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Passivity-based tracking control of

multiconstraint complementarity Lagrangian

systems

Irinel Constantin Mor̆arescu∗, Bernard Brogliato#

Abstract

In this study one considers the tracking control problem of aclass of nonsmooth fully actuated

Lagrangian systems subject to frictionless unilateral constraints. A passivity-based switching controller

that guarantees some stability properties of the closed-loop system is designed. A particular attention

is paid to transition (impacting) and detachment phases of motion. This paper extends previous works

on the topic as it considers multiconstraintn-degree-of-freedom systems.

Index Terms

Lagrangian systems, Complementarity problem, Impacts, Stability, Tracking control, Passivity-based

control, Nonsmooth systems.

I. INTRODUCTION

The control of mechanical systems subject to unilateral constraints has been the object of

many studies in the past fifteen years. Such systems, which consist of three main ingredients

(see (1) below) are highly nonlinear nonsmooth dynamical systems. Theoretical aspects of their

Lyapunov stability and the related stabilization issues have been studied in [10], [21], [19],

[33]. The specific yet important task of the stabilization ofimpacting transition phases was

analyzed and experimentally tested in [18], [30], [31], [34], [35], [36]. From the point of view of
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tracking control of complementarity Lagrangian systems along general constrained/unconstrained

paths, such studies focus on a module of the overall control problem. The problem of robust

impact detection with only position measurement received attention in [6]. One of the first works

formulating the control of complete robotic tasks via unilateral constraints and complementarity

conditions was presented in [17]. In that work the impacts were considered inelastic and the

control problem was solved using a time optimal problem. Thetracking control problem under

consideration, involving systems that undergo transitions from free to constrained motions, and

vice-versa, along an infinity of cycles, was formulated and studied in [9] for the 1-dof (degree-

of-freedom) case and in [5] for then-dof case. Both of these works consider systems with only

one unilateral frictionless constraint. In this paper we not only consider the multiconstraint case

but the results in Section VII relax some very hard to verify conditions imposed in [5] to assure

the stability. Moreover the accurate design of the control law that guarantees the detachment

from the constraints is formulated and incorporated in the stability analysis for the first time.

Considering multiple constraints may be quite important inapplications like virtual reality and

haptic systems, where typical tasks involve manipulating objects modelled as rigid bodies [12]

in complex environments with many unilateral constraints.We note that in the case of a single

nonsmooth impact the exponential stability and bounded-input bounded state (BIBS) stability

was studied in [26] using a state feedback control law. A study for a multiple degree-of-freedom

linear systems subject to nonsmooth impacts can be found in [27]. That approach proposes a

proportional-derivative control law in order to study BIBSstability via Lyapunov techniques.

Other approaches for the tracking control of nonsmooth mechanical systems can be found in

[13], [25], [29], [37] and in [20]. The analysis and control of systems subject to unilateral

constraints also received attention in [4].

This paper focuses on the problem of tracking control of complementarity Lagrangian systems

[28] subject to frictionless unilateral constraints whosedynamics may be expressed as:


















M(X)Ẍ + C(X, Ẋ)Ẋ +G(X) = U + ∇F (X)λX

0 ≤ λX ⊥ F (X) ≥ 0,

Collision rule

(1)

whereX(t) ∈ R
n is the vector of generalized coordinates,M(X) = MT (X) ∈ R

n×n is the

positive definite inertia matrix,F (X) ∈ R
m represents the distance to the constraints,C(X, Ẋ)
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is the matrix containing Coriolis and centripetal forces,G(X) contains conservative forces,

λX ∈ R
m is the vector of the Lagrangian multipliers associated to the constraints andU ∈ R

n is

the vector of generalized torque inputs. For the sake of completeness we precise that∇ denotes

the Euclidean gradient∇F (X) = (∇F1(X), . . . ,∇Fm(X)) ∈ R
n×m where ∇Fi(X) ∈ R

n

represents the vector of partial derivatives ofFi(·) w.r.t. the components ofX. We assume

that the functionsFi(·) are continuously differentiable and that∇Fi(X) 6= 0 for all X with

Fi(X) = 0. It is worth to precise here that for a given functionf(·) its derivative w.r.t. the

time t will be denoted byḟ(·). For any functionf(·) the limit to the right at the instantt will

be denoted byf(t+) and the limit to the left will be denoted byf(t−). A simple jump of the

function f(·) at the momentt = tℓ is denotedσf (tℓ) = f(t+ℓ ) − f(t−ℓ ).

Definition 1: A Linear Complementarity Problem (LCP) is a system given by:


















λ ≥ 0

Aλ+ b ≥ 0

λT (Aλ+ b) = 0

(2)

which is compactly re-written as

0 ≤ λ ⊥ Aλ+ b ≥ 0 (3)

Such an LCP has a unique solution for allb if and only if A is a P-matrix [11].

The admissible domain associated to the system (1) is the closed setΦ where the system can

evolve and it is described as follows:

Φ = {X | F (X) ≥ 0} =
⋂

1≤i≤m

Φi,

whereΦi = {X | Fi(X) ≥ 0} considering that a vector is non-negative if and only if all its

components are non-negative. In order to have a well-posed problem with a physical meaning

we consider thatΦ contains at least a closed ball of positive radius.

Definition 2: A singularity of the boundary∂Φ of Φ is the intersection of two or more

codimension one surfacesΣi = {X | Fi(X) = 0}.

The presence of∂Φ may induce some impacts that must be included in the dynamicsof the

system. It is obvious thatm > 1 allows both simple impacts (when one constraint is involved)

and multiple impacts (when singularities or surfaces of codimension larger than 1 are involved).

Let us introduce the following notion ofpǫ-impact.
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Definition 3: Let ǫ ≥ 0 be a fixed real number. We say that apǫ-impact occurs at the instant

t if

||FI(X(t))|| ≤ ǫ,
∏

i∈I

Fi(X(t)) = 0

whereI ⊂ 1, . . . , m, card(I) = p.

If ǫ = 0 the p surfacesΣi, i ∈ I are stroked simultaneously. Whenǫ > 0 the system collides

∂Φ in a neighborhood of the intersection
⋂

i∈I Σi.

Definition 4: [28], [22] The tangent cone toΦ = {X | Fi(X) ≥ 0, ∀i = 1, . . . , n} at q ∈ R
n

is defined as:

TΦ(q) = {z ∈ R
n | zT∇Fi(q) ≥ 0, ∀i = J(q)}

whereJ(q) , {i ∈ {1, . . . , n} | Fi(q) ≤ 0}. Whenq ∈ Φ\∂Φ one hasJ(q) = ∅ andTΦ(q) = R
n.

The normal cone toΦ at q is defined as the polar cone toTΦ(·):

NΦ(q) = {y ∈ R
n | ∀z ∈ TΦ(q), yTz ≤ 0}

The collision (or restitution) rule in (1), is a relation between the post-impact velocity and the

pre-impact velocity. Among the various models of collisionrules, Moreau’s rule is an extension

of Newton’s law which is energetically consistent [15] and is numerically tractable [1]. For these

reasons throughout this paper the collision rule will be defined by Moreau’s relation [28]:

Ẋ(t+ℓ ) = (1 + e) arg min
z∈TΦ(X(tℓ))

1

2
[z − Ẋ(t−ℓ )]T ×M(X(tℓ))[z − Ẋ(t−ℓ )] − eẊ(t−ℓ ) (4)

whereẊ(t+ℓ ) is the post-impact velocity,̇X(t−ℓ ) is the pre-impact velocity ande ∈ [0, 1] is the

restitution coefficient. Denoting byT the kinetic energy of the system, we can compute the

kinetic energy loss at the impacttℓ as [23]:

TL(tℓ) = − 1 − e

2(1 + e)

[

Ẋ(t+ℓ ) − Ẋ(t−ℓ )]TM(X(tℓ)) × [Ẋ(t+ℓ ) − Ẋ(t−ℓ )
]

≤ 0 (5)

The collision rule can be rewritten considering the vector of generalized velocities as an element

of the tangent space to the configuration space of the system,equipped with the kinetic energy

metric. Doing so (see [7]§6.2), the discontinuous velocity componentsẊnorm and the continuous

onesẊtang are identified. Precisely,





Ẋnorm

Ẋtang



 = MẊ, M =





n
T

t
T



M(X) wheren ∈

R
m represents them unitary normal vectorsni = M−1(X)∇Fi(X)√

∇Fi(X)T M−1(X)∇Fi(X)
, i = 1, . . . , m and

t representsn − m mutually independent unitary vectorsti such thattT
i M(X)nj = 0, ∀i, j.
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In this case the collision rule (4) at the impact timetℓ becomes the generalized Newton’s

rule





Ẋnorm(t+ℓ )

Ẋtang(t
+
ℓ )



 = −η





Ẋnorm(t−ℓ )

Ẋtang(t
−
ℓ )



, η = diag(e1, . . . , em, 0, . . . , 0) where ei is the

restitution coefficient w.r.t. the surfaceΣi. For the sake of simplicity we consider in this paper

that all the restitution coefficients are equal, i.e.e1 = . . . = em , e.

