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Guaranteed cost for an event-triggered consensus
strategy for interconnected two time-scales systems

with structured uncertainty
Yan Lei, Yan-Wu Wang, Irinel-Constantin Morărescu, and Jiang-Wen Xiao

Abstract—This paper proposes the design of an event-triggered
control strategy for consensus of interconnected two-time scales
systems with structured uncertainty. The control design under
consideration ensures also that consensus is achieved with an
overall guaranteed cost. Since each system involves processes
evolving on both fast and slow time scales, two Zeno-free event-
triggered mechanisms are designed to independently decide the
sampling and transmission instants for the slow and fast states
respectively. As the first step, we design an event-triggering con-
sensus protocol in the ideal/nominal case when the interconnected
systems are not affected by uncertainties and the interactions
happen over a fixed interaction network. Next, the results are
extended in order to take into account structured uncertainties
affecting the systems dynamics. At this step, we go further and
we provide sufficient conditions for event-triggering consensus
with a guaranteed overall cost. Finally, two numerical examples
are provided to demonstrate the effectiveness of the proposed
theoretical results.

Index Terms—Event-triggered control, interconnected systems,
two-time-scale, guaranteed cost.

I. INTRODUCTION

THE last decades witnessed an increasing attention given
to cooperative control of interconnected systems. This is

certainly due to its numerous applications including mobile
robots [1], monitoring control [2], biology [3], traffic flow
[4] or opinion dynamics [5]. Consensus problem is the most
popular problem in cooperative control of interconnected sys-
tems. Consensus protocols aim at driving each system towards
an agreement relying on the information exchanged locally
among neighbors.

Traditionally, the consensus protocols for continuous time
dynamics are mostly designed to be applied continuously. Nev-
ertheless, digital implementation of the controller is required in
most of the applications. This means that control signals can be
updated only at particular discrete time instants corresponding
to interaction/communication times. Moreover, in order to
extend the life cycle of devices we are often interested to
minimize the number of interactions and implicitly the number
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of control updates. There are many effective way to save the
communication and control resources, for example, impulsive
control [6], periodic sampling control [7], intermittent con-
trol [8], event-triggered control [9]–[11] and the combination
of these strategies [12]. Among all these strategies, event-
triggered strategy is very attractive since each system only
needs to update control actuation and communicate with
neighbors when a pre-defined event is triggered. A distributed
event-triggered control strategy requires a distributed event-
triggered controller and a distributed Zeno-free event-triggered
mechanism. In [13], [14], two distributed event-triggered con-
trol strategy are proposed to achieve the consensus of the
interconnected systems with single-integrator dynamic. Then,
the event-triggered consensus problem is further studied for
the interconnected systems with double-integrator [15] and
general linear dynamics [16]–[19]. In [20], a self-triggered
scheme is further proposed to avoid the continuous monitoring
of the neighbors states and achieve the output consensus of
heterogeneous linear interconnected systems. It is noteworthy
that all these studies consider only dynamics evolving on one
time scale while in many practical applications the dynamics
evolves on two time scales.

Biological systems [21], chemical reactions [22], power
systems [23], [24] involve both slow and fast processes leading
to dynamics that are mathematically described as two-time
scales systems. Feedback design for such two time-scales
systems (TTSSs)is often subject to high dimensionality and
is numerical ill-conditioned. Consequently, it is interesting,
yet challenging, to consider the problem of control design for
consensus of interconnected TTSSs. The stabilization problem
of centralized TTSSs has been widely studied [25]–[28], but
the corresponding results on the consensus of interconnected
TTSSs are relatively few. In [29], the time scale decomposition
method is utilized to achieve the consensus of interconnected
TTSSs. In [30], time-varying delay and switching interaction
topology are further considered for the bipartite consensus of
interconnected TTSSs. However, the Laplacian matrix associ-
ating with the interaction topology is required to be known in
[29], [30]. In [31], the proposed consensus control protocol
for the interconnected TTSSs is independent of the Laplacian
matrix and only depends on the size of the interaction network.
A practical limitation of the designs in [29]–[31] is that
the consensus algorithms have to be continuously applied.
To overcome this limitation, in [32] the authors designed
an event-triggered control strategy for synchronization of a
class of nonlinear TTSSs in which the control inputs acts
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independently on each component (i.e. the coefficient of the
input is the identity matrix). Beside that, as pointed out in
[33], energy aware strategies need to guaranty an overall
synchronization cost while saving communication resources.

The main contribution of this paper is threefold. First, we
extend the results in [31] by proposing an event-triggering
protocol to synchronize TTSSs with a guaranteed cost. Second,
we analyze the closed-loop dynamics through Lyapunov tech-
niques and show that event-triggering mechanisms for slow
and fast states are Zeno free and not synchronized. Third,
the results are proven in the wider framework of TTSSs with
structured uncertainties. This last feature renders the results
implementable in real applications in which the agents are
slightly different although they are supposed to be identical.

The rest of the paper is organized as follows. Some
preliminaries of algebraic graph theory and guaranteed-cost
consensus are introduced in Section II. The analysis of the
guaranteed-cost consensus problem of linear interconnected
TTSSs under fixed interaction topology is detailed in Section
III. In this section we first analyze the synchronization for
nominal/identical systems and then we extend the results to
the case of dynamics affected by uncertainties. Two illustrative
examples are presented in Section IV. Conclusion is drawn in
Section V.

Notation. Rm×n denotes the set of m × n real matrices.
We write P > 0 to precise that a real symmetric matrix
P is positive definite. λmin(P ) and λmax(P ) represent the
minimum and the maximum eigenvalue, respectively. ‖ · ‖
denotes the Euclidean norm for vectors or the induced 2-norm
for matrices. ⊗ stands for Kronecker product. The notation
diag (d1, . . . , dN ) denotes the diagonal matrix with diagonal
elements d1, . . . , dN .

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Graph Theory

A graph G = (V, E ,A) is defined by the vertex-set V =
{1, 2, . . . , N}, edge-set E ⊂ V ×V and adjacency matrix A ∈
RN×N . System i obtains information from system j if and
only if {j, i} ∈ E . The adjacency matrix is defined as A =
(aij)N×N , with aij > 0 if and only if {j, i} ∈ E , otherwise,
aij = 0. It is assumed that aii = 0. A graph G = (V, E ,A) is
undirected if aij = aji, for ∀i, j ∈ V . A sequence of distinct
adjacent vertices starting with i and ending with j is called a
path from i to j. If there is a path between any two nodes of
the graph G, then G is called connected. The Laplacian matrix
L = (lij)N×N of graph G is defined as lij = −aij , i 6= j

and lii =
N∑

k=1,k 6=i
aik. As in [31] we impose the following

Assumption.

