation of the contaotdo\. Precisely, one sees that
remains O during the free motion phases and it points out eaphct during transients (better

seen onl, since the impacts are more violent). The contact forde designed as a decreasing

*The control scheme proposed in the paper may require to smiMeCP of dimensionn ~ 10 (reasonable in some control
applications). But this requires a specific solver since ubgal "hybrid” methods must tre&™ cases and quickly become

inefficient [1].
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Fig. 4. Left: The influence oy on the real trajectory’s deformation for controller's gaiset toy; = 8, v2 = 7.
Right: The trajectory of the end-effector on the transitgirases whery = 0.1.

Ti(qU

Fig. 5. Left: The switching controller on the first cycle; Right: \éion of the contact force\

linear function during constrained motion phasgs,; in order to allow a smooth detachment
at the end of these phases. It is worth to mention that the iagnof A\ depends indirectly
on V(7). Precisely, wher/(7}) approaches zero the system tends to a tangential staloifizat
on 9@ which implies larger values of and consequently smaller length [d#, tk] and smaller
magnitude of the contact force measured)ofsee Proposition 4).

Figure 6 shows that the tracking error described by the Lyapdunction rapidly decreases
and remains close to 0. In other words the practical weaklgyals guaranteed. On the zoom
made in Figure 6 one can also observe the behavidf(of during the stabilization on®, that

is an almost decreasing function.

B. The influence of the time-step on the closed-loop dynamics

In the next tables we summarize some numerical results whea 0.01, e = 0.7, 1 =
35, 72 = 20. The period of each cycle is set to 5 seconds and the final atranltime rest
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Fig. 6. Variation of the Lyapunov function fofy; = 8,~, = 7; Zoom: Variation of the Lyapunov function during
the phasd

30 seconds. First, one can see that the length of the tramgithasel, with respect to the
time-steph does not vary significantly when the time-step decreasesutealso denote by
C'PU the computing time necessary for the simulation (using #&l(R) Core(TM)2 CPU 6300
1.86GHz) of one cycle.

h 1073s | 10~%s | 10~ 5s 10~ %5
Alo] | 0.945 | 0.9536 | 0.9525 | 0.9523
CPU 1.5s 11.2s | 111.3s | 1072.2s

The evolutions of the number of impaatsw.r.t. the restitution coefficient and the time-step
h are quite different. As expected,; becomes larger when the restitution coefficient increases.
Also, one can see that the accumulation of impacts can bereapivith a higher precision when
the time-step becomes smaller.

=

e\h| 1073s 10~ 107°s 10~ 55

0.5 ni:6 ni=9 ni:12 ni:16
0.9 n; = 23 n; = 40 n; = 64 n; = 81

095 | n; =32 | n; =67 | n; =108 | n; =161

However, a larger number of captured impacts does not chdregglobal behavior of the

simulated system and the transition phase ends almost igaitne moment wheh varies, see
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Allp] in the first table. Such results are not surprizing in view lué fact that the numerical
method converges [1, Theorem 10.7].
In conclusion, reliable simulations with a reasonaldlé’U time can be performed with the

Moreau’s time-stepping scheme of tBecoNos platform, with a time-ste = 10~ %s.

C. A planar two-link rigid-joint manipulator with two consiints

In the sequel we introduce another constraint into the press/dynamics. Precisely we impose
an admissible domai® = {(x,y) | y > 0, 0.7 —x > 0}. Let us also consider an unconstrained
desired trajectory given by the circléz, y) | (z—0.7)?+y? = 0.5} that violates both constraints.

In other words, the two-link planar manipulator must traakuarter-circle; stabilize on and then
follow the line ¥, = {(z,y) | y = 0}, stabilize on the intersection af; and >, = {(z,y) |

x = 0.7}; detach from¥; and follow X, until the unconstrained circle re-entebsand finally
take-off from X, in order to repeat the previous steps. It is noteworthy thattask presented
above is not of type (8) since after a constraint phase (wherehd-effector is attached o)
follows a transition phase containirdg-impacts according to Definition 3 (the system must be
stabilized on the intersection; N ¥,) instead of a detachment. However, the manipulator can
accomplish the task under consideration and any other tegkuse as ingredients: impacting
transitions, take-off from some surfaceseven remaining attached to other ones, constraint and
free-motion phases without imposing a specific succesdidhi® phases.

