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Abstract—This paper investigates the fixed-time stabilization of
uncertain linear time-invariant systems exhibiting two time scales
using a state-feedback event-triggered controller. We proceed by
emulation and assume that we know a controller that solves the
problem in the absence of sampling. We then take sampling into
account and present an event-triggered strategy, which consists of
two independent sampling mechanisms, associated with the slow
and the fast subsystems, respectively. In this setting, the fixed-
time stability property becomes practical, where the adjustable
parameters are constants used to define the triggering rules. The
existence of a strictly positive time between any two successive
transmissions is ensured for each transmission law. A numerical
example is provided to illustrate the effectiveness of the results.

Index Terms—fixed-time stabilization, two time scales system,
event-triggered control.

I. INTRODUCTION

SYSTEMS that evolve on two time scales appear in many
domains of applications such as, e.g., biology [1], electric

power management [2], and chemical engineering [3]. One
way to model such dynamical systems is to introduce a small
strictly positive parameter multiplying the time derivative of
the variables exhibiting fast dynamics: we talk of singularly
perturbed systems [4]. As a result, standard control design
techniques are typically no longer suitable due to numerical
issues. Appropriate methodological control tools are therefore
needed, see e.g., [4]–[8].

In this context, we aim at developing controllers, which
ensure a fixed-time stability property for linear time-invariant
systems exhibiting two time scales. By fixed-time stability, we
mean that the origin is stable and that any solution converges
to the origin in, at most, a given (finite) strictly positive time,
which we are free to select and which is thus independent of
the initial conditions. In that way, all solutions have reached
the attractor in the desired time. Fixed-time stability [9] is
relevant in applications like spacecrafts [10], mobile robots
[11] and underwater vehicles [12]. This property is attracting
an increasing attention and Lyapunov-based methods have
been proposed as an effective tool for analysing the fixed-
time stability of e.g., double integrators [13], linear systems
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[14] and sliding mode control systems [15]. As far as we
know, the related literature concentrates on single time scale
systems: no results are available for singularly perturbed sys-
tems. Moreover, most works on fixed-time stabilization focus
on continuous-time systems [16]–[19]. In practice, feedback
laws are commonly implemented digitally, and the induced
sampling may severely affect the properties of the closed-loop
system if not handled carefully.

In this context, we consider plants modeled by uncertain two
time scales linear time invariant systems and our objective is
to investigate the scenario where the controller is implemented
digitally so that it only communicates with the plant at
some sampling instants. We start by assuming the knowledge
of a state-feedback controller, which ensures the fixed-time
stability of the closed-loop system in the absence of sampling.
Easily checkable sufficient conditions for such a design are
provided in the paper. We then take sampling into account and
design event-triggering conditions to approximately preserve
the desired stability property; we therefore follow an emulation
approach [20]. Instead of generating the transmissions between
the plant and the controller periodically, or more generally
using clocks as in traditional sampling control setups, event-
triggered control consists in transmitting information only
when this is needed according to the plant state to (possibly)
save communication, and computation resources [21]. To
design the triggering condition so that there exists a strictly
positive minimum inter-event time is the main difficulty in this
context because of the two time scales nature of the system,
and the non-smoothness of the feedback law. Before we
present our solution, we briefly review the existing literature
on the event-triggered control of singularly perturbed systems.

While numerous event-triggering control techniques are
nowadays available, see e.g., [20], [21] and the references
therein, solutions for singularly perturbed systems are scarce
and their application is subject to limitations. In [22], two
transmission laws, inspired by the work in [23] and based
on spatial- and time-regularization respectively, are proposed
for a class of nonlinear systems, assuming the origin of the
fast subsystem is globally asymptotically stable. The latter
assumption has been relaxed in [24]. In both [22] and [24],
(practical) asymptotic stability properties are ensured. The
novelty in the present work is to ensure fixed-time stability
properties, which is stronger as we can directly tune the
convergence speed of the state. However, this requires the
use of non-smooth feedback laws as mentioned above, which
renders the analysis more challenging. Like in [25], we design
two triggering laws in this paper, one for the slow dynamics
and one for the fast dynamics, in agreement with the two
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time scales nature of the plant. This distributed strategy is
known to potentially exhibit the Zeno phenomenon [26] if
we apply “off-the-shelf” existing triggering techniques for
single time-scale systems [23]. To avoid this issue, we design
transmission rules based on absolute and relative threshold
strategies [27], [28] as well as decreasing thresholds [20]
adapted to the context of the paper. As a result, the original
fixed-time stability property ensured by the continuous-time
controller becomes practical when it is implemented digitally,
where the adjustable parameters are the absolute thresholds.
We guarantee the existence of a uniform semiglobal strictly
positive times between any two transmissions generated by
each triggering law, in the sense that there exists a strictly
positive minimum time between any two transmissions, whose
value can be taken uniform over given ball of initial conditions
centered at the origin.