Assumption 1. The interaction topology G is undirected and
connected. All the non-zero weight aij 6= 0 of the associated
weighted Laplacian matrix are within the interval [am, aM ]
with aM ≥ am > 0.

Under Assumption 1 the following result holds.

Lemma 1 ( [31]). Let an undirected graph G satisfy Assump-
tion 1 and let 0 = λ1 < λ2 ≤ . . . ≤ λN be the eigenvalues of

the corresponding Laplacian matrix L. A rough lower-bound
on λ2, independent of G, is λ∗ =

a2m
2(N−1)N2 . Therefore, it can

be obtained that

λ∗ < λ2 ≤ . . . λN < N · aM , λ◦.

There exists an orthonormal matrix T ∈ RN×N (i.e. TTT =
TTT = IN ) such that TLTT = D = diag(λ1, λ2, . . . , λN ).

B. Problem Description

Consider the following interconnected systems composed of
N uncertain linear TTSSs,(

ẋi(t)
εżi(t)

)
=(A+ Ξi)

(
xi(t)
zi(t)

)
+Bui(t), (1)

where i = 1, . . . , N , xi(t) ∈ Rnx and zi(t) ∈ Rnz are the
slow and fast state vectors, respectively, ε is a small positive
parameter defining the time-scale separation between slow
and fast dynamics, ui(t) ∈ Rp is the control input vector,

A =

(
A11 A12

A21 A22

)
, B = col(B1, B2), Aij , Bi, i, j = 1, 2,

are the known constant matrices with appropriate dimensions,

Ξi =
mi∑
k=1

qikΞik represents the structured uncertainty with qik

uncertain parameters and Ξik known constant matrices.

Definition 1. The consensus of linear interconnected
TTSSs (1) is achieved, if for any given admissible
initial state xi(0), zi(0), lim

t→∞
‖xi (t)− xj (t)‖ = 0,

lim
t→∞

‖zi (t)− zj (t)‖ = 0, ∀i, j = 1, . . . , N .

For each system i, {t1ik } for xi and {t2ik } for zi, k ∈
0, 1, 2, . . ., are two increasing sequences of triggering instants
at which system i will respectively update the states xi and
zi and send to its neighbors. Let t1i0 = t2i0 = 0, for i ∈ V .
Define x̂i(t) = xi(t

1i
k1i

) and ẑi(t) = zi(t
2i
k2i

) as the latest
sampled slow and fast states values of system i at time t.
The distributed event-triggered controller is designed in the
following form:

ui(t)=K1

N∑
j=1

aij(x̂j(t)−x̂i(t))+K2

N∑
j=1

aij(ẑj(t)−ẑi(t)). (2)

Define the measurement errors of slow and fast states as
follows

e1i(t) = x̂i(t)− xi(t), e2i(t) = ẑi(t)− zi(t).

The sequences {t1ik }, {t2ik } for xi and zi are determined by
the event-triggered mechanism designed in the following form

t1ik+1 = inf{t > t1ik |g(e1i(t), q1i(t), δ1i(t)) = 0}, (3)

t2ik+1 = inf{t > t2ik |g(e2i(t), q2i(t), δ2i(t)) = 0}, (4)

where g(·) is a nonlinear function to be designed, q1i(t) =
N∑
j=1

aij(t)(x̂i(t) − x̂j(t)), q2i(t) =
N∑
j=1

aij(t)(ẑi(t) − ẑj(t)),

δ1i(t) and δ2i(t) are two positive smooth functions and square
integrable over t ∈ [0,∞).

Remark 1. For each system i, the event-triggered controller
(2) only updates when the event-triggered mechanisms (3)
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and (4) of itself or neighbors are triggered. From the event-
triggered mechanisms (3) and (4), it can be obtained that
the triggering instants for the slow and fast states are asyn-
chronous and independently generated. The functions δ1i and
δ2i in (3) and (4) are introduced to exclude the Zeno behavior.
The necessity of δ1i and δ2i being in such form will be clear
from the theoretical analysis.

To convert the consensus problem of the interconnected
TTSSs (1) into a stabilization problem, the following state
and input transformations are performed

x̃(t) = (T ⊗ Inx
)x(t), z̃(t) = (T ⊗ Inz

)z(t),
ũ(t) = (T ⊗ Iq)u(t), ẽ1(t) = (T ⊗ Inx)e1(t),
ẽ2(t) = (T ⊗ Inz )e2(t),

(5)

where T is defined in Lemma 1 and x = col(x1, . . . , xN ),
z = col(z1, . . . , zN ), u = col(u1, . . . , uN ), e1 =
col(e11, . . . , e1N ), e2 = col(e21, . . . , e2N ). Then, the control
law ũ(t) can be rewritten as follows,

ũ(t) =− (TL⊗K1)x(t)− (TL⊗K2)z(t)

− (TL⊗K1)e1(t)− (TL⊗K2)e2(t)

=− (TLTT ⊗K1)x̃(t)− (TLTT ⊗K2)z̃(t)

− (TLTT ⊗K1)ẽ1(t)− (TLTT ⊗K2)ẽ2(t)

=− [(D ⊗K1)x̃(t) + (D ⊗K2)z̃(t)]

− [(D ⊗K1)ẽ1(t) + (D ⊗K2)ẽ2(t)].

Denote ũ = col(ũ1, . . . , ũN ). Then, for i = 1, . . . , N ,

ũi(t)=−λiK1(x̃i(t)+ẽ1i(t))−λiK2(z̃i(t)+ẽ2i(t)). (6)

Denote x̃ = col(x̃1, . . . , x̃N ), z̃ = col(z̃1, . . . , z̃N ),
ẽ1 = col(ẽ11, . . . , ẽ1N ), ẽ2 = col(ẽ21, . . . , ẽ2N ), Ξ =
diag{Ξ1, . . . ,ΞN} and Ξ̃ = col(Ξ̃1, . . . , Ξ̃N ) = (T ⊗
Inx+nz

)Ξ(TT ⊗ Inx+nz
). The closed-loop system (1) and (2)

can be decoupled into n independent TTSSs, for i = 1, . . . , n,(
˙̃xi
ε ˙̃zi

)
=

((
Λi

11 Λi
12

Λi
21 Λi

22

)
+Ξ̃i

)(
x̃i
z̃i

)
−λiBK

(
ẽ1i
ẽ2i

)
, (7)

where K = col(K1,K2),

Λi11 = A11 − λiB1K1,Λ
i
12 = A12 − λiB1K2,

Λi21 = A21 − λiB2K1,Λ
i
22 = A22 − λiB2K2.