Let us consider in this case that a cyclefls, U I} U Q3 U I7 U Q3. whereQy, is
the free-motion phase anf, Q2,,., are the impacting transients and the constrained phases
associated to the surface;. The numerical values used for the dynamical model are again
li =1y =0.5m, I, = I, = 1kg.m? m; = my = 1kg and the restitution coefficient, = 0.7.

The impacts are imposed hy = 100 in (15) (16) and the beginning of transition phases are
defined usingy = 0.05 in (18). We impose a period of 10 seconds for each cycle and we
simulate the dynamics during 6 cycles. Setting the comraiinsy; = 15, v» = 15 we see

in Figure 7 (left) that the desired trajectory is accurafeljowed. The same conclusion can be
deduced looking at the variation of the Lyapunov functiootigd in Figure 7 (right). In this case
we have imposed a constant contact-fodgeduring the motion on the surface, (see Figure

8 (left)) and a decreasing contact-force, that allows a smdetachment, during the motion on
Y, (see Figure 8 (right)).
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Fig. 7. Left: The trajectory of the system during 6 cycles; Right:@pom on the transition phases during the first
cycle; Right-Down: The variation of the Lyapunov function the last 5 cycles.

]
]

)\1 )\2

Fig. 8. Left: Variation of the contact force during the motion &@h; Right: Variation of the contact force during
the motion onX,

IX. CONCLUSIONS

In this paper we have proposed a methodology to study th&itigacontrol of fully actuated
Lagrangian systems subject to multiple frictionless uaia constraints and multiple impacts.
The main contribution of the work is twofold: first, it formates a general framework and
second, it provides a complete stability analysis for thesglof systems under consideration.
It is noteworthy that even in the simplest case of only onetibnless unilateral constraint the
paper already presents some notable improvements witkaespthe existing works. Precisely,
the stability analysis result is significantly more gendran those presented in [5] and [9]

and, each element entering the dynamics (desired trajecontact force) is explicitly defined.
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Numerical simulations are done with thec®Nos software platform [1], [2] in order to illustrate

the results.

APPENDIX
A. Proof of Lemma 1

From (14) we can deduce on one hand that

V(t5™) = mella(ts )|

and on the other hand
_ 1 _ _ _
V(tg) > is(t’é )M (q(t5))s(t67)

Since conditionb) of Proposition 1 is satisfied one hag(rF) > V(tk~) and the first two
inequalities in (28) become trivial. Let us recall thatt) = G(t) + 12G(t) which implies
HGEED| < |[s(tE)|| + 72||d(tE7)||. Combining this with the first two inequalities in (28) we
derive the third inequality in (28).

For the rest of the proof we assume th@at< 7F. Therefore(q),(th~) = (¢}),(t). It is clear
that

[1(qa) (b I < 1@t + [an(E)I]

Taking into account that® is a p.-impact (which mean$|q,(tf)|| < e), the first inequality in

(29) becomes obvious.
tﬁ—ré“—&
le—’rg—é

From (15), (16) and the first inequality in (29), foe=1,...,p one has

Let us denote), = € [0,1]. We recall here that} was chosen such thgy!“(7§)|] < 1.