The rest of the paper is organized as follows. The problem
formulation is stated in Section II. The main results are
presented in Section III. An illustrative example is presented
in Section IV. Conclusions are drawn in Section V.

Notation. Z+ is the set of strictly positive integers, Rm×n
denotes the set of m × n real matrices with m,n ∈ Z+.
The notation In stands for the n-dimensional identity matrix
with n ∈ Z+. For a given real symmetric matrix P , P > 0
means that P is a positive definite matrix, and λmin(P ) and
λmax(P ) represent the minimum and the maximum eigen-
values of P , respectively. The notation ‖ · ‖ denotes the
Euclidean norm for vectors or the induced 2-norm for matrices
depending on the context. For any zi ∈ Rni with i =
1, . . . , n and ni ∈ Z+, (z1, . . . , zn) stands for (z>1 , . . . , z

>
n )>.

Diagonal matrices are written as diag (d1, . . . , dN ) where
d1, . . . , dN are the diagonal coefficients. Given a vector x =
(x1, . . . , xn) ∈ Rn and α ∈ R>0, we define sig(x)α :=
[sign(x1)|x1|α, . . . , sign(xn)|xn|α]>, where sign(·) is the sign
function. We say that function f : [0,∞)2 → Rm×n is a O(ε)
if there exist positive constants k and ε∗ strictly positive such
that ‖f(t, ε)‖ ≤ kε, for all t ∈ [0,∞) and ε ∈ [0, ε∗]. We
consider KL and K∞ functions as defined in [5, Chapter 4].

II. PROBLEM STATEMENT

Consider the uncertain two time scales system{
ẋ(t)=(A11+Ξ11(t))x(t)+(A12+Ξ21(t))z(t)+B1u(t),

εż(t)=(A21+Ξ21(t))x(t)+(A22+Ξ22(t))z(t)+B2u(t),
(1)

where x(t) ∈ Rnx and z(t) ∈ Rnz are the slow and the fast
states at time t ≥ 0, respectively, ε is a small strictly positive
parameter inducing the time-scale separation between the slow
and the fast dynamics, u(t) ∈ Rnu is the control input.
Matrices Aij , Bi, i, j = 1, 2, are known constant matrices of

appropriate dimensions, and Ξ(t) :=

(
Ξ11(t) Ξ12(t)
Ξ21(t) Ξ22(t)

)
=

m∑
k=1

qk(t)Ξk represents the structured uncertainty with uncer-

tain parameters qk(t) and known constant matrices Ξk. We
omit the time dependency of Ξ in the sequel.

To control system (1), we make the next assumptions, which
are standard in the singularly perturbed literature [4].

Assumption 1. The matrix A22 is invertible.

Assumption 1 is essential to separate the slow and fast
dynamics, see Section III.

Assumption 2. The pairs (A0, B0) and (A22, B2) are control-
lable, where A0 :=A11−A12A

−1
22 A21, B0 :=B1−A12A

−1
22 B2.

Assumption 2 is instrumental for the design of asymptot-
ically stabilizing feedback gains for the reduced order and
boundary layer dynamics [4]. Like in [25], under Assumption
2, there exist positive definite, symmetric matrices P̄1, P̄2, Q̄1,
Q̄2, such that

P̄1A0 +A>0 P̄1 + 2P̄1B0B
>
0 P̄1 + 2Q̄1 = 0, (2)

P̄2A22 +A>22P̄2 + 2P̄2B2B
>
2 P̄2 + 2Q̄2 = 0. (3)

Moreover, defining K0 := B>0 P1, K2 = B>2 P2 yields that
A0 +B0K0 and A22 +B2K2 are both Hurwitz.

We assume that there exists a state-feedback control law of
the form

u = g(ξ)=Kstabξ − µ1sig(Kftξ)
α − µ2sig(Kftξ)

β , (4)

such that the origin of the closed-loop system (1), (4) is
T -globally fixed-time stable, as formalized in the following,
where ξ :=(x, z) is the concatenated state, α > 1, β ∈ [ 1

2 , 1),
µ1, µ2 > 0, and Kstab,Kft are design parameters.