It can be easily obtained that, when the event-triggered
control law (2) achieves the stabilization of system (7) for
i = 2, . . . , N , the consensus problem of system (1) is also
solved.

Consider the following global cost associated with consen-
sus of interconnected TTSSs (1):

J =

∫ ∞
0

x(t)
T

(L⊗ Inx
)x(t) + z(t)

T
(L⊗ Inz

)z(t)

+ u(t)T (Ip ⊗R)u(t)dt, (8)

where R ∈ Rq×q is a positive definite matrix that penalizes
the control effort required for consensus.

Definition 2. The guaranteed-cost consensus of linear inter-
acted TTSSs (1) is said to be achieved, if there exists a bounded

J∗ such that the consensus is achieved and J ≤ J∗, where
J∗ is said to be a guaranteed cost.

The main goal of this paper is to characterize the feedback
controllers (2) together with the event-triggered mechanism
(3) and (4) such that the guaranteed-cost consensus of the
interconnected systems (1) can be achieved.

III. MAIN RESULT

In this section, we firstly present an event-triggered con-
trol laws to achieve the guaranteed-cost consensus of the
interconnected nominal TTSSs with fixed undirected topology.
Then, the results are extended to take into account structured
uncertainty on the systems dynamics.

A. Analysis of nominal interconnected TTSSs

In this subsection, we consider the following interconnected
nominal TTSS:{

ẋi(t) = A11xi(t) +A12zi(t) +B1ui(t),
εżi(t) = A21xi(t) +A22zi(t) +B2ui(t),

(9)

where i = 1, . . . , N . Unlike (1), nominal TTSSs (9) consider
all the agents are driven by identical dynamics. Suppose the
interaction topology satisfies Assumption 1.

To conduct the Chang transformation, the following assump-
tions and lemma are necessary.

Assumption 2. The matrix A22 is invertible.

Assumption 3. The pairs (A0, B0) and (A22, B2) are stabi-
lizable, where A0 =A11−A12A

−1
22 A21, B0 =B1−A12A

−1
22 B2.

Lemma 2 ( [20]). For any stabilizable pair (A,B), there
always exists a unique symmetric matrix P > 0 satisfying the
following algebraic Riccati equation:

PA+ATP − 2µ1PBB
TP + µ2In = 0, (10)

where µ1, µ2 are two positive constant.

Remark 2. Assumptions 2, 3 are standard, they have been
also used in [31] to ensure that stabilization of system (9)
can be achieved. By Lemma 2, there exist P1 = PT1 > 0,
P2 = PT2 > 0, Q1 > 0, Q2 > 0 such that

P1A0 +AT0 P1 − 2
λ∗

λ◦
P1B0B

T
0 P1 +Q1 = 0, (11)

P2A22 +AT22P2 − 2λ∗P2B2B
T
2 P2 +Q2 = 0. (12)

Thus, there exist K0 = BT0 P1, K2 = BT2 P2, such that,

(A0−
λi
λ◦
B0K0)TP1+P1(A0 −

λi
λ◦
B0K0)+Q1 ≤ 0, (13)

(A22−λiB2K2)TP2+P2(A22−λiB2K2)+Q2 ≤ 0, (14)

for i = 2, . . . , N , which means the matrices A0 − λi

λ◦B0K0

and A22−λiB2K2 are all Hurwitz. The reason of P1 and P2

being designed to satisfy (11) and (12) will be derived in the
following theoretical analysis.

Now, the Chang transformation is ready to be given. Define

Tic=

(
Inx εHi

−Li Inz
−εLiHi

)
, T−1ic =

(
Inx−εHiLi −εHi

Li Inz

)
,
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where the matrices Li and Hi satisfy follow equations,

Λi21−Λi22Li+εLiΛ
i
11−εLiΛi12Li=0,

Λi12−HiΛ
i
22+εΛi11Hi−εΛi12LiHi−εHiLiΛ

i
12 =0. (15)

Then Chang transformation is performed(
x̃is(t)
z̃if (t)

)
= T−1ic

(
x̃i(t)
z̃i(t)

)
, (16)

where x̃is(t), z̃if (t) are pure slow and pure fast state variables.
As Λi22 = A22 − λiB2K2 is Hurwitz, it is non-singular,
equations (15) have approximate solution. Then, the following
system can be obtained, for i = 2, . . . , N ,(

˙̃xis(t)
˙̃zif (t)

)
= AiD

(
x̃is(t)
z̃if (t)

)
−BiDK

(
ẽ1i(t)
ẽ2i(t)

)
. (17)

where AiD is a block diagonal matrix with

AiD=

(
Ais − λiBisKis 0

0
Aif−λiBifK2

ε

)
, BiD=

(
λiBis
λiBif

ε

)
,

Ais=A0−εA12A
−1
22 Li(A11−A12Li),

Bis=B0−εA12A
−1
22 B1,Kis=K1−K2Li,

Aif =A22+εLiA12, Bif =B2+εLiB1.

From (16), it can be obtained that if the proposed control
stabilizes systems (17), the stabilization of systems (7) is also
achieved for i = 2, . . . , n. Thus, the consensus problem of (9)
is converted to the stabilization problem of systems (17) for
i = 2, . . . , N .

Before giving the event-triggered control scheme, we firstly
design the emulation control scheme for the consensus of inter-
connected TTSSs (9), where e1i ≡ 0, e2i ≡ 0, i = 1, . . . , N .

Theorem 1. Suppose that Assumptions 1-3 hold. There exist
two positive definite symmetric matrices P1 and P2 satisfying
(11) and (12). Let K0 = BT0 P1, K2 = BT2 P2. Then, there
exists ε̄ > 0 such that for all ε ∈ (0, ε̄], the intercon-
nected TTSSs (9) achieve consensus with the following time-
continuous controller

ui(t)=K1

N∑
j=1

aij(xj(t)−xi(t))+K2

N∑
j=1

aij(zj(t)−zi(t)).