Remark 1: 1) If X ∈ Σ1

⋂

Σ2 and the angle∠(Σ1,Σ2) ≤ π then in the neighborhood of

X one hasΦ ≃ TΦ(X).

2) Letm = 1. The casee = 0 is called a plastic impact and the casee = 1 is called an elastic

impact. In the first case the normal component of the velocitybecomes zero and in the

second case the normal component of the velocity changes only its direction and preserves

its magnitude. As we can easily see from (5) in the second casethere is no loss of kinetic

energy at the impact moment.

3) One recalls that we deal with frictionless unilateral constraints. Some frictional contact laws

that fit within the nonsmooth mechanic framework (1) can be found in [19].

The structure of the paper is as follows: in Section II one presents some basic concepts

and prerequisites necessary for the further developments.Section III is devoted to the controller

design. In Section IV one defines the desired (or ”exogenous”) trajectories entering the dynamics.

The desired contact-force that must occur on the phases where the motion is constrained, is

explicitly defined in Section V. Section VI focuses on the strategy for take-off at the end of the

constraint phases. The main results related to the closed-loop stability analysis are presented in

Section VII. One example and concluding remarks end the paper.

The following standard notations will be adopted:|| · || is the Euclidean norm,bp ∈ R
p and

bn−p ∈ R
n−p are the vectors formed with the firstp and the lastn − p components ofb ∈ R

n,

respectively.NΦ(Xp = 0) is the normal coneNΦ(X) to Φ at X [28], [22] whenX satisfies

Xp = 0, λmin(·) andλmax(·) represent the smallest and the largest eigenvalues, respectively.

II. BASIC CONCEPTS

A. Typical task

In the casem = 1 (only one unilateral constraint) the time axis can be split into intervals

Ωk and Ik corresponding to specific phases of motion [9]. Precisely,Ω2k corresponds to free-

motion phases (F (X) > 0) and Ω2k+1 corresponds to constrained-motion phases (F (X) = 0).
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Between free and constrained phases the dynamical system always passes into a transition phase

Ik containing some impacts. Since the dynamics of the system does not change during the

transition between constrained and free-motion phases, inthe time domain one gets the following

typical task representation:

R
+ = Ω0 ∪ I0 ∪ Ω1 ∪ Ω2 ∪ I1 ∪ . . . ∪ Ω2k ∪ Ik ∪ Ω2k+1 ∪ . . . (6)

In the casem ≥ 2 (multiple constraints) things complicate since the numberof typical phases

increases due to the singularities that must be taken into account. Explicitly, the constrained-

motion phases need to be decomposed in sub-phases where somespecific constraints are active.

Between two such sub-phases a transition phase occurs when the number of active constraints

increases. Nevertheless, a typical task can be representedin the time domain as:

R
+ =

⋃

k≥0

(

ΩJk

2k ∪ IJk

k ∪
(

mk
⋃

i=1

Ω
Jk,i

2k+1

))

Jk ⊂ Jk,1; Jk+1 ⊂ Jk,mk
⊂ Jk,mk−1 ⊂ . . . Jk,1

(7)

where the superscriptJk represents the set of active constraints (Jk = {i ∈ {1, . . . , m} | Fi(X) = 0})

during the corresponding motion phase, andIJk

k denotes the transient between twoΩk phases

when the number of active constraints increases. When the number of active constraints decreases

there is no impact, thus no other transition phases are needed. We note thatJk = ∅ corresponds

to free-motion.

For the sake of simplicity and without any loss of generality1 we replace
⋃mk

i=1 Ω
Jk,i

2k+1 by Ω
J ′

k

2k+1

whereJk ⊂ J ′
k andJk+1 ⊂ J ′

k. Therefore the typical task simplifies as:

R
+ =

⋃

k≥0

(

ΩJk

2k ∪ IJk

k ∪ Ω
J ′

k

2k+1

)

Jk ⊂ J ′
k, Jk+1 ⊂ J ′

k

(8)

Since the tracking control problem involves no difficulty during theΩk phases,the central issue

is the study of the passages between them (the design of transition phasesIk and detachment

conditions), and the stability of the trajectories evolving along (8) (i.e. an infinity of cycles).

Throughout the paper, the sequenceΩJk

2k ∪ IJk

k ∪ Ω
J ′

k

2k+1 will be referred to as the cyclek of the

1As we shall see in Section VIII we can also consider more complicated tasks without influencing the stability results obtained

in the paper.
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system’s evolution. For robustness reasons during transition phasesIk we impose a closed-loop

dynamics (containing impacts) that mimics somehow the bouncing-ball dynamics (see e.g. [7]).

B. Stability analysis criteria

The system (1) is a complex nonsmooth and nonlinear dynamical system which involves

continuous and discrete time phases. A stability frameworkfor this type of systems has been

proposed in [9] and extended in [5]. This is an extension of the Lyapunov second method adapted

to closed-loop mechanical systems with unilateral constraints. Since we use this criterion in the

following tracking control strategy it is worth to clarify the framework and to introduce some

definitions.

Let us introduce the trajectories playing a role in the dynamics and the design of the controller:

• Xnc(·) denotes the desired trajectory of the unconstrained system(i.e. the trajectory that the

system should track if there were no constraints). We suppose thatF (Xnc(t)) < 0 for some

t, otherwise the problem reduces to the tracking control of a system with no constraints.

• X∗
d(·) denotes the signal entering the control input and playing the role of the desired

trajectory during some parts of the motion.

• Xd(·) represents the signal entering the Lyapunov function. Thissignal is set on the boundary

∂Φ after the first impact of each cycle.

These signals may coincide on some time intervals as we shallsee later.

Next, let us defineΩ as the complement inR+ of I =
⋃

k≥0

IJk

k and assume that the Lebesgue

measure ofΩ, denotedλ[Ω], equals infinity. Considerx(·) the state of the closed-loop system

in (1) with some feedback controllerU(X, Ẋ,X∗
d , Ẋ

∗
d , Ẍ

∗
d).

Definition 5 (Weakly Stable System [5]):The closed loop system is called weakly stable if for

eachǫ > 0 there existsδ(ǫ) > 0 such that||x(0)|| ≤ δ(ǫ) ⇒ ||x(t)|| ≤ ǫ for all t ≥ 0, t ∈ Ω. The

system is asymptotically weakly stable if it is weakly stable and lim
t∈Ω, t→∞

x(t) = 0. Finally, the

practical weak stability holds if there exists0 < R < +∞ and t∗ < +∞ such that||x(t)|| < R

for all t > t∗, t ∈ Ω.

ConsiderIJk

k

∆
= [τk

0 , t
k
f ] andV (·) such that there exists strictly increasing functionsα(·) and

β(·) satisfying the conditions:α(0) = 0, β(0) = 0 andα(||x||) ≤ V (x, t) ≤ β(||x||).
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Definition 6: A transition phaseIJk

k is called finite if it involves a sequence ofpǫ-impact times

(tkℓ )0≤ℓ≤N , N ≤ ∞ with the accumulation pointtkN < ∞ (for the sake of simplicity we shall

denote the accumulation point bytk∞ even ifN <∞).

In the sequel, we consider that each cyclek contains only finite transition phases which implies

that e < 1 (in [3] it is shown thate = 1 implies thattk∞ = +∞).

The following criterion is inspired from [5], and will be used for studying the stability of

system (1).

Proposition 1 (Weak Stability):Assume that the task admits the representation (8) and that

a) λ[IJk

k ] < +∞, ∀k ∈ N,

b) outside the impact accumulation phases[tk0, t
k
∞] one hasV̇ (x(t), t) ≤ −γV (x(t), t) for

some constantγ > 0,

c)
∑

ℓ≥0

[

V (tk−ℓ+1) − V (tk+
ℓ )
]

≤ K1V
p1(τk

0 ), ∀k ∈ N for somep1 ≥ 0, K1 ≥ 0,

d) the system is initialized onΩ0 such thatV (τ 0
0 ) ≤ 1,

e)
∑

ℓ≥0

σV (tkℓ ) ≤ K2V
p2(τk

0 ) + ξ, ∀k ∈ N for somep2 ≥ 0, K2 ≥ 0 and ξ ≥ 0.

If p = min{p1, p2} < 1 thenV (τk
0 ) ≤ δ(γ, ξ), ∀k ≥ 1, whereδ(γ, ξ) is a function that can be

made arbitrarily small by increasing the value ofγ. The system is practically weakly stable with

R = α−1(δ(γ, ξ)).