Definition 1. The origin of system (1), (4) is T -globally fixed-
time stable with T > 0 if there exists ε̄ > 0 such that for any
ε ∈ (0, ε̄] there exists a class KL function βT,ε verifying, for
any s ≥ 0 and t ≥ T , βT,ε(s, t) = 0, such that for any solution
(x, z) and any t ≥ 0, ‖(x(t), z(t))‖ ≤ βT,ε(‖(x(0), z(0))‖, t).

The notion of T -global fixed-time stability in Definition 1
corresponds to the global fixed-time stability as defined in
[14] when the maximum convergence time is known to be T ,
adapted to the two time scales context.

We consider the case where the matrix gain Kstab :=
(K1,K2) in (4) is designed using the decoupling of the slow
and fast dynamics i.e., K1 = (1−K2A

−1
22 B2)K0+K2A

−1
22 A21

with K0 = B>0 P̄1, and K2 = B>2 P̄2. This design is based on
the following coordinate transformation(

xs
zf

)
:= T−1

c

(
x
z

)
. (5)

where Tc :=

(
Inx εH
−L Inz−εLH

)
and L, H are the solution of

the following equations

Λ21−Λ22L+εLΛ11−εLΛ12L = 0,

Λ12−HΛ22+εΛ11H−εΛ12LH−εHLΛ12 = 0, (6)

and Λij := Aij +BiKj , for i, j = 1, 2.
We write (4) as u = ustab + uft with ustab := Kstabξ and

uft := −µ1sig(Kftξ)
α − µ2sig(Kftξ)

β for the sake of conve-
nience. The term ustab corresponds to the standard composite
controller used to asymptotically stabilize the origin of (1), see
[4, Chapter 3], while uft is introduced to enforce the desired
fixed-time convergence property. Let ξc := (xs, zf ). We write
ξ̇c = f(ξc) for the sake of convenience. Controller (4) is
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assumed to be designed such that the next assumption holds.

Assumption 3. Given T > 0, controller (4) is designed
such that there exist positive definite symmetric matrices
Q := diag(Q1, Q2), P1, P2 and b, c > 0, such that

1
c(1−β) + 1

b(α−1) ≤ T and Vc(ξc):=ξ
>
c Pεξc verifies, for any

ξc ∈ Rnx+nz ,

〈∇Vc(ξc), f(ξc)〉≤−
1

2
ξ>c Qξc−b(ξ>c Pξc)

1+α
2 −c(ξ>c Pξc)

1+β
2 ,

(7)

where Pε := diag(P1, εP2), P := diag(P1, P2).

Assumption 3 guarantees the existence of a state-feedback
controller (4), which renders the origin of system (1), (4) T -
globally fixed-time stable in view of Lemma 1 in the appendix.

Remark 1. When B := [B>1 , B
>
2 ]> is full-row rank, we can

always design controller (4) so that Assumption 3 holds in
view of Lemma 4 in the Appendix.

To prepare the design of the triggering rules, we write
system (1), (4) in the (xs, zf )-coordinates in (5)(

ẋs
żf

)
=(AD+Ξc)

(
xs
zf

)
−BDuft,

where Ξc := T−1
c E−1ΞTc, E = diag(Inx , εInz ), AD is a

block-diagonal matrix with

AD :=

(
As +BsKs 0

0
Af+BfK2

ε

)
, BD :=

(
Bd
Bf
ε

)
,

As := A0 − εA12A
−1
22 L(A11 −A12L),

Bs := B0 − εA12A
−1
22 LB1,Ks := K1 −K2L,

Af := A22 + εLA12, Bf := B2 + εLB1,

Bd := B1 −HB2 − εHLB1. (8)

III. EVENT-TRIGGERED CONTROL

We investigate the scenario where controller (4) is digitally
implemented and communicates with system (1) using event-
triggered transmission schemes. Our objective is to approxi-
mately preserve the fixed-time stability property of system (1),
(4) ensured by Assumption 3 and to guarantee the existence
of a strictly positive lower bound on the minimum inter-times
for each triggering rule thereby excluding Zeno phenomenon.
A. Hybrid model

Because of sampling, the implementation of controller (4)
leads to

u=g(ξ̂)=Kstabξ̂ − µ1sig(Kftξ̂)
α − µ2sig(Kftξ̂)