(18)
with K1 = ( 1

λ◦ −K2A
−1
22 B2)K0 +K2A

−1
22 A21.

Proof. As K1 = ( 1
λ◦ − K2A

−1
22 B2)K0 + K2A

−1
22 A21, it can

be obtained that from the first equation in (15)

Li=(A22−λiB2K2)−1(A21−λiB2K1)+O(ε)

=(A22−λiB2K2)−1(A21−λiB2K2A
−1
22 A21)+O(ε)

−(A22−λiB2K2)−1B2(
λi
λ◦
−λiK2A

−1
22 B2)K0

=(A22−λiB2K2)−1(A22−λiB2K2)A−122 A21+O(ε)

−(A22−λiB2K2)−1(
λi
λ◦
A22−λiB2K2)A−122 B2K0

=A−122 A21 −A−122 B2K0 +O(ε)

− (
λi
λ◦
− 1)(A22 − λiB2K2)−1B2K0.

Then

Kis=
1

λ◦
K0+(

λi
λ◦
−1)K2(A22−λiB2K2)−1B2K0+O(ε),

Ais−λiBisKis=A0−
λi
λ◦
B0K0−λi(

λi
λ◦
−1)B0K2×

(A22−λiB2K2)−1B2K0+O(ε),

Aif−λiBifK2 = A22 − λiB2K2 +O(ε),

Bis=B0 +O(ε), Bif = B2 +O(ε).

Define the following Lyapunov candidate

V=

N∑
i=2

x̃TisP1x̃is + ε

N∑
i=2

z̃TifP2z̃if . (19)

Since e1i ≡ 0, e2i ≡ 0, i = 1, . . . , N . The time derivative of
V along the trajectories of (17) with controller (18) is

V̇ =

N∑
i=2

( ˙̃xTisP1x̃is+x̃TisP1
˙̃xis)+ε

N∑
i=2

( ˙̃zTifP2z̃if +z̃TifP2
˙̃zif )

=

N∑
i=2

x̃Tis((Ais−λiBisKis)TP1+P1(Ais−λiBisKis))x̃is

+

N∑
i=2

z̃Tif ((Aif−λiBifK2)TP2+P2(Aif−λiBifK2))z̃if

=

N∑
i=2

x̃Tis((A0−
λi

λ◦B0K0)TP1+P1(A0−
λi

λ◦B0K0))x̃is

+2

N∑
i=2

(λi−
λ2
i

λ◦ )x̃TisP1B0K2(A22−λiB2K2)−1B2K0x̃is

+

N∑
i=2

z̃Tif ((A22−λiB2K2)TP2+P2(A22−λiB2K2))z̃if

+

N∑
i=2

x̃TisO(ε)x̃is +

N∑
i=2

z̃TifO(ε)z̃if

≤
N∑
i=2

(λi−
λ2
i

λ◦ )x̃TisP1B0K2(A22−λiB2K2)−1B2K0x̃is

−
N∑
i=2

x̃Tis(Q1+O(ε))x̃is−
N∑
i=2

z̃Tif (Q2+O(ε))z̃if , (20)

where the last equation is deduced from (13) and (14). Fur-
thermore, from (14), it can be obtained that P2A22 +AT22P2−
2λiP2B2K2 ≤ 0, i = 1, . . . , n. Thus, for i = 1, . . . , n,

x̃TisP1B0K2(A22−λiB2K2)−1B2K0x̃is

=x̃TisK
T
0 K2(P2A22 − λiP2B2K2)−1KT

2 K0x̃is

=x̌Tis(P2A22 − λiP2B2K2)T x̌is

=x̌Tis(
1

2
P2A22 +

1

2
AT22P2 − λiP2B2K2)x̌is ≤ 0,

where x̌is = (P2A22 − λiP2B2K2)−TKT
2 K0x̃is. Thus

V̇ ≤−
N∑
i=2

x̃Tis(Q1+O(ε))x̃is−
N∑
i=2

z̃Tif (Q2+O(ε))z̃if .

Then, there exists ε̄ > 0 such that for all 0 < ε ≤ ε̄,

V̇ ≤−θ1
N∑
i=2

x̃Tisx̃is−θ2
N∑
i=2

z̃Tif z̃if ,
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for some θ1 > 0, θ2 > 0. Then, from standard Lyapunov
stability results, we have lim

t→∞
x̃is = 0, lim

t→∞
z̃if = 0, for

i = 2, . . . , n. The consensus of interconnected TTSSs (9) is
achieved.

Remark 3. It can be seen that the design of (11) and (12) for
P1 and P2 is to ensure that Ais−λiBisKis, Aif − λiBifK2

are all Hurwitz for i = 2, . . . , N , and hence (20) holds, which
leads to the stability of (17). Moreover, (11) and (12) depend
only on the size of the network, and so does the design of the
control matrices K1 and K2.

Now a distributed event-triggered controller in form of (2)
is ready to be designed. Unlike controller (18), system (17)
needs to consider the impact of ẽ1i(t), ẽ2i(t) in this case.

Let µ = max
λi∈[λ∗,λ◦]

{‖Tic(λi)‖2}, λ = min
i=1,2
{λmin(Qi)},

γ= 4λ◦2

λ (‖P1B0K‖2+‖P2B2K‖2), β1 = λmin(Q1)
8µγλ◦2+2λmin(Q1)λ◦2 ,

β2 = λmin(Q2)
8µγλ◦2+2λmin(Q2)λ◦2 , α1 = max

i=1,2
{‖KT

i RKi‖2}. α2 =

4µ
λ (λ◦+ α1λ

◦2(λ+4µγ)
µγ ). Since δij(t), i = 1, 2, j = 1, . . . , N

are all square integrable over t ∈ [0,∞), 0 < 2β1λ
◦2 <

1, there exists a positive constant α3 such that α3 ≥∫∞
0

2γα2+8α1λ
◦2

1−2β1λ◦2

N∑
i=1

(δ21i+δ
2
2i)dt > 0.