Proof: From assumption(b) one has

V (tkf ) ≤ V (tk∞)e−γ(tk
f
−tk

∞
)

It is clear that condition(c) combined with(e) leads to

V (tk∞) ≤ V (τk
0 ) +K1V

p1(τk
0 ) +K2V

p2(τk
0 ) + ξ

Consideringp < 1, the assumption(d) guarantees thatmax{V (τk
0 ), V p1(τk

0 ), V p2(τk
0 )} ≤ V p(τk

0 ) ≤
1 and we get

V (tkf ) ≤ e−γ(tk
f
−tk

∞
) [1 +K1 +K2 + ξ]V p(τk

0 )

≤ e−γ(tk
f
−tk

∞
) [1 +K1 +K2 + ξ] , δ(γ, ξ)

From assumption(b) one hasV (τk+1
0 ) ≤ V (tkf) and thusV (τk

0 ) ≤ δ(γ, ξ), ∀k ≥ 1. The term

δ(γ, ξ) can be made as small as desired increasing eitherγ or the length of the interval[tk∞, t
k
f ].

The proof is completed by the relationα(||x||) ≤ V (x, t), ∀x, t.
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Remark 2:Since the Lyapunov function is exponentially decreasing onthe Ωk phases, as-

sumption(d) in Proposition 1 means that the system is initialized onΩ0 sufficiently far from

the moment when the trajectoryXnc(·) leaves the admissible domain.

Precisely, the weak stability is characterized by an ”almost decreasing” Lyapunov function

V (x(·).·) as illustrated in Figure 1.

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5

V

t

Fig. 1. Typical evolution of the Lyapunov function during one cycleof a weakly stable system.

Remark 3: It is worth to point out the local character of the stability criterion proposed by

Proposition 1. This character is firstly given by conditiond) of the statement and secondly by

the synchronization constraints of the control law and the motion phase of the system (see (8)

and (11) below).

The practical stability is very useful because attaining asymptotic stability is not an easy task

for the unilaterally constrained systems described by (1) especially whenn ≥ 2 andM(q) is

not a diagonal matrix (i.e. there are inertial couplings, which is the general case).

C. Dissipativity and tracking versus stabilization

Let us make a parenthesis to highlight the major discrepancybetween the trajectory tracking

problem and the stabilization problem. To this aim let us first recall that the dynamics in (1)

and (4) can be equivalently rewritten as themeasure differential inclusion[1], [7], [23], [28]:






−M(q(t))dv − [C(X(t), v(t+))v(t+) −G(X(t)) + U(t)]dt ∈ NTΦ(X(t))(w(t))

w(t) = v(t+)+ev(t−)
1+e

(9)
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wheredv is the differential measure associated with the velocityv(·) that is a right-continuous

function of local bounded variation,v(·) is equal almost everywhere tȯX(·), X(·) is absolutely

continuous andX(t)−X(0) =
∫

[0,t]
v(s)ds. The right-hand-side is the normal cone to the tangent

cone, where the cones are as in Definition 4. As shown in [10] and [8, §3.9.4, 6.8.2, 7.2.4], a

crucial property for stabilization is that thecone complementarity problem:

NTΦ(X(t))(w(t)) ∋ ξ ⊥ w(t) ∈ TΦ(X(t)) (10)

defines a monotone mappingξ 7→ w, because the two conesTΦ(·) andNΦ(·) are polar cones [22],

andNTΦ(X(t))(·) ⊆ NΦ(·). This monotonicity property allows one to use dissipativity arguments in

an absolute stability framework to derive a Lyapunov function. Let us consider now the tracking

control problem. The new (closed-loop) state vector is(X̃, ˙̃X). Therefore the right-hand-side of

the closed-loop measure differential inclusion becomes the normal coneNTΦ(X̃(t)+Xd(t))(w̃(t) +

wd(t)), withwd(t) = vd(t+)+evd(t−)
1+e

. The setsTΦt
(·) ∆

= TΦ(·+Xd(t)) andNT t
Φt

(·) ∆
= NTΦt

(·+wd(t))

are now time-varying, and the monotonicity property is generally lost. This explains why the

trajectory tracking problem is much more intricate than itsstabilization counterpart, as even

passivity-based controllers generally fail to preserve the passivity of the overall closed-loop

system. We shall however call the controller that is designed in the next Section a passivity-

based controller, because the closed-loop stability will essentially rely on the use of an energy-like

function (see (14) below).

III. CONTROLLER DESIGN

In order to overcome some difficulties that can appear in the controller definition, the dynamical

equations (1) will be expressed in the generalized coordinates introduced by McClamroch &

Wang [24]. We suppose that the generalized coordinates transformation holds globally inΦ,

which may obviously not be the case in general. However, the study of the singularities that

might be generated by the coordinates transformation is outof the scope of this paper. Let us

considerD = [Im
... O] ∈ R

m×n, Im ∈ R
m×m the identity matrix. The new coordinates will be

q = Q(X) ∈ R
n, with q =





q1

q2



 , q1 =











q1
1

...

qm
1











such thatΦ = {q | Dq ≥ 0}2. The tangent

2In particular it is implicitly assumed that the functionFi(·) in (1) are linearly independent.
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coneTΦ(q1 = 0) = {v | Dv ≥ 0} is the space of admissible velocities on the boundary ofΦ.

The controller used here consists of different low-level control laws for each phase of the

system. More precisely, the switching controller can be expressed as

T (q)U =



















Unc for t ∈ Ω∅
2k

UJ
t for t ∈ IJ

k

UJ
c for t ∈ ΩJ

k

(11)

whereT (q) =





T1(q)

T2(q)



 ∈ R
n×n is full-rank under some basic assumptions (see [24]). The

dynamics becomes:


























M11(q)q̈1 +M12(q)q̈2 + C1(q, q̇)q̇ + g1(q) = T1(q)U + λ

M21(q)q̈1 +M22(q)q̈2 + C2(q, q̇)q̇ + g2(q) = T2(q)U

qi
1 ≥ 0, qi

1λi = 0, λi ≥ 0, 1 ≤ i ≤ m

Collision rule

(12)

where the set of complementary relations can be written morecompactly as0 ≤ λ ⊥ Dq ≥ 0.

In the sequelUnc coincides with the fixed-parameter controller proposed in [16], [32] and

the closed-loop stability analysis of the system is based onProposition 1. First, let us introduce

some notations:̃q = q− qd, q̄ = q− q∗d, s = ˙̃q+ γ2q̃, s̄ = ˙̄q+ γ2q̄, q̇e = q̇d − γ2q̃ whereγ2 > 0 is

a scalar gain andqd, q∗d represent the desired trajectories defined in the previous section. Using

the above notations the controller is given by

T (q)U ,



























Unc = M(q)q̈e + C(q, q̇)q̇e +G(q) − γ1s

UJ
t = UJ

nc, t ≤ tk0

UJ
t = M(q)q̈e + C(q, q̇)q̇e +G(q) − γ1s̄, , t > tk0

UJ
c = Unc − Pd +Kf(Pq − Pd)

(13)

whereγ1 > 0 is a scalar gain,Kf > 0, Pq = DTλ andPd = DTλd is the desired contact force

during persistently constrained motion. It is clear that during ΩJ
k not all the constraints are active

and, therefore, some components ofλ andλd are zero.

In order to prove the stability of the closed-loop system (11)–(13) we will use the following

positive definite function:

V (t, s, q̃) =
1

2
sTM(q)s + γ1γ2q̃

T q̃ (14)
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IV. TRACKING CONTROL FRAMEWORK

In this paper we treat the tracking control problem for the closed-loop dynamical system (11)–

(13) with the complete desired path a priori taking into account the complementarity conditions

and the impacts. In order to define the desired trajectory letus consider the motion of a virtual

and unconstrained particle perfectly following a trajectory (represented byXnc(·) on Figure 2)

with an orbit that leaves the admissible domain for a given period. Therefore, the orbit of the

virtual particle can be split into two parts, one of them belonging to the admissible domain

(inner part) and the other one outside the admissible domain(outer part). In the sequel we deal

with the tracking control strategy when the desired trajectory is constructed such that:

(i) when no activated constraints, it coincides with the trajectory of the virtual particle (the

desired path and velocity are defined by the path and velocityof the virtual particle,

respectively),

(ii) when p ≤ m constraints are active, its orbit coincides with the projection of the outer

part of the virtual particle’s orbit on the surface of codimensionp defined by the activated

constraints (Xd betweenA′′ andC in Figure 2),

(iii) the desired detachment moment and the moment when the virtual particle re-enters the

admissible domain (with respect top ≤ m constraints) are synchronized.

Therefore we have not only to track a desired path but also to impose a desired velocity allowing

the motion synchronization on the admissible domain.