β , (9)

where ξ̂ = (x̂, ẑ), and x̂ and ẑ are the sampling-induced
versions of x and z, respectively. We assume that these
variables are generated using zero-order-hold devices. Hence,
between any two successive sampling instants ˙̂x = 0 and
˙̂z = 0. We design two triggering conditions in the sequel: one
associated to x, and one associated to z, in agreement with the
two time scales of system (1). We denote the corresponding
sequence of transmissions instants as ts,k, k ∈ Is ⊆ Z, and
tf,k, k ∈ If ⊆ Z, respectively. In that way, at t = ts,k, only
x is sampled so that (x̂(t+s,k), ẑ(t+s,k)) = (x(ts,k), ẑ(ts,k)) for

k ∈ Is, and at t = tf,k, (x̂(t+f,k), ẑ(t+f,k)) = (x̂(tf,k), z(tf,k))
for k ∈ If .

To design the triggering conditions, we also introduce an
auxiliary open-loop variable ϕ := (ϕs, ϕf ) ∈ R2

≥0, whose
dynamics between consecutive triggering instants is given by

ϕ̇i=−ω1,iϕi−ω2,isig(ϕi)
α−ω3,isig(ϕi)

β , i∈ {s, f}, (10)

and at any sampling instants ϕ+
i = ϕi, where ω1.i, ω2,i,

ω3,i are strictly positive constants to be designed. Note that
variable ϕ is initialized in R2

≥0, we will elaborate more on the
initialization of ϕ in the following, see Remark 3.

Given ϕ, the triggering rule for the slow variable is given
by $1e

>
s es +$2(e>s es)

α +$3(e>s es)
β ≥ $4x

>x+$5ϕ
2
s +

νs, and the fast variable is sampled whenever $1e
>
f ef +

$2(e>f ef )α + $3(e>f ef )β ≥ $4z
>z + $5ϕ

2
f + νf , where

es := x̂ − x, ef := ẑ − z, $i, for i = 1, . . . , 4, νs, νf are
strictly positive constants to be designed.

We are ready to model the overall system using the hybrid
formalism of [29] for which a jump corresponds to a data
transmission generated by one of the two triggering mecha-
nisms. We introduce for this purpose the concatenated state
vector χ := (x, z, x̂, ẑ, ϕ) ∈ X =: Rnx ×Rnz ×Rnx ×Rnz ×
R2
≥0. Let ωi = diag(ωi,s, ωi,f ), i = 1, 2, 3. The hybrid model

is written in the formalism of [29] and is given by

χ̇ = F (χ) χ ∈ C, χ+ ∈ G(χ) χ ∈ D, (11)

where

F (χ) :=


(A11+Ξ11)x+(A12+Ξ21)z+B1g(ξ̂)

1
ε ((A21+Ξ21)x+(A22+Ξ22)z+B2g(ξ̂))

0
0

−ω1ϕ− ω2sig(ϕ)α − ω3sig(ϕ)β

 ,

G(χ) :=

 (x, z, x, ẑ, ϕ) for χ ∈ Ds\Df ,
(x, z, x̂, z, ϕ) for χ ∈ Df\Ds,
{(x, z, x, ẑ, ϕ), (x, z, x̂, z, ϕ)} for χ ∈ Df ∩Ds.

The sets C and D are defined in (12) according to the
triggering rules. In particular, the triggering condition for the
slow (fast) system is associated to Ds (to Df ), so that, when
(x, z) lies in Ds (Df ) a jump, i.e., a transmission, may
occur. When χ is in both Ds and Df , two instantaneous
transmissions may occur according to the definition of the
jump map G, which ensures that it is outer-semicontinuous,
which is one of the hybrid basic conditions [29].

The goal of this paper is to solve the next problem.
Problem 1. Given T > 0 and ν > 0, design the parameters
in (10) and in the definitions of sets C and D in (12) so that
there exists ε̄ > 0 such that for any ε ∈ (0, ε̄], there exist
γ ∈ K independent of (T, ν, ε), and, βT,ε ∈ KL independent
of ν, which satisfies that, for any s ∈ [0,∞) and t ≥ T ,
βT,ε(s, t) = 0, such that, for any solution χ to (11) and any
(t, j) ∈ domχ,

‖(x(t, j), z(t, j))‖ ≤ βT,ε(‖χ(0, 0)‖, t) + γ(ν), (13)

and, if χ is maximal, it is complete. Moreover, system (11) has
to generate solutions with a uniform semiglobal average dwell-
time, i.e., for any δ > 0, there exist τ(δ) > 0 and n0(δ) ∈
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C :=
{
χ ∈ X : $1,se