Theorem 2. Suppose that Assumptions 1-3 hold. There exists
ε̄ > 0 such that for all ε ∈ (0, ε̄], the consensus of the
interconnected TTSSs (9) can be achieved by the controller
(2), where the matrices K1, K2 have the same definition as in
Theorem 1 and the triggering instants t1ik+1, t2ik+1 are defined
by event-triggered mechanism (21) and (22) as follows,

t1ik+1 = inf
t>t1ik

{t ∈ R|‖e1i‖2 =β1i‖q1i‖2+δ21i}, (21)

t2ik+1 = inf
t>t2ik

{t ∈ R|‖e2i‖2 =β2i‖q2i‖2+δ22i}, (22)

where q1i, q2i, δ1i, δ2i have the same definition as in (3)
and (4), 0 ≤ β1i ≤ β1 and 0 ≤ β2i ≤ β2. Furthermore, no
system exhibits the Zeno behavior and a guaranteed cost β =
α2V0 + α3 is achieved for interconnected TTSSs (9), where

V0 =
N∑
i=2

x̃Tis(0)P1x̃is(0) + ε
N∑
i=2

z̃Tif (0)P2z̃if (0).

Proof. Define Ẽi = col(ẽ1i, ẽ2i). As in the proof of Theorem
1 and by considering the effect of ẽ1i(t), ẽ2i(t), it can be
obtained that the time derivative of V along the trajectories of
(17) with controller (2) is

V̇ =

N∑
i=2

( ˙̃xTisP1x̃is+x̃TisP1
˙̃xis)+ε

N∑
i=2

( ˙̃zTifP2z̃if +z̃TifP2
˙̃zif )

≤−
N∑
i=2

x̃Tis(Q1+O(ε))x̃is−
N∑
i=2

z̃Tif (Q2+O(ε))z̃if

−2
N∑
i=2

λi(x̃
T
isP1Bis+z̃TifP2Bif )KẼi

=−
N∑
i=2

x̃Tis(Q1+O(ε))x̃is−
N∑
i=2

z̃Tif (Q2+O(ε))z̃if

−2
N∑
i=2

λi(x̃
T
is(P1B0+O(ε))+z̃Tif (P2B2+O(ε)))KẼi

≤−
N∑
i=2

x̃Tis(Q1−α1Inx)x̃is−
N∑
i=2

z̃Tif (Q2−α2Inz )z̃if

+

N∑
i=2

λ2
i (
‖P1B0K‖2

α1
+
‖P2B2K‖2

α2
)ẼT

i Ẽi

+

N∑
i=2

x̃TisO(ε)x̃is +

N∑
i=2

z̃TifO(ε)z̃if .

From the event-triggered mechanism (21), we have

‖e1i‖2 ≤β1

∥∥∥∥∥
N∑

j=1

aij(x̂i − x̂j)

∥∥∥∥∥
2

+ δ21i

≤2β1

∥∥∥∥∥
N∑

j=1

aij(e1i−e1j)

∥∥∥∥∥
2

+2β1

∥∥∥∥∥
N∑

j=1

aij(xi−xj)

∥∥∥∥∥
2

+δ21i.

Then, we can obtain that

eT1 e1≤2β1‖(L⊗ Inx)e1‖2+2β1‖(L⊗ Inx)x‖2+

N∑
i=1

δ21i

≤2β1λ
◦2‖e1‖2+2β1x̃

T (D2 ⊗ Inx)x̃+

N∑
i=1

δ21i

≤2β1λ
◦2‖e1‖2+2β1λ

◦2
N∑
i=2

x̃Ti x̃i+

N∑
i=1

δ21i.

Thus,

eT1 e1≤
2β1λ

◦2

1− 2β1λ◦
2

N∑
i=2

x̃Ti x̃i+
1

1− 2β1λ◦
2

N∑
i=1

δ21i.

As β1 = λmin(Q1)
8µγλ◦2+2λmin(Q1)λ◦2 , then

eT1 e1≤
λmin(Q1)

4µγ

N∑
i=2

x̃Ti x̃i+
1

1− 2β1λ◦
2

N∑
i=1

δ21i. (23)

Similarly to (23), it can be obtained that

eT2 e2≤
λmin(Q2)

4µγ

N∑
i=2

z̃Ti z̃i+
1

1− 2β1λ◦
2

N∑
i=1

δ22i. (24)

From (16),

‖col(x̃i, z̃i)‖2 =‖Ticcol(x̃is, z̃if )‖2

≤µ‖col(x̃is, z̃if )‖2,

thus

‖x̃is‖2 + ‖z̃if‖2 ≥
1

µ
(‖x̃i‖2 + ‖z̃i‖2).

As
N∑
i=1

(ẽT1iẽ1i+ẽ
T
2iẽ2i) =

N∑
i=1

(eT1ie1i+e
T
2ie2i), let α1 = α2 =

1
4λ, then

V̇ ≤−
N∑
i=2

x̃Tis(
3Q1

4
+O(ε))x̃is−

N∑
i=2

z̃Tif (
3Q2

4
+O(ε))z̃if

+γ

N∑
i=2

ẼT
i Ẽi

≤−
N∑
i=2

x̃Tis(
Q1

2
+O(ε))x̃is−

N∑
i=2

z̃Tif (
Q2

2
+O(ε))z̃if

+
γ

1− 2β1λ◦2

N∑
i=1

(δ21i+δ
2
2i)
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≤−(
λ

2µ
+O(ε))

N∑
i=2

(x̃Ti x̃i+z̃
T
i z̃i)+

γ

1− 2β1λ◦2

N∑
i=1

(δ21i+δ
2
2i).

Thus, there exists ε̄ > 0 such that for all 0 < ε ≤ ε̄,

V̇ ≤ − λ
4µ

N∑
i=2

(x̃Ti x̃i+z̃
T
i z̃i)+

γ

1− 2β1λ◦2

N∑
i=1

(δ21i+δ
2
2i). (25)

Then, Zeno behavior will be excluded. As e1i = x̂i − xi,
the upper right-hand Dini derivative of ‖e1i(t)‖2 along the
trajectories of (9) are

D+ ‖e1i‖2 ≤2 ‖e1i‖ ‖ė1i‖
≤2 ‖e1i‖ ‖A11(x̂i−e1i)+A12(ẑi−e2i)+B1ui‖
≤(2 ‖A11‖+ ‖A12‖+1)‖e1i‖2+ ‖A12‖ ‖e2i‖2

+‖A11x̂i +A12ẑi +B1ui‖2. (26)

Similarly, it can be obtained that

D+ ‖e2i‖2 ≤(‖A21‖+ 2 ‖A22‖+ 1) ‖e2i‖2 + ‖A21‖ ‖e1i‖2

+‖A21x̂i +A22ẑi +B2ui‖2. (27)

Proof by contradiction will be used to ensure that no system
will exhibit Zeno behavior. Firstly, the Zeno behavior will
be excluded for event-triggered mechanism (21). In order to
seek a contradiction, suppose that lim

k→∞
t1ik = T1i < ∞.