The main difficulties here consist of:

• stabilizing the system on∂Φ during the transition phasesIJk

k and incorporating the velocity

jumps in the overall stability analysis;

• deactivating some constraints at the moment when the unconstrained trajectory re-enters the

admissible domain with respect to them;

• maintaining a persistently constrained motion between themoment when the system was

stabilized on∂Φ and the detachment moment.

Remark 4:The problem can be relaxed considering that we want to track only a desired path

like Xnc(·) (without imposing a desired velocity on the inner part of thedesired trajectory and/or

a given period to complete a cycle). In this way the synchronization problem (iii) disappears and

we can assume there exists a twice differentiable desired trajectory outside[tk0, t
k
f ] that assures
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the detachment when the force control is dropped. In other words, in this case we have to design

the desired trajectory only duringIJk

k phases.

A. Design of the desired trajectories

Throughout the paper we considerIJk

k = [τk
0 , t

k
f ], whereτk

0 is chosen by the designer as the

start of the transition phaseIJk

k and tkf is the end ofIJk

k . We note that all superscripts(·)k will

refer to the cyclek of the system motion. We also use the following notations:

• tk0 is the first impact during the cyclek,

• tk∞ is the accumulation point of the sequence{tkℓ}ℓ≥0 of the impact instants during the cycle

k (tkf ≥ tk∞),

• τk
1 will be explicitly defined later and represents the instant when the signalX∗

d(·) reaches a

given value chosen by the designer in order to impose a closed-loop dynamics with impacts

during transition phases,

• tkd is the desired detachment instant, therefore the phasesΩ
J ′

k

2k+1 can be expressed as[tkf , t
k
d].

It is noteworthy thattk0, t
k
∞, t

k
d are state-dependent whereasτk

1 andτk
0 are exogenous and imposed

by the designer. To better understand the definition of thesespecific instants, in the Figure 2 we

simplify the system’s motion as follows:

• during transition phases we take into account only the constraints that must be activated

J ′
k \ Jk.

• at the end ofΩ2k+1 phases we take into account only the constraints that must bedeactivated

J ′
k \ Jk+1.

The pointsA, A′, A′′ and C in Figure 2 correspond to the momentsτk
0 , t

k
0, t

k
f and tkd re-

spectively. We have seen that the choice ofτk
0 plays an important role in the stability criterion

given by Proposition 1. On the other hand in Figure 2 we see that starting fromA the desired

trajectoryXd(·) = X∗
d(·) is deformed compared toXnc(·). In order to reduce this deformation

τk
0 and implicitly the pointA must be close to∂Φ (see also Figure 4). Further details on the

choice ofτk
0 will be given later. Taking into account just the constraints J ′

k\Jk+1 we can identify

tkd with the moment whenXd(·) andXnc(·) rejoin atC.
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A

A’’

BA’

C

Φ

∂Φ

X∗
d(t) = Xd(t)

Xd(t)

X∗
d(t)

Xnc(t) = X∗
d(t) = Xd(t)

Xnc(t)

Fig. 2. The closed-loop desired trajectory and control signals

B. Design ofq∗d(·) and qd(·) on the phasesIJk

k

During the transition phases the system must be stabilized on ∂Φ. Obviously, this does not

mean that all the constraints have to be activated (i.e.qi
1(t) = 0, ∀i = 1, . . . , m). Let us consider

that only the firstp constraints (eventually reordering the coordinates) define the border ofΦ

where the system must be stabilized. On[τk
0 , t

k
0) we defineq∗d(·) as a twice differentiable signal

such thatq∗d(·) approaches a given point in the normal coneNΦ(qp = 0) on [τk
0 , τ

k
1 ]. Precisely,

we defineq∗d(·) such as:

• during a small periodδ > 0 chosen by the designer the desired velocity becomes zero pre-

serving the twice differentiability ofq∗d(·). For instance we can use the following definition:

q∗d(t) = qnc

(

τk
0 +

(t− τk
0 − δ)2(t− τk

0 )

δ2

)

, t ∈ [τk
0 , τ

k
0 + δ]

which meansq∗d(τ
k
0 + δ) = q∗d(τ

k
0 ) = qnc(τk

0 ), q̇∗d(τ
k
0 + δ) = 0 and q̇∗d(τ

k
0 ) = q̇nc(τk

0 )

• choosingϕ > 0 and denotingt′ =
t−(τk

0 +δ)

τk
1 −(τk

0 +δ)
, the components(qi

d)
∗
, i = 1, . . . , p of (q∗d)p

are defined as:

(

qi
d

)∗
(t) =







a3(t
′)3 + a2(t

′)2 + a0, t ∈ [τk
0 + δ,min{τk

1 ; tk0}]
−ϕV 1/3(τk

0 ), t ∈ (min{τk
1 ; tk0}, tkf ]

(15)

whereV (·) is defined in (14) and with the coefficients given by:

a3 = 2[(qi)
nc

(τk
0 ) + ϕV 1/3(τk

0 )]

a2 = −3[(qi)
nc

(τk
0 ) + ϕV 1/3(τk

0 )]

a0 = (qi)
nc

(τk
0 )

(16)
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• all the other components ofq∗d(·) are frozen:

(q∗d)n−p (t) = qnc
n−p(τ

k
0 ), t ∈ (τk

0 + δ, tkf ] (17)

The rationale behind the choice ofq∗d(·) is on one hand to assure a robust stabilization on∂Φ,

mimicking the bouncing-ball dynamics; on the other hand to enable one to compute suitable

upper-bounds that will help using Proposition 1 (henceV 1/3(·) terms in (15) withV (·) in (14)).

Remark 5:1) Straightforward computations show thatq∗d(·) satisfies the following relations.

(

qi
d

)∗
(τk

1 ) = −ϕV 1/3(τk
0 ),

(

q̇i
d

)∗
(τk

1 ) = 0, i = 1, . . . , p

2) Two different situations are possible. The first is given by tk0 > τk
1 (see Figure 3) and we

shall prove that in this situation all the jumps of the Lyapunov function in (14) are negative.

The second situation was pointed out in [5] and is given bytk0 < τk
1 . In this situation the first

jump at tk0 in the Lyapunov function may be positive. It is noteworthy that q∗d(·) will then have

a jump at the timetk0 since(qi
d)

∗(tk+
0 ) = −ϕV 1/3(τk

0 ), ∀i = 1, . . . , p (see (15)).

In order to limit the deformation of the desired trajectoryq∗d(·) w.r.t. the unconstrained trajectory

qnc(·) during theIk phases (see Figures 2 and 3), we impose in the sequel

||qnc
p (τk

0 )|| ≤ ψ (18)

whereψ > 0 is chosen by the designer. It is obvious that a smallerψ leads to smaller deformation

of the desired trajectory and to smaller deformation of the real trajectory as we shall see in

Section VIII. Nevertheless, due to the tracking error,ψ cannot be chosen zero. We also note that

||qnc
p (τk

0 )|| ≤ ψ is a practical way to chooseτk
0 .

During the transition phasesIk we define(qd)n−p (t) = (q∗d)n−p (t). Assuming a finite accumu-

lation period, the impact process can be considered in some way equivalent to a plastic impact.

Therefore,(qd)p (·) and (q̇d)p (·) are set to zero on the right oftk0.

V. DESIGN OF THE DESIRED CONTACT FORCE DURING CONSTRAINT PHASES

For the sake of simplicity we consider the case of the constraint phaseΩJ
k , J 6= ∅ with

J = {1, . . . , p}. Obviously a sufficiently large desired contact forcePd assures a constrained

movement onΩJ
k . Nevertheless at the end of theΩJ

2k+1 phases a detachment from some surfaces

Σi has to take place. It is clear that a take-off implies not onlya well-defined desired trajectory

but also some small values of the corresponding contact force components. On the other hand,
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O

B CA

t
tk0 tk1 tkd

(q∗d)
i(t)

qi1

qi1(t)

τ k0

tk0 > τ k1

Ω2k Ik Ω2k+1 Ω2k+2

A′

tkf

τ k1

(q∗d)
i(t)

(q∗d)
i(t)

−ϕV 1/3(τ k0 )

Fig. 3. The design ofq∗
1d

on the transition phasesIk

if the components of the desired contact force decrease too much a detachment can take place

before the end of theΩJ
k phases which can generate other impacts. Therefore we need alower

bound of the desired force which assures the contact during the ΩJ
k phases.

Dropping the time argument, the dynamics of the system onΩJ
k can be written as







M(q)q̈ + F (q, q̇) = Uc +DT
p λp

0 ≤ qp ⊥ λp ≥ 0
(19)

whereF (q, q̇) = C(q, q̇)q̇ +G(q) andDp = [Ip
... O] ∈ R

p×n. On ΩJ
k the system is permanently

constrained which impliesqp(·) = 0 and q̇p(·) = 0. In order to assure these conditions it is

sufficient to haveλp > 0.