>
s es +$2,s(e

>
s es)

α +$3,s(e
>
s es)

β ≤ $4,sx
>x+$5,sϕ

2
s + νs and

$1,fe
>
f ef +$2,f (e>f ef )α +$3,f (e>f ef )β ≤ $4,fz

>z +$5,fϕ
2
f + νf

}
,

Ds := {χ ∈ X : $1,se
>
s es +$2,s(e

>
s es)

α +$3,s(e
>
s es)

β ≥ $4,sx
>x+$5,sϕ

2
s + νs},

Df := {χ ∈ X : $1,fe
>
f ef +$2,f (e>f ef )α +$3,f (e>f ef )β ≥ $4,fz

>z +$5,fϕ
2
f + νf},

(12)

Z+, such that for any solution χ to (11) with ‖χ(0, 0)‖ ≤ δ,
k − i ≤ 1

τ(δ) (t − s) + n0(δ), for any (s, i), (t, k) ∈ dom χ
with s+ i ≤ t+ k.

B. Main results

We explain how to design the parameters of the proposed
triggering mechanism to solve Problem 1 in the next theorem.

Theorem 1. Given T, ν > 0, suppose Assumptions 1-3 hold.
There exist α1,s, α1,f , β1,s, β1,f , $1,s, $1,f > 0 such that(
−Q1

8 +( µ1

α1,s
+ 21−βµ2

β1,s
)P1BdB

>
d P1 P1BdKstab

(P1BdKstab)> −$1,s

2 Inx+nz

)
≤0,

(14)(
−Q2

8 +( µ1

α1,f
+ 21−βµ2

β1,f
)P2BfB

>
f P2 P2BfKstab

(P2BfKstab)> −$1,f

2 Inx+nz

)
≤0,

(15)
where Bd and Bf are defined in (8), Q1, Q2, P1, P2, Kstab,
Kft, µ1, µ2 are matrices and strictly positive constants defined

in (4) such that 2
c(1−β) + 2(4nu)

α−1
2

b(α−1) ≤ T . Problem 1 is solved
by selecting, for any i ∈ {s, f}, $2,i ≥2α−1µ1α1,i‖Kft‖2α,
$3,i ≥µ2β1,i(4nu)

1−β
2 ‖Kft‖2β , $4,i ≤ 1

8λmin(T−>c QT−1
c ),

$5,i ≤ω1,i, ω1,i is any given strictly positive constant, and
ω2,i, ω3,i, νs, νf are strictly positive constants satisfying
νs + νf = ν and

1

ω3,i(1− β)
+

1

ω2,i(α− 1)
≤ T. (16)

Since Q1, Q2 > 0, by applying Schur complement, condi-
tions (14) and (15) can always be satisfied by selecting α1,i,
β1,i, $1,i > 0, i ∈ {s, f}, big enough. Moreover, for any
T > 0, (16) can always be guaranteed by also selecting ω2,i,
ω3,i > 0 big enough.

Remark 2. The fact that ν1 and ν2 in (12) are strictly positive
is essential, otherwise Zeno behaviour cannot be excluded. On
the other hand, we need to set β ∈ [ 1

2 , 1) to avoid the case
that the derivative of es 7→ (e>s es)

β tends to infinity when es
tends to 0.

Remark 3. The role of variables ϕs, ϕf in the event-triggered
mechanism is to potentially help reducing the number of
transmissions, i.e., the event-triggering frequency as shown on
numerical simulation in Section IV. A similar idea is presented
in e.g., [20, Section V.A], [30]. On the other hand, since the
origin of system (10) is T -globally fixed time stable in view
of Lemma 1 in the appendix, the initial values of ϕs and ϕf
can be selected very big to (possibly) reduce the number of
transmissions as illustrated on an example in Section IV.