Since δ1i(t), δ2i(t), i = 1, . . . , N , are square integrable over
t ∈ [0,∞), from (9), (21), (22) and (25), it can be obtained that
e1i(t), e2i(t), x̂i(t), ẑi(t), ui(t) are all bounded on t ∈ (0, T1i].
Moreover, δ1i is positive smooth function. Thus, there are two
positive constants α4, δ1i, such that, for t ∈ (0, T1i],

D+ ‖e1i(t)‖2 ≤ α4, 0 < δ1i ≤ δ1i(t).

From (21), it can be obtained that

t1ik+1 − t1ik ≥
β1i
∥∥q1i(t1ik+1)

∥∥2+δ21i(t
1i
k+1)

α4
.

Then,

t1ik =t1ik − t1ik−1 + . . .+ t1i1 − t1i0 + t1i0 ≥ k
δ1i
α4

+ t1i0 .

Thus, it can be obtained that lim
k→∞

t1ik ≥ lim
k→∞

k
δ1i
α4

+ t1i0 =∞,

which yields a contradiction. Therefore, lim
k→∞

t1ik will not be
bounded. Therefore, the Zeno behavior will not happen for
event-triggered mechanism (21). With a similar proof, it can
also be obtained that the Zeno behavior will not happen for
event-triggered mechanism (22).

Since δ1i(t), δ2i(t), i = 1, . . . , N , are square integrable over
t ∈ [0,∞), according to (25), it can be obtained that V (t) is

bounded and integrable on t ∈ [0,∞). Then
N∑
i=2

(x̃Ti x̃i+ z̃Ti z̃i)

is also bounded and integrable on t ∈ [0,∞). Then x̃i, z̃i,
ẽ1i, ẽ2i, i = 2, . . . , N , are all bounded on t ∈ [0,∞). From
(17), ˙̃xi, ˙̃zi, i = 2, . . . , N , are also bounded on t ∈ [0,∞).
By Barbalat’s lemma, it can be concluded that lim

t→∞
‖x̃i‖ = 0,

lim
t→∞

‖z̃i‖ = 0, for i = 2, . . . , N . Thus, the consensus of the
interconnected TTSSs (9) is achieved.

In the following, we will prove that synchronization of (9)
is achieved with a guaranteed cost.

From (5) and (6), one obtains that

J =

∫ ∞
0

xT (t)(L⊗ Inx
)x(t) + zT (t)(L⊗ Inz

)z(t)

+ uT (t)(Ip ⊗R)u(t)dt

=

∫ ∞
0

x̃T (t)(D ⊗ Inx)x̃(t) + z̃T (t)(D ⊗ Inz )z̃(t)

+ ũT (t)(Ip ⊗R)ũ(t)dt

≤
∫ ∞
0

N∑
i=2

λi(x̃
T
i (t)x̃i(t)+z̃Ti (t)z̃i(t))+ũTi (t)Rũi(t)dt

≤
∫ ∞
0

N∑
i=2

(λ◦ + 4α1λ
◦2)(x̃Ti (t)x̃i(t)+z̃Ti (t)z̃i(t))

+4α1λ
◦2(eT1i(t)e1i(t) + eT2i(t)e2i(t))dt.

Then, from (23) and (24), we deduce that

J ≤
∫ ∞
0

N∑
i=2

(λ◦ + 4α1λ
◦2)(x̃Ti (t)x̃i(t)+z̃Ti (t)z̃i(t))

+

N∑
i=1

4α1λ
◦2(eT1i(t)e1i(t) + eT2i(t)e2i(t))dt

≤
∫ ∞
0

N∑
i=2

(λ◦+
α1λ

◦2(λ+4µγ)

µγ
)(x̃Ti (t)x̃i(t)+z̃Ti (t)z̃i(t))

+
4α1λ

◦2

1− 2β1λ◦
2

N∑
i=1

(δ21i+δ
2
2i)dt

≤
∫ ∞
0

−α2V̇ (t)+
γα2 + 4α1λ

◦2

1− 2β1λ◦
2

N∑
i=1

(δ21i+δ
2
2i)dt

≤α2V0 + α3. (28)

Thus, the consensus of TTSSs (9) is achieved with a global
guaranteed cost α2V0 + α3.

Remark 4. There are several aspects needed to be highlighted
for the event-triggered mechanism.

1) By using Chang Transformation, the states of systems
(7) are decoupled as pure slow and fast states. Thus the
event-triggered mechanism for slow states and fast states
can be designed independently as (21) and (22).

2) Due to the coupling of the slow and fast states, the
upper bound β1 of the event-triggering parameters β1i
dependents not only on the solution of (13) but also on
(14), and so does the upper bound β2 of β2i.

3) From (28), it can be obtained that the selection of δ1i
and δ2i, i = 1, . . . , N , will not only affect the triggering
instants but also the guaranteed cost. To exclude the
Zeno behavior and achieve the consensus with a global
guaranteed cost, the functions δ1i and δ2i, i = 1, . . . , N ,
are designed independently as in (3) and (4), and the
detail will be given in the feasibility analysis later.

Remark 5. For each system i, the event-triggered mechanisms
(21) and (22) depend on sampling states of itself and its
neighbors, the measurement error and the designed function
δ1i and δ2i. It is also feasible by setting β1i = β2i = 0. In
this way, the event-triggered mechanisms (21) and (22) depend
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only on the measurement error and the designed function δ1i
and δ2i, but the events will be triggered more frequently.