In the following let us denoteM−1(q) =





[M−1(q)]p,p [M−1(q)]p,n−p

[M−1(q)]n−p,p [M−1(q)]n−p,n−p



 and

C(q, q̇) =





C(q, q̇)p,p C(q, q̇)p,n−p

C(q, q̇)n−p,p C(q, q̇)n−p,n−p



 where the meaning of each component is obvious.

Proposition 2: OnΩJ
k the constraint motion of the closed-loop system (19),(11),(13) is assured

if the desired contact force is defined by

(λd)p , β − M̄p,p(q)

1 +Kf

(

[M−1(q)]p,pCp,n−p(q, q̇)+

[M−1(q)]p,n−pCn−p,n−p(q, q̇) + γ1[M
−1(q)]p,n−p

)

sn−p

(20)

whereM̄p,p(q) = ([M−1(q)]p,p)
−1

=
(

DpM
−1(q)DT

p

)−1
is the inverse of the Delassus’ matrix

andβ ∈ R
p, β > 0.
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Proof: First, we notice that the second relation in (19) implies onΩJ
k (see [14])

0 ≤ q̈p ⊥ λp ≥ 0 ⇔ 0 ≤ Dpq̈ ⊥ λp ≥ 0. (21)

From (19) and (13) one easily gets:

q̈ = M−1(q)
[

− F (q, q̇) + Unc + (1 +Kf)D
T
p (λ− λd)p

]

Combining the last two equations we obtain the following LCPwith unknownλp:

0 ≤ DpM
−1(q)

[

− F (q, q̇) + Unc − (1 +Kf)D
T
p (λd)p

]

+(1 +Kf)DpM
−1(q)DT

p λp ⊥ λp ≥ 0
(22)

Since(1 +Kf )DpM
−1(q)DT

p > 0 and hence is a P-matrix, the LCP (22) has a unique solution

and one deduces thatλp > 0 if and only if

M̄p,p(q)

1 +Kf

DpM
−1(q)

[

Unc − F (q, q̇) − (1 +Kf)D
T
p (λd)p

]

< 0

⇔ (λd)p >
M̄p,p(q)

1 +Kf
DpM

−1(q)
[

Unc − F (q, q̇)
]

⇔ (λd)p = β +
M̄p,p(q)

1 +Kf
DpM

−1(q)
[

Unc − F (q, q̇)
]

(23)

with β ∈ R
p, β > 0. SinceUnc − F (q, q̇) = M(q)q̈e − C(q, q̇)s − γ1s, (q̈e)p = 0 and sp = 0,

(23) rewrites as (20) and the proof is finished. It is noteworthy that

λp = −M̄p,p(q)

1 +Kf
DpM

−1(q)
[

Unc − F (q, q̇) − (1 +Kf )D
T
p (λd)p

]

= (λd)p −
M̄p,p(q)

1 +Kf
DpM

−1(q)
[

Unc − F (q, q̇)
]

= β

Remark 6:The control law used in this paper with the design ofλd described above leads to

the following closed-loop dynamics onΩJ
k .



















Mp,n−p(q)ṡn−p + Cp,n−p(q, q̇)sn−p = (1 +Kf )(λ− λd)p

Mn−p,n−p(q)ṡn−p + Cn−p,n−p(q, q̇)sn−p + γ1sn−p = 0

qp = 0, λp = β.

It is noteworthy that the closed-loop dynamics is nonlinearand therefore, we do not use the

feedback stabilization proposed in [24].
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VI. STRATEGY FOR TAKE-OFF AT THE END OF CONSTRAINT PHASESΩJ
2k+1

We have discussed in the previous sections the necessity of atrajectory with impacts in order

to assure the robust stabilization on∂Φ in finite time and, the design of the desired trajectory

to stabilize the system on∂Φ. Now, we are interested in finding the conditions on the control

signalUJ
c that assure the take-off at the end of constraint phasesΩJ

2k+1. As we have already seen

before, the phaseΩJ
2k+1 corresponds to the time interval[tkf , t

k
d). The dynamics on[tkf , t

k
d) is given

by (19) and the system is permanently constrained, which implies qp(·) = 0 and q̇p(·) = 0. Let

us also consider that the firstr constraints (r < p) have to be deactivated. Thus, the detachment

takes place attkd if q̈r(t
k+
d ) > 0 which requiresλr(t

k−
d ) = 0. The lastp − r constraints remain

active which meansλp−r(t
k−
d ) > 0.

To simplify the notation we drop the time argument in many equations of this section. We

decompose the LCP matrix (which is the Delassus’ matrix multiplied by 1 +Kf ) as:

(1 +Kf)DpM
−1(q)DT

p =





A1(q) A2(q)

A2(q)
T A3(q)





with A1 ∈ R
r×r, A2 ∈ R

r×(p−r) andA3 ∈ R
(p−r)×(p−r)

Proposition 3: For the closed-loop system (19),(11),(13) the passage whenthe number of

active constraints decreases fromp to p− r (with r < p), is possible if




(λd)r (tkd)

(λd)p−r (tkd)



 =





(

A1 −A2A
−1
3 AT

2

)−1 (
br − A2A

−1
3 bp−r

)

− C1

C2 + A−1
3

(

bp−r − AT
2 (λd)r

)



 (24)

where

bp , b(q, q̇, Unc) , DpM
−1(q)[Unc − F (q, q̇)] ≥ 0

andC1 ∈ R
r, C2 ∈ R

p−r such thatC1 ≥ 0, C2 > 0.

Proof: From (13) and (19) one gets

q̈p(t) = bp + (1 +Kf)DpM
−1(q)DT

p (λ− λd)

Therefore the LCP (21) rewrites as:

0 ≤





λr

λp−r



 ⊥





br + A1(λ− λd)r + A2(λ− λd)p−r

bp−r + AT
2 (λ− λd)r + A3(λ− λd)p−r



 ≥ 0 (25)

Under the conditionsλr = 0 andλp−r > 0 one has

0 ≤ λp−r ⊥ bp−r − AT
2 (λd)r + A3(λ− λd)p−r ≥ 0
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with the solution

λp−r = −A−1
3

(

bp−r −AT
2 (λd)r −A3(λd)p−r

)

(26)

Thusλp−r > 0 is equivalent to

(λd)p−r > A−1
3

(

bp−r −AT
2 (λd)r

)

which leads to the second part of definition (24). Furthermore, replacing(λd)p−r in (26) we get

λp−r = C2 andbr +A1(λ− λd)r +A2(λ− λd)p−r ≥ 0 yields the first part of definition (24). To

conclude, the solution of the LCP (25) isλp =





0

C2



 ∈ R
p and (λd)p is defined by (24).

Proposition 4: The closed-loop system (19),(11),(13) is permanently constrained on[tkf , t
k
d)

and a smooth detachment is guaranteed on[tkd, t
k
d + ǫ) (ǫ is a small positive real number chosen

by the designer) if

(i) (λd)p (·) is defined on[tkf , t
k
d) by (24) whereC1 is replaced byC1(t− tkd).

(ii) On [tkd, t
k
d + ǫ)

q∗d(t) = qd(t) =





q∗r(t)

qnc
n−r(t)



 ,

whereq∗r(·) is a twice differentiable function such that

q∗r(t
k
d) = 0, q∗r(t

k
d + ǫ) = qnc

r (tkd + ǫ),

q̇∗r(t
k
d) = 0, q̇∗r(t

k
d + ǫ) = q̇nc

r (tkd + ǫ)
(27)

and q̈∗r (t
k+
d ) = a > max

(

0, −A1(q) (λd)r (tk−d )
)

.

Proof: (i) The uniqueness of solution of the LCP (21) guarantees that (20) and (24) agree

if C1 < 0. In other words, replacingC1 by C1(t − tkd) in (24) we assure a constrained motion

on [tkf , t
k
d) and the necessary conditions for detachment on[tkd, t

k
d + ǫ).

(ii) Obviously (27) is imposed in order to assure the twice differentiability of the desired

trajectory. Finally, straightforward computations show that

σq̈r(tk
d
) = q̈∗r(t

k+
d ) + A1(q) (λd)r (tk−d )

which means that the detachment is guaranteed and no other impacts occur when the desired

acceleration satisfies̈q∗r(t
k+
d ) > max

(

0, −A1(q) (λd)r (tk−d )
)

.
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VII. CLOSED-LOOP STABILITY ANALYSIS

In the caseΦ = R
n, the functionV (t, s, q̃) in (14) can be used in order to prove the closed-

loop stability of the system (12), (13) (see for instance [8]). In the case studied here (Φ ⊂ R
n)

the analysis becomes more complicated.