Remark 4. Because we have two triggering laws, two trans-
missions may occur simultaneously. As a result, we cannot
guarantee the existence of a dwell-time for solutions to (11),

but of an average dwell-time. The latter is proved in the
appendix by ensuring the existence of a a strictly positive time
τf and τs between any two successive transmission of each
triggering law in the appendix. Moreover, still in view of the
proof of Theorem 1 in the appendix, we have τf = O(ε)τs.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the results of Section III, we consider system

(1) with A :=

(
A11 A12

A21 A22

)
,

B1 =

(
1 1 0 0
0 2 0 1

)
, B2 =

(
0 1 1 0
1 0 0 1

)
,

A=


0 0.4 0 0
0 0 0.35 0
0 0.5 −0.5 0.3
0 0 0 −1

 ,Ξ=


0.01 0 0 0

0 0 0 0.01
0 0.01 0 0
0 0 0 0.01

 ,

and ε = 0.1. Assumption 1 holds as A22 is invertible.
Meanwhile, from the definition of A0 and B0 in Assumption
2, we obtain

A0 =

(
0 0.4
0 0.35

)
, B0 =

(
1 1 0 0

0.21 2.7 0.7 1.21

)
.

The pairs (A0, B0) and (A22, B2) are controllable: Assump-
tion 2 holds. Selecting Q1 = Q2 = 0.25I2, we have

P1 =

(
0.30 −0.04
−0.04 0.14

)
, P2 =

(
0.15 0.02
0.02 0.11

)
.

We design Kstab and Kft in (4) by applying Lemma 4 given
in the appendix.

We have simulated the system in closed-loop with event-
triggered controller (9) with ϕ(0, 0) = (107, 107) and
(x1(0, 0), x2(0, 0), z1(0, 0), z2(0, 0)) = (−40000,−30000,
20000, 10000). We set T = 40, α = 1.2, β = 0.6,
and Q1 = Q2 = 0.25I , then we take λ = 0.06 ≤
λmin(P

1
2EBDB

>
DEP

1
2 ) as in Lemma 4. From Theorem 1,

we choose µ1 = 8.16, µ2 = 4.8, ω1,s = ω1,f = 0.5,
ω2,s = ω2,f = 0.35, ω3,s = ω3,f = 0.5, thus b = 0.345,

c = 0.506, 2
c(1−β) + 2(4nu)

α−1
2

b(α−1) ≤ T , and (16) holds. Moreover,
we take, in agreement with Theorem 1, $1,s = $1,f = 32,
$2,s = $2,f = 3213, $3,s = $3,f = 38.4, $4,s = $4,f =
32, $5,s = $5,f = 0.5. Then, we design triggering rules
by applying Theorem 1. Simulation results are presented in
Fig. 1, which show that ‖x(t, j)‖ ≤ 2, ‖z(t, j)‖ ≤ 2, for
all t ≥ 6 such that (t, j) ∈ domχ with ν1 = ν2 = 103.
Note that the triggering instants of slow and fast states are
not synchronized. In addition, for the sake of comparison, we
have also run simulation for the event-triggered controller in
[25] with K = Kstab, c0 = 1

32 , c1 = 5
8 and α = 0.4, which

ensures an asymptotic practical stability property as opposed
to a fixed-time one. The obtained evolution of the state and
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the associated triggering instants are given in Fig. 2, which
show that the system has a faster convergence rate but more
controller updates under the proposed fixed-time controller.
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Fig. 1. States evolution of the closed-loop system (top), and the associated
transmission instants (bottom)

TABLE I
CONVERGENCE TIME, ULTIMATE BOUND AND AVERAGE AMOUNT OF

TRANSMISSIONS OVER 10 INITIAL CONDITIONS OF SYSTEM (1).

Parameters Convergence
time

Ultimate bound
on (x, z)

ns nf

ϕ(0, 0)=(103, 103),
µ1=8.16, µ2=4.8
ν1 = ν2 = 103

4s 1.5 79 212

ϕ(0, 0)=(103, 103)
µ1=8.16, µ2=4.8
ν1 = ν2 = 10

4s 0.2 90 325

ϕ(0, 0)=(103, 103)
µ1=10, µ2=8
ν1 = ν2 = 10

3.5s 0.2 103 479

ϕ(0, 0)=(0, 0)
µ1=10, µ2=8
ν1 = ν2 = 10

3.5s 0.2 141 558

In order to study the impact of the initial value of ϕ, µ1,
µ2, ν1 and ν2 on the convergence time of (x, z), the ultimate
bound and the number of transmissions, different designed
parameters have been considered. Table I provides the obtained
simulation results where ns, nf are respectively the average
number of transmission instants of the slow and fast rules
within the first 6 units of continuous time, and the maximum
ultimate bound and convergence time observed are reported,
over 10 initial conditions of system (1). These results suggest
that smaller ν1 and ν2 make the slow and fast states converging

to a smaller region around origin, and that bigger µ1 and µ2

lead to a faster convergence, but both lead to more controller
updates. Moreover, we note that when ϕ