3 — \nc \nc V Tk
G) = [ + oV )] (200)° = 3(E)%) + (4" < ey 2
It follows that .
1\nc (7' )
(¢") (T’“)—E—\/V 0
3t,2—2t,32 ' Y172
)" =202 ety + V)
Fort > 0 one ha2t — t2 > 3t2 — 2t3, therefore
i\nc( -k V(Tk)
2t1_(t/)2>(q) (T)_E_ “/1’;)2
BT (ghme(rh) + V()
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which means that

V() 1/3(k
1ty < 71;)2 + QV3(15) + €
= (g)e(r) + eV (rg)

Straightforward computations lead to
6((¢")"(m) + V'3 (1))

5157 = e (i (1))

Sincet), — (#,)> <1 —t, and from (18) one ha&;’)"“(}) < ¢, one arrives at

(5] < 6((¢")"(5) + V(7))

11—t
-1k —§ ( )
6 V(7F)
< - + oV 1/3(1k SN0 VB (7R e
7_{6_7_6@_5 (¥ +o (79)) P, 2 (70)
6 QVB/6(7h) 4+ V1/2(7h)
= e+ (b + ep)VIB(TE) 4 o2V 23 (1) + 0 0
T{C—Téﬂ—(S\/qb (¢<P @) (0) ¥ (0) 172

SinceV (7F) < 1 (thus VP () > V(1) for p; < py) one obtains

i (k- 6 1
4405 < o \/we+ KW w) (o +0) +e4 Vis(sf)

61/ +6\/(ﬁ+<ﬂ> (p+v) +ep

BT A T

VYo(rf)
Therefore, the second inequality in (29) holds with

6+/pe o 6\/p

1
K =
T Mo ) e

B. Proof of Theorem 1

First we observe that conditiorsg and d) of Proposition 1 hold when the hypothesis of the
Theorem are verified. Thus in order to prove Theorem 1 it ifcseft to verify the conditions
b), c) ande) of Proposition 1. It is noteworthy that during the transitiphases[,;]’“ somep.—
impact occurs (according to (8) we havg = {1,...,p}). This means that we do not know
which and how many of them are the constraints touched at eantact. However, in the
neighborhood of the desired stabilization point situatedacsurface of codimensign only the

correspondingy constraints enter the dynamics. In the sequel we shall adsothee function
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Va(t,s) = 3s(t)7M(q)s(b).

b) Using thatM (q) —2C(q, ¢)) is a skew-symmetric matrix, straightforward computatishew

that onR, \ U,5,[t6, t5] the time derivative of the Lyapunov function is given by
V(t) = —ms"s + 2m74" ¢ = =gl — n3 gl

On the other hand

V(t) < )‘ma:v(M(q))

< 5l +yellall® < a7 nllgl® + s llall’]

where

I+ 27y Amae(M(q)) (72 +2) + 2'71} -0
2y 27172

ThereforeV'(t) < =y 'V () on Ry \ Uysolth, t5].
¢) By definition

+~! = max {AW(M ()

V(th) = V() = Viltin) = Viles ) + mel(@ (t55)a(ten) — (@ (&)™) (30)

On the other hand, straightforward computations show that

Viltis) —Vityt) = / Vi(t)dt = 7172/ s, (1)(g)p(t)dt — 71/ s(t)"s(t)dt

(t tF 1) (t5:t6 1) (tt541) 31)
Furthermore,
[, sstdi= [ 01+ 3P+l (et - @ E)ack)
(tf vt§+1) (tf vt§+1)
(32)
Therefore, inserting successively (32) in (31) and (31)3@) (one arrives at
Vi)~V S [ s (33)
t[ 7tZJrl

In the sequel let us denote I#(q) the sum of all the components of the vectorTaking into

account the definition (15) and the fact th{a}), and(4,), are set to zero af™ one obtains

/ sy (D)(g7)p(D)dt = =V (75) - (/ S(gp(t))dt + 72/ S(Qp(t))dt>
(¢ t41) (¢ 2510 (tF 2540
Sincepy,VY3(7k) > 0 and S(g,(t)) > 0 it follows that
tlz+1
/ sp (O)(@D)p()dt < V2 (73)[S(ap(t5)) — S(gp(tF1))]
t
March 31, 2008 DRAFT

Preprint submitted to IEEE Transactions on Automatic Control. Received: March 31, 2008 08:02:42 PST



CONFIDENTIAL. Limited circulation. For review only

29
Thus

VL) = VED)] < mmeeV 2 (r8) S (a(16) < 1av20V Y2 (76) V3l an(86) ]