To simplify the notationV (t, s(t), q̃(t)) is denoted asV (t). In order to introduce the main

result of this paper we make the next assumption, which is verified in practice for dissipative

systems.

Assumption 1:The controllerUt in (13) assures that all the transition phases are finite (see

Definition 6) and the accumulation pointtk∞ is smaller thantkd for all k ∈ N.

It is worth to precise that during the stabilization on the intersection ofp surfacesΣi we do not

know which one and how many surfaces are stroked. However we assume that all the impacts are

pǫ-impacts in the sense of Definition 3. The proofs of the next two results are in the Appendix.

Lemma 1:Consider the closed-loop system (11)-(13) with(q∗d)p(·) defined on the interval

[τk
0 , t

k
0] as in (15)-(17). Let us also suppose that conditionb) of Proposition 1 is satisfied. The

following inequalities hold:

||q̃(tk−0 )|| ≤
√

V (τk
0 )

γ1γ2
, ||s(tk−0 )|| ≤

√

2V (τk
0 )

λmin(M(q))

|| ˙̃q(tk−0 )|| ≤
(√

2

λmin(M(q))
+

√

γ2

γ1

)

V 1/2(τk
0 )

(28)

Furthermore, iftk0 ≤ τk
1 one has

||(qd)p(t
k−
0 )|| ≤ ǫ+

√

V (τk
0 )

γ1γ2

||(q̇d)p(t
k−
0 )|| ≤ K +K ′V 1/6(τk

0 )

(29)

whereǫ is the real constant fixed in Definition 3 andK, K ′ > 0 are some constant real numbers

that will be defined in the proof (see Appendix A).

We now state the main result of this paper.

Theorem 1:Let Assumption 1 hold,e ∈ [0, 1) and (q∗d)p defined as in (15)-(17). The closed-

loop system (11)-(13) initialized onΩ0 such thatV (τ 0
0 ) ≤ 1, satisfies the requirements of Propo-

sition 1 and is therefore practically weakly stable with theclosed-loop statex(·) = [s(·), q̃(·)]
andR =

√

e−γ(tk
f
−tk

∞
)(1 +K1 +K2 + ξ)/ρ whereρ = min{λmin(M(q))/2; γ1γ2} andK1, K2

are defined in the proof (see Appendix B).
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VIII. I LLUSTRATIVE EXAMPLE

A. A planar two-link rigid-joint manipulator with one constraint

The main issues of the control scheme proposed in this paper are first emphasized simulating

the behavior of a planar two-link rigid-joint manipulator in presence of one unilateral constraint.

The admissible domain is the upper half planey ≥ 0 and the unconstrained desired trajectory

qnc(·) is given by a circle that violates the constraint. Precisely, the end effector must follow

a half-circle, stabilize on the constraint (y = 0) and move on the constraint until the point

where the circleqnc(·) re-enters the admissible domain. The lengthsl1, l2 of the manipulator’s

links are set to0.5m, and their massesm1, m2 are set to1kg. The impacts are imposed using

the parameterϕ = 100 in (15)-(16). The numerical simulations are done with the Moreau’s

time-stepping algorithm of the SICONOS software platform [2]. The choice of a time-stepping

algorithm was mainly dictated by the presence of accumulations of impacts which render the use

of event-driven methods difficult [1]. A further reason to choose the SICONOS software platform

for the simulation of the complementarity systems consist of its capability to automatically and

quickly solve LCPs3.

Let us sete = 0.7, γ1 = 8, γ2 = 7, 10 seconds the period of each cycle and 30 seconds the

final simulation time. First, let us point out (Figure 4 (left)) the influence ofψ (i.e. the choice

of τk
0 ) on the degree of deformation of the real trajectory w.r.t. the desired unconstrained one.

As we have pointed out in Section IV the deformation gets smaller whenψ > 0 decreases. It

is noteworthy that the tangential approach corresponding to ψ = 0 lacks of robustness and is

unreliable due to the nonzero initial tracking errors.

For ψ = 0.01 in Figure 4 (right) we illustrate the trajectory of the system during the

stabilization on∂Φ = {(x, y) | y = 0}. The switches of the controller during the first cycle

are depicted in Figure 5 (left). Clearly since the velocity jumps, the controller jumps as well.

The Figure 5 (right) presents the variation of the contact force λ. Precisely, one sees thatλ

remains 0 during the free motion phases and it points out eachimpact during transients (better

seen onI0 since the impacts are more violent). The contact forceλ is designed as a decreasing

3The control scheme proposed in the paper may require to solvean LCP of dimensionm ≈ 10 (reasonable in some control

applications). But this requires a specific solver since theusual ”hybrid” methods must treat2m cases and quickly become

inefficient [1].
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Fig. 4. Left: The influence ofψ on the real trajectory’s deformation for controller’s gains set toγ1 = 8, γ2 = 7.

Right: The trajectory of the end-effector on the transitionphases whenψ = 0.1.

t

Ω0
I0

Ω1

T1(q)U

t

λ

Fig. 5. Left: The switching controller on the first cycle; Right: Variation of the contact forceλ

linear function during constrained motion phasesΩ2k+1 in order to allow a smooth detachment

at the end of these phases. It is worth to mention that the magnitude of λ depends indirectly

on V (τk
0 ). Precisely, whenV (τk

0 ) approaches zero the system tends to a tangential stabilization

on ∂Φ which implies larger values oftk0 and consequently smaller length of[tkf , t
k
d] and smaller

magnitude of the contact force measured byλ (see Proposition 4).

Figure 6 shows that the tracking error described by the Lyapunov function rapidly decreases

and remains close to 0. In other words the practical weak stability is guaranteed. On the zoom

made in Figure 6 one can also observe the behavior ofV (·) during the stabilization on∂Φ, that

is an almost decreasing function.

B. The influence of the time-step on the closed-loop dynamics

In the next tables we summarize some numerical results whenψ = 0.01, e = 0.7, γ1 =

35, γ2 = 20. The period of each cycle is set to 5 seconds and the final simulation time rest
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V (t1+
0 )

V (t1+
2 )

V (t1−1 )

V (t1+
1 )
V (t1−2 )V (t1−0 )

Fig. 6. Variation of the Lyapunov function forγ1 = 8, γ2 = 7; Zoom: Variation of the Lyapunov function during

the phaseI0

30 seconds. First, one can see that the length of the transition phaseI0 with respect to the

time-steph does not vary significantly when the time-step decreases. Let us also denote by

CPU the computing time necessary for the simulation (using an Intel(R) Core(TM)2 CPU 6300

1.86GHz) of one cycle.

h 10−3s 10−4s 10−5s 10−6s

λ[I0] 0.945 0.9536 0.9525 0.9523

CPU 1.5s 11.2s 111.3s 1072.2s

The evolutions of the number of impactsni w.r.t. the restitution coefficiente and the time-step

h are quite different. As expected,ni becomes larger when the restitution coefficient increases.

Also, one can see that the accumulation of impacts can be captured with a higher precision when

the time-step becomes smaller.

e \ h 10−3s 10−4s 10−5s 10−6s

0.2 ni = 3 ni = 5 ni = 6 ni = 8

0.5 ni = 6 ni = 9 ni = 12 ni = 16

0.7 ni = 9 ni = 16 ni = 23 ni = 29

0.9 ni = 23 ni = 40 ni = 64 ni = 81

0.95 ni = 32 ni = 67 ni = 108 ni = 161

However, a larger number of captured impacts does not changethe global behavior of the

simulated system and the transition phase ends almost in thesame moment whenh varies, see
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λ[I0] in the first table. Such results are not surprizing in view of the fact that the numerical

method converges [1, Theorem 10.7].

In conclusion, reliable simulations with a reasonableCPU time can be performed with the

Moreau’s time-stepping scheme of theSICONOS platform, with a time-steph = 10−4s.

C. A planar two-link rigid-joint manipulator with two constraints

In the sequel we introduce another constraint into the previous dynamics. Precisely we impose

an admissible domainΦ = {(x, y) | y ≥ 0, 0.7− x ≥ 0}. Let us also consider an unconstrained

desired trajectory given by the circle{(x, y) | (x−0.7)2+y2 = 0.5} that violates both constraints.

In other words, the two-link planar manipulator must track aquarter-circle; stabilize on and then

follow the line Σ1 = {(x, y) | y = 0}; stabilize on the intersection ofΣ1 and Σ2 = {(x, y) |
x = 0.7}; detach fromΣ1 and follow Σ2 until the unconstrained circle re-entersΦ and finally

take-off fromΣ2 in order to repeat the previous steps. It is noteworthy that the task presented

above is not of type (8) since after a constraint phase (when the end-effector is attached toΣ1)

follows a transition phase containing20-impacts according to Definition 3 (the system must be

stabilized on the intersectionΣ1 ∩ Σ2) instead of a detachment. However, the manipulator can

accomplish the task under consideration and any other task that use as ingredients: impacting

transitions, take-off from some surfacesΣi even remaining attached to other ones, constraint and

free-motion phases without imposing a specific succession of this phases.