Remark 6. If δ1i(t) and δ2i(t) are designed to be zero as in
[18], [20], then Zeno behavior would be hard to exclude since
δ1i = δ2i = 0. If δ1i(t) and δ2i(t) are designed to be a positive
constant as in [34] or a positive constant plus a positive

function as in [35], then
N∑
i=1

δ21i and
N∑
i=1

δ22i are not integrable

on t ∈ [0,∞), and the consensus of interconnected TTSSs (9)
cannot be achieved and the global cost J is unbounded. Thus,
in this paper, δ1i(t) and δ2i(t) are designed to be positive
smooth functions and square integrable over t ∈ [0,∞), which
can exclude Zeno behavior and achieve the consensus with a
global guaranteed cost.

B. Analysis of interconnected TTSSs with structured uncer-
tainty

In this subsection, the previous results are extended to solve
the guaranteed-cost consensus for interconnected TTSSs (1)
with structured uncertainty under fixed undirected topology.

Considering TTSSs (1) with the distributed event-triggered
controller (2), when Assumption 2 holds, by the state and input
transformation similar to (5) and (16), it can be obtained that(

˙̃xis(t)
˙̃zif (t)

)
=(AiD + T−1ic E

−1Ξ̃iTic)

(
x̃is(t)
z̃if (t)

)
−BiDK

(
ẽ1i(t)
ẽ2i(t)

)
. (29)

where E = diag(Inx , εInz ).
Similarly, when Assumption 3 holds, there exist P1 = PT1 >

0, P2 = PT2 > 0, Q1 > 0, Q2 > 0 such that

P1A0 +AT0 P1 − 2
λ∗

λ◦
P1B0B

T
0 P1 + 2Q1 = 0, (30)

P2A22 +AT22P2 − 2λ∗P2B2B
T
2 P2 + 2Q2 = 0. (31)

Then, the results in the interconnected TTSSs with structured
uncertainty are given.

Theorem 3. Suppose that Assumptions 1-3 hold. There exist
two positive definite symmetric matrices P1 and P2 satisfying
(30) and (31). Let K0 = BT0 P1, K2 = BT2 P2. Then, there
exists ε̄ > 0 such that for all ε ∈ (0, ε̄], the interconnected
TTSSs (1) achieve consensus when using controller (2) to-
gether with Zeno-free event-triggered mechanism (21) and
(22), if for i = 1, . . . , N

mi∑
k=1

q2ik≤ max
λ∈[λ∗,λ◦]

{σ−1max(

mi∑
k=1

(Q−
1
2 Ξ̂ik(λ)Q−

1
2 )2)}, (32)

where Q = diag(Q1, Q2), Ξ̂ik(λ)=PT−1ic (λ)E−1ΞikTic(λ)+
TTic (λ)ΞTikE

−1T−Tic (λ)P , P = diag(P1, εP2), K1 and the
parameters in (21) and (22) have same definition in Theorem
2. Furthermore, consensus of interconnected TTSSs (1) is
obtained with a guaranteed cost β = α2V0 + α3, where α2

and α3 has same definition in Theorem 2.

Proof. As in the proof of Theorem 2, the time derivative of
V in (19) along the trajectories of (29) with the controller (2)

and event-triggered mechanism (21), (22) is

V̇ ≤− λ

4µ

N∑
i=2

(x̃Ti x̃i+z̃
T
i z̃i)+

γ

1− 2β1λ◦
2

N∑
i=1

(δ21i+δ
2
2i)

− ξ̂Ti (Q− PT−1ic E
−1Ξ̃iTic − TTic Ξ̃Ti E

−1T−Tic P )ξ̂i,

where ξ̂i = col(x̃is, z̃if ). Then, following [36], using the
condition (32), it can be obtained that, for i, j = 1, . . . , N ,

Q− PT−1ic E
−1ΞjTic + TTicΞTj E

−1T−Tic P ≤ 0 (33)

Denote Tij being the element in the i-th row and j-th column
of T . Then Ξ̃i =

∑N
j=1 T

2
ijΞi. Since TTT = I ,

∑N
j=1 T

2
ij = 1.

Thus, it can be obtained that

PT−1ic E
−1Ξ̃iTic + TTic Ξ̃Ti E

−1T−Tic P ≤
N∑
j=1

T 2
ijQ = Q.

Thus (25) can also be obtained. Then, following the proof
of Theorem 2, it can be concluded that Zeno behavior is
excluded, lim

t→∞
‖x̃i‖ = 0, lim

t→∞
‖z̃i‖ = 0, for i = 2, . . . , N ,

and J ≤ α2V0+α3. Thus, consensus of interconnected TTSSs
(1) is achieved with a guaranteed cost β = α2V0 + α3.

Remark 7. Although we are not considering the consensus of
heterogenous TTSSs, this section we are making an important
step towards practical implementation of our results. Indeed,
here we are allowing each dynamics to be slightly different
from the others since the structured uncertainties are not the
same for all systems. Thus, the coupling term of structured
uncertainty has to be handled to achieve the consensus of
interconnected TTSSs (1), which would bring the difficulties
in stability analysis.

IV. ILLUSTRATIVE EXAMPLE

In this section, two examples are presented to illustrate the
obtained results on the event-triggered consensus of the linear
interconnected TTSSs.

Example 1 : Consider the interconnected TTSSs containing
three systems, the dynamic of each system is given by (9) with

A11 =

(
2.5 −6
−2 2

)
, A12 =

(
2 3
0 −2

)
, B1 =

(
0.2
0.1

)
,

A21 =

(
0.5 2
−1 1

)
, A22 =

(
−2 1
0 −1

)
, B2 =

(
0.1
0.1

)
.

and singular perturbation parameter ε = 0.01. Thus, the matrix
A22 is invertible. Assumption 2 holds. Meanwhile,

A0 =A11 −A12A
−1
22 A21 =

(
−1 0
0 0

)
,

B0 = B1 −A12A
−1
22 B2 =

(
0.7
−0.1

)
.

The pairs (A0, B0) and (A22, B2) are stabilizable. Assumption
3 holds. For system i, i = 1, 2, 3, denote its slow and fast states
as (xi1, xi2) and (zi1, zi2), respectively. Let R = I2, then

J=

∫ ∞
0

x(t)
T

(L⊗Inx
)x(t)+z(t)

T
(L⊗Inx

)z(t) (34)

+u(t)Tu(t)dt. (35)



JOURNAL OF LATEX CLASS FILES 8

The initial condition of system is taken as

(x11(0), x12(0), z11(0), z12(0)) = (−4,−3, 2, 5),

(x21(0), x22(0), z21(0), z22(0)) = (−1, 2, 4, 2),

(x31(0), x32(0), z31(0), z32(0)) = (6,−3, 2, 3).