£>0

Recalling thatt} is an p.-impact which means thatg,(¢%)|| < ¢ one obtains
> Vi) - V)] < Kav ()
>0

where K| = v/3vy17ap¢ > 0 andp; = 2.

e) First, let us compute the Lyapunov function’s jumps at th&tdntsts, ¢ > 1. Using the
continuity of the real trajectory(-) and the definition of the desired trajectayy(-) on the I,
phases (i.eqi(ti*) = qa(t}7), qa(tf™) = 0 = ¢a(t}~)) one gets
s" (L) Mys(ty ") — s (t; ") Mys(t;”)

2 (34)

ov(ty) = V(") = V(t;™) = mreoyqe(tf) +
= Ty (t§) +2q(t§) " Meoy(t;)

where M} denotes the inertia matrix/ (q(t})) and 7}, is the kinetic energy loss at the impact
time .
From equation (5) one hdg;, (¢f) < 0 and equation (34) becomes (1) < 1oG(t§)T Myo4(t}).
Let us recall thatM,o,4(t}) is the percussion vector (see [7]). On the other hand inXhe
coordinates the percussion vector can be expresseW /sX)A. Writing the latter in the
generalized coordinates introduced in Section Il oneiabta/,o;(tf) = DT X. In other words

the generalized coordinates introduced in Section |1l cidieé with the so called quasi-coordinates

T (t})

and the vectotj,,, is in factq, ., (i.e. o,(t) = where0,,_,, denotes the: — m

n—m

vector with all its components equal zero). Therefore
ov(ty) < 12q(tf)" Meog(tg) = 724, (t)" A, = 0 (35)

where we have usedy,),(ti") = 0 = (qu),(t;7) and the last equality is stated using the
complementarity relation entering the dynamics.

The Lyapunov function’s jump corresponding to the first irctpef each cycle can be computed
as:

sT(ts ") Mos(t6") — 5™ (tg™) Mos(t ")

ov(ty) = V(tgT) = V(t§™) = 1m0y q2(t5) + 5

(36)
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o It is clear thattt > 7F implies q;(tf") = qq(tE™) and g4 (tE™) = 0 = ¢4(tE7). Thus, the
computations for}, ¢ > 1 hold also fort}.

o I £ < 7 one has(qa),(th~) # (aa),(th*) = 0 and (da),(th ™) # (da),(th*) = 0. Then the
initial jump of each cycle is given by:

2
o (86) =TL(t6) + da(tt )" Mog(th™) + 2 (@l Mod(tsh) — q(th ™) Mod(tf 7)) an

. - L b L. e ke
+ 72 (G5 Mog(t6™) — gt )" Moq(ts™)) — 5%@8 )" Moda(ts™)
Since Ty (t5) < 0 the equation (37) rewrites as:

v (t5) < Amaa(M(g ))[w (1Ga)s (t DI Nt I+ ats I - [(aa)p(t57)I1) Jr%ll(qd)p(t'é‘)ll2

+ 72—2 (oI + 112t I + 21 (ga)p (6 [ldn—p(t5 1) + [1(da)n(t5 I - ||d(t’8‘)H]

(38)
Obviously ||¢(t57)|| = ||g(tE™) 7)|| and Lemma 1 combined with (7§) < 1 yields
ll(ts™ ||<K+<\/ \/ +K’> Vi/5(rg)
Therefore
ov(ty) < K2VP(15) + €
wherep, = 1 € = K2 4 1y K + 25 and
2 2
Ky = Amaa(M(q)) |3KK' + 72, [2 4 \/ 72 +2 12
4! mzn 4!
K’+K<,/72 NSwerien >+wz<,/72 NSwerien +K>
4! mzn mzn
Defininga : Ry — R, a(w) = pw? we geta(0) = 0 and a(]|[s( ) < V(t, s,q). Thus,
Proposition 1 also ylelds
R=a (e "G 5)(1 4+ Ky + Ky +€)) = \/e W14 Ky + Ko+ €)/p
which ends the proof.
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