Let us consider in this case that a cycle isΩ2k ∪ I1
k ∪ Ω1

2k+1 ∪ I2
k ∪ Ω2

2k+1 where Ω2k is

the free-motion phase andI i
k, Ωi

2k+1 are the impacting transients and the constrained phases

associated to the surfaceΣi. The numerical values used for the dynamical model are again

l1 = l2 = 0.5m, I1 = I2 = 1kg.m2, m1 = m2 = 1kg and the restitution coefficienten = 0.7.

The impacts are imposed byϕ = 100 in (15) (16) and the beginning of transition phases are

defined usingψ = 0.05 in (18). We impose a period of 10 seconds for each cycle and we

simulate the dynamics during 6 cycles. Setting the controller gainsγ1 = 15, γ2 = 15 we see

in Figure 7 (left) that the desired trajectory is accuratelyfollowed. The same conclusion can be

deduced looking at the variation of the Lyapunov function plotted in Figure 7 (right). In this case

we have imposed a constant contact-forceλ1 during the motion on the surfaceΣ1 (see Figure

8 (left)) and a decreasing contact-force, that allows a smooth detachment, during the motion on

Σ2 (see Figure 8 (right)).
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Fig. 7. Left: The trajectory of the system during 6 cycles; Right-Up: Zoom on the transition phases during the first

cycle; Right-Down: The variation of the Lyapunov function on the last 5 cycles.

t

λ1

t

λ2

Fig. 8. Left: Variation of the contact force during the motion onΣ1; Right: Variation of the contact force during

the motion onΣ2

IX. CONCLUSIONS

In this paper we have proposed a methodology to study the tracking control of fully actuated

Lagrangian systems subject to multiple frictionless unilateral constraints and multiple impacts.

The main contribution of the work is twofold: first, it formulates a general framework and

second, it provides a complete stability analysis for the class of systems under consideration.

It is noteworthy that even in the simplest case of only one frictionless unilateral constraint the

paper already presents some notable improvements with respect to the existing works. Precisely,

the stability analysis result is significantly more generalthan those presented in [5] and [9]

and, each element entering the dynamics (desired trajectory, contact force) is explicitly defined.
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Numerical simulations are done with the SICONOS software platform [1], [2] in order to illustrate

the results.

APPENDIX

A. Proof of Lemma 1

From (14) we can deduce on one hand that

V (tk−0 ) ≥ γ1γ2||q̃(tk−0 )||2

and on the other hand

V (tk−0 ) ≥ 1

2
s(tk−0 )TM(q(tk−0 ))s(tk−0 )

Since conditionb) of Proposition 1 is satisfied one hasV (τk
0 ) ≥ V (tk−0 ) and the first two

inequalities in (28) become trivial. Let us recall thats(t) = ˙̃q(t) + γ2q̃(t) which implies

|| ˙̃q(tk−0 )|| ≤ ||s(tk−0 )|| + γ2||q̃(tk−0 )||. Combining this with the first two inequalities in (28) we

derive the third inequality in (28).

For the rest of the proof we assume thattk0 ≤ τk
1 . Therefore(qd)p(t

k−
0 ) = (q∗d)p(t

k
0). It is clear

that

||(qd)p(t
k−
0 )|| ≤ ||q̃p(tk−0 )|| + ||qp(tk0)||

Taking into account thattk0 is a pǫ-impact (which means||qp(tk0)|| ≤ ǫ), the first inequality in

(29) becomes obvious.

Let us denotet′k =
tk0−τk

0 −δ

τk
1 −τk

0 −δ
∈ [0, 1]. We recall here thatτk

0 was chosen such that||qnc
p (τk

0 )|| ≤ ψ.

From (15), (16) and the first inequality in (29), fori = 1, . . . , p one has

qi
d(t

k−
0 ) =

[

(qi)nc(τk
0 ) + ϕV 1/3(τk

0 )
] (

2(t′k)
3 − 3(t′k)

2
)

+ (qi)nc(τk
0 ) ≤ ǫ+

√

V (τk
0 )

γ1γ2

It follows that

3(t′k)
2 − 2(t′k)

3 ≥
(qi)nc(τk

0 ) − ǫ−
√

V (τk
0 )

γ1γ2

(qi)nc(τk
0 ) + ϕV 1/3(τk

0 )

For t > 0 one has2t− t2 ≥ 3t2 − 2t3, therefore

2t′k − (t′k)
2 ≥

(qi)nc(τk
0 ) − ǫ−

√

V (τk
0 )

γ1γ2

(qi)nc(τk
0 ) + ϕV 1/3(τk

0 )
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which means that

(1 − t′k)
2 ≤

√

V (τk
0 )

γ1γ2
+ ϕV 1/3(τk

0 ) + ǫ

(qi)nc(τk
0 ) + ϕV 1/3(τk

0 )

Straightforward computations lead to

|q̇i
d(t

k−
0 )| =

6((qi)nc(τk
0 ) + ϕV 1/3(τk

0 ))

τk
1 − τk

0 − δ

(

t′k − (t′k)
2
)

Sincet′k − (t′k)
2 ≤ 1 − t′k and from (18) one has(qi)nc(τk

0 ) ≤ ψ, one arrives at

|q̇i
d(t

k−
0 )| ≤ 6((qi)nc(τk

0 ) + ϕV 1/3(τk
0 ))

τk
1 − τk

0 − δ
(1 − t′k)

≤ 6

τk
1 − τk

0 − δ

√

√

√

√

√(ψ + ϕV 1/3(τk
0 ))





√

V (τk
0 )

γ1γ2

+ ϕV 1/3(τk
0 ) + ǫ





=
6

τk
1 − τk

0 − δ

√

ψǫ+ (ψϕ+ ǫϕ)V 1/3(τk
0 ) + ϕ2V 2/3(τk

0 ) +
ϕV 5/6(τk

0 ) + ψV 1/2(τk
0 )√

γ1γ2

SinceV (τk
0 ) < 1 (thusV p1(τk

0 ) > V p2(τk
0 ) for p1 < p2) one obtains

|q̇i
d(t

k−
0 )| ≤ 6

τk
1 − τk

0 − δ
×
√

ψǫ+

[(

1√
γ1γ2

+ ϕ

)

(ϕ+ ψ) + ǫϕ

]

V 1/3(τk
0 )

≤ 6
√
ψǫ

τk
1 − τk

0 − δ
+

6

√

(

1√
γ1γ2

+ ϕ
)

(ϕ+ ψ) + ǫϕ

τk
1 − τk

0 − δ
V 1/6(τk

0 )

Therefore, the second inequality in (29) holds with

K =
6
√
pψǫ

τk
1 − τk

0 − δ
, K ′ =

6
√
p

τk
1 − τk

0 − δ

√

(

1√
γ1γ2

+ ϕ

)

(ϕ+ ψ) + ǫϕ

B. Proof of Theorem 1

First we observe that conditionsa) and d) of Proposition 1 hold when the hypothesis of the

Theorem are verified. Thus in order to prove Theorem 1 it is sufficient to verify the conditions

b), c) and e) of Proposition 1. It is noteworthy that during the transition phasesIJk

k somepǫ–

impact occurs (according to (8) we haveJ ′
k = {1, . . . , p}). This means that we do not know

which and how many of them are the constraints touched at eachcontact. However, in the

neighborhood of the desired stabilization point situated on a surface of codimensionp, only the

correspondingp constraints enter the dynamics. In the sequel we shall also use the function
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V1(t, s) = 1
2
s(t)TM(q)s(t).

b) Using thatṀ(q)−2C(q, q̇)) is a skew-symmetric matrix, straightforward computationsshow

that onR+ \⋃k≥0[t
k
0, t

k
f ] the time derivative of the Lyapunov function is given by

V̇ (t) = −γ1s
T s+ 2γ1γ2q̃

T ˙̃q = −γ1|| ˙̃q||2 − γ1γ
2
2 ||q̃||2

On the other hand

V (t) ≤ λmax(M(q))

2
||s||2 + γ1γ2||q̃||2 ≤ γ−1[γ1|| ˙̃q||2 + γ1γ

2
2 ||q̃||2]

where

γ−1 = max

{

λmax(M(q))
1 + 2γ2

2γ1
;
λmax(M(q))(γ2 + 2) + 2γ1

2γ1γ2

}

> 0

ThereforeV̇ (t) ≤ −γ−1V (t) on R+ \⋃k≥0[t
k
0, t

k
f ].