The interaction topology G is given in Figure 1, which
is undirected and connected. Assumption 1 holds. Choose

3

1

2

Fig. 1. The interaction topology G.

gm = gM = 1. From Lemma 1, it can be obtained that
λ∗ = 1

36 and λ◦ = 3. Choose Q1 = Q2 = 10I2, from (11)
and (12), it can be obtained that

P1 =

(
4.9 1.415

1.415 242.3

)
, P2 =

(
2.5 0.829

0.829 5.817

)
.

Then K0 = BT0 P1 = [3.29,−23.24], K1 = BT2 P2 =
[0.33, 0.67], and K1 = ( 1

λ◦ −K2A
−1
22 B2)K0 +K2A

−1
22 A21 =

[2.172,−11.227]. Based on Theorem 2, it can be obtained that
β1 = β2 = 3.3 × 10−5. Let βij = β, δij = δ, for i = 1, 2,
j = 1, 2, 3. When β = 3.3×10−5, and δ = 2e−0.5t, simulation
results of Theorem 1 and Theorem 2 show that consensus
of both slow and fast states are achieved at a bounded cost,
which confirms the effectiveness of Theorems 1 and 2. The
cost and numbers of triggering events with different β, δ, are
all shown in Table I, where nis, nif are the numbers of
triggering instants for xi and zi, i = 1, 2, 3, respectively. It
is noteworthy that the events of the slow and fast states are
triggered at different time and different system has different
triggering instants. Table I shows that the cost and triggering
numbers are different with different β, δ and it would require
more cost with fewer triggering numbers.

TABLE I
THE COST AND TRIGGERING NUMBERS

Parameters Cost
Triggering numbers (T=15s)

n1s n1f n2s n2f n3s n3f

β=3.3×10−5

δ=2e−0.5t
1.3121 43 42 63 64 22 32

β=0
δ=2e−0.5t

1.3153 44 43 64 61 22 32

β=3.3×10−5

δ=e−0.6t
1.2351 181 158 212 202 81 94

β=0
δ=e−0.6t

1.2354 225 179 308 255 87 97

When the uncertain interconnected TTSSs (1) are consid-
ered, where A,B have the same definition in above and for
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(a) The slow state trajectories of each system.
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(b) The fast state trajectories of each system.

Fig. 2. The simulation results of Theorem 3.
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Fig. 3. The event-triggering time of each system.

i = 1, 2, 3,

Ξi =


0.01i 0.02i 0 0

0 −0.01i 0.01i 0
0 0 0.02i 0.01i

0.01i 0 0 0

 .
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Choosing same Q1, Q2 as above, then same K1,K2 can be
obtained. Then it can be obtained that β = 1.7 × 10−5. Let
βij = β, δij = 2e−0.5t, for i = 1, 2, j = 1, 2, 3. Then,
the simulation result of Theorem 3 is shown in Fig. 2-3. Fig.
2 shows that consensus of both the slow and fast states are
achieved at a cost of J = 1.237 and confirms the effectiveness
of Theorem 3. Fig. 3 plots the triggering instants determined
by the designed event-triggered mechanisms.

Example 2 : Let us now consider three interconnected DC
motors. Since the dynamic described by the electromagnetic
equilibrium equation is much faster than the one described by
torque equation, interconnected DC-motors can be modeled as
interconnected TTSSs. As in [37], the dynamics of the nominal
interconnected DC-motors are as follows

Jm
dωi
dt

= −bωi + kmIi,

L̄
dIi
dt

= −kbωi −R0Ii + ui. (36)

where i = 1, 2, 3, Ii, ui, ωi denote the armature current,
voltage, and angular speed, R0 = 0.6Ω is the resistance,
Jm = 0.093kg · m2 is the equivalent moment of inertia,
b = 0.008 is the equivalent viscous friction coefficient while
km = 0.7274N ·m, kb = 560.6v · s/rad are respectively the
torque and back e.m.f. developed with constant excitation flux.
Finally L = 0.006H is the inductance which is very small
and plays the role of the singular perturbation parameter of
the system. Thus, system (36) can be described by system (1)
with A11 = −0.086, A12 = 7.82, A11 = −0.6, A12 = 0.6,
ε = 0.006. Here, we consider the structured uncertainties

Ξi =

(
0.01i 0

2i i

)
, i = 1, 2, 3.
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Fig. 4. The simulation results of Theorem 2.

The initial condition of system is taken as (x1(0), z1(0)) =
(−4, 2), (x2(0), z2(0), ) = (−1, 4), (x3(0), z3(0)) = (6,−2).
The global cost J is also defined as in 34. The interaction
topology G is also given in Figure 1. Thus, Assumption 1
holds. Choose gm = gM = 1, Q1 = Q2 = 10I2. Then, it can
be obtained that P1 = 0.0063, P2 = 0.083, K1 = 0.1218,
K2 = 0.0830. Similarly, Let βij = 0, δij = 2e−0.5t, for
i = 1, 2, j = 1, 2, 3. Then, simulation results of Theorem 3
are shown in Fig.4-5. Fig. 4 shows that consensus of both the
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Fig. 5. The event-triggering time of each system.

slow and fast states are achieved at a cost of J = 0.0083
and confirms the effectiveness of Theorem 3. Fig. 5 plots the
triggering instants determined by the designed event-triggered
mechanisms.

V. CONCLUSION

In this paper, we have investigated event-triggered consen-
sus problem with guaranteed cost for a class of interconnected
TTSSs. Due to the two-time-scale property of each system,
two event-triggered mechanisms are designed to independently
decide the sampling and transmitting instants for the slow
and fast states respectively. Besides, by using the Chang
transformation, an event-triggered controller is designed and
combined with the two proposed event-triggered mechanisms
to achieve guaranteed-cost consensus for the interconnected
nominal TTSSs with fixed interaction topology. Zeno behavior
is also excluded for each system to ensure the practical
implementation of the proposed event-triggered strategies. Fur-
thermore, the results take into account structural uncertainties
on the interconnected TTSSs. Basically our results hold as
far as the uncertainties satisfy a norm condition. Further
considerations include the consensus of interconnected TTSSs
with time-delay or with nonlinear dynamics via event-triggered
strategies.
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