c) By definition

V (tk−ℓ+1) − V (tk+
ℓ ) = V1(t

k−
ℓ+1) − V1(t

k+
ℓ ) + γ1γ2[(q̃

T (tk−ℓ+1))q̃(t
k−
ℓ+1) − (q̃T (tk+

ℓ ))q̃(tk+
ℓ )] (30)

On the other hand, straightforward computations show that

V1(t
k−
ℓ+1) − V1(t

k+
ℓ ) =

∫

(tk
ℓ
,tk

ℓ+1
)

V̇1(t)dt = γ1γ2

∫

(tk
ℓ
,tk

ℓ+1
)

sT
p (t)(q∗d)p(t)dt− γ1

∫

(tk
ℓ
,tk

ℓ+1
)

s(t)T s(t)dt

(31)

Furthermore,
∫

(tk
ℓ
,tk

ℓ+1
)

s(t)T s(t)dt =

∫

(tk
ℓ
,tk

ℓ+1
)

|| ˙̃q(t)||2 + γ2
2 ||q̃(t)||2dt+ γ2[(q̃

T (tk−ℓ+1))q̃(t
k−
ℓ+1)− (q̃T (tk+

ℓ ))q̃(tk+
ℓ )]

(32)

Therefore, inserting successively (32) in (31) and (31) in (30) one arrives at

V (tk−ℓ+1) − V (tk+
ℓ ) ≤ γ1γ2

∫

(tk
ℓ
,tk

ℓ+1
)

sT
p (t)(q∗d)p(t)dt (33)

In the sequel let us denote byS(q) the sum of all the components of the vectorq. Taking into

account the definition (15) and the fact that(qd)p and (q̇d)p are set to zero attk+
0 one obtains

∫

(tk
ℓ
,tk

ℓ+1
)

sT
p (t)(q∗d)p(t)dt = −ϕV 1/3(τk

0 ) ·
(

∫

(tk
ℓ
,tk

ℓ+1
)

S(q̇p(t))dt+ γ2

∫

(tk
ℓ
,tk

ℓ+1
)

S(qp(t))dt

)

Sinceϕγ2V
1/3(τk

0 ) ≥ 0 andS(qp(t)) ≥ 0 it follows that
∫ tk

ℓ+1

tk
ℓ

sT
p (t)(q∗d)p(t)dt ≤ ϕV 1/3(τk

0 )[S(qp(t
k
ℓ )) − S(qp(t

k
ℓ+1))]
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Thus

∑

ℓ≥0

[

V (tk−ℓ+1) − V (tk+
ℓ )
]

≤ γ1γ2ϕV
1/3(τk

0 )S(qp(t
k
0)) ≤ γ1γ2ϕV

1/3(τk
0 )
√

3||qp(tk0)||

Recalling thattk0 is anpǫ-impact which means that||qp(tk0)|| ≤ ǫ one obtains

∑

ℓ≥0

[

V (tk−ℓ+1) − V (tk+
ℓ )
]

≤ K1V
p1(τk

0 )

whereK1 =
√

3γ1γ2ϕǫ > 0 andp1 = 2
3
.

e) First, let us compute the Lyapunov function’s jumps at the instantstkℓ , ℓ ≥ 1. Using the

continuity of the real trajectoryq(·) and the definition of the desired trajectoryqd(·) on theIk

phases (i.e.qd(t
k+
ℓ ) = qd(t

k−
ℓ ), q̇d(t

k+
ℓ ) = 0 = q̇d(t

k−
ℓ )) one gets

σV (tkℓ ) = V (tk+
ℓ ) − V (tk−ℓ ) = γ1γ2σ||q̃||2(t

k
ℓ ) +

sT (tk+
ℓ )Mℓs(t

k+
ℓ ) − sT (tk−ℓ )Mℓs(t

k−
ℓ )

2

= TL(tkℓ ) + γ2q̃(t
k
ℓ )

TMℓσq̇(t
k
ℓ )

(34)

whereMk
ℓ denotes the inertia matrixM(q(tkℓ )) andTL is the kinetic energy loss at the impact

time tkℓ .

From equation (5) one hasTL(tkℓ ) ≤ 0 and equation (34) becomesσV (tkℓ ) ≤ γ2q̃(t
k
ℓ )

TMℓσq̇(t
k
ℓ ).

Let us recall thatMℓσq̇(t
k
ℓ ) is the percussion vector (see [7]). On the other hand in theX

coordinates the percussion vector can be expressed as∇F (X)λ. Writing the latter in the

generalized coordinates introduced in Section III one obtains Mℓσq̇(t
k
ℓ ) = DTλ. In other words

the generalized coordinates introduced in Section III coincide with the so called quasi-coordinates

and the vectoṙqtang is in fact q̇n−m (i.e. σq̇(t
k
ℓ ) =





σq̇m
(tkℓ )

0n−m



 where0n−m denotes then−m

vector with all its components equal zero). Therefore

σV (tkℓ ) ≤ γ2q̃(t
k
ℓ )

TMℓσq̇(t
k
ℓ ) = γ2qp(t

k
ℓ )

Tλp = 0 (35)

where we have used(qd)p(t
k+
ℓ ) = 0 = (qd)p(t

k−
ℓ ) and the last equality is stated using the

complementarity relation entering the dynamics.

The Lyapunov function’s jump corresponding to the first impact of each cycle can be computed

as:

σV (tk0) = V (tk+
0 ) − V (tk−0 ) = γ1γ2σ||q̃||2(t

k
0) +

sT (tk+
0 )M0s(t

k+
0 ) − sT (tk−0 )M0s(t

k−
0 )

2
(36)
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• It is clear thattk0 > τk
1 implies qd(t

k+
0 ) = qd(t

k−
0 ) and q̇d(t

k+
0 ) = 0 = q̇d(t

k−
0 ). Thus, the

computations fortkℓ , ℓ ≥ 1 hold also fortk0.

• If tk0 ≤ τk
1 one has(qd)p(t

k−
0 ) 6= (qd)p(t

k+
0 ) = 0 and (q̇d)p(t

k−
0 ) 6= (q̇d)p(t

k+
0 ) = 0. Then the

initial jump of each cycle is given by:

σV (tk0) =TL(tk0) + q̇d(t
k−
0 )TM0q̇(t

k−
0 ) +

γ2
2

2

(

q̃(tk+
0 )TM0q̃(t

k+
0 ) − q̃(tk−0 )TM0q̃(t

k−
0 )
)

+ γ2

(

q̇(tk+
0 )TM0q̃(t

k+
0 ) − ˙̃q(tk−0 )TM0q̃(t

k−
0 )
)

− 1

2
q̇d(t

k−
0 )TM0q̇d(t

k−
0 )

(37)

SinceTL(tk0) ≤ 0 the equation (37) rewrites as:

σV (tk0) ≤ λmax(M(q))
[

γ2

(

||(q̇d)p(t
k−
0 )|| · ||q̃(tk−0 )|| + ||q̇(tk−0 )|| · ||(qd)p(t

k−
0 )||

)

+
1

2
||(q̇d)p(t

k−
0 )||2

+
γ2

2

2

(

||qp(tk0)||2 + ||q̃p(tk−0 )||2 + 2||(qd)p(t
k−
0 )|| · ||q̃n−p(t

k−
0 )||

)

+ ||(q̇d)p(t
k−
0 )|| · ||q̇(tk−0 )||

]

(38)

Obviously ||q̇(tk−0 )|| = || ˙̃q(tk−0 ) + (q̇d)p(t
k−
0 )|| and Lemma 1 combined withV (τk

0 ) < 1 yields

||q̇(tk−0 )|| ≤ K +

(√

2

λmin(M)
+

√

γ2

γ1

+K ′

)

V 1/6(τk
0 )

Therefore

σV (tk0) ≤ K2V
p2(τk

0 ) + ξ

wherep2 = 1
6
, ξ = 3

2
K2 + γ2ǫK +

γ2
2ǫ2

2
and

K2 = λmax(M(q))

[

3KK ′ +
3

2
(K ′)2 +

γ2

2

√

γ2

γ1
+

√

2γ2

λmin(M(q))γ1
+

2γ2

γ1

+ (K ′ +K)

(

3

√

γ2

γ1

+

√

2

λmin(M(q))

)

+ ǫγ2

(

2

√

γ2

γ1

+

√

2

λmin(M(q))
+K ′

)]

Defining α : R+ 7→ R+, α(ω) = ρω2 we getα(0) = 0 andα(||[s(t), q̃(t)]||) ≤ V (t, s, q̃). Thus,

Proposition 1 also yields

R = α−1(e−γ(tk
f
−tk

∞
)(1 +K1 +K2 + ξ)) =

√

e−γ(tk
f
−tk

∞
)(1 +K1 +K2 + ξ)/ρ

which ends the proof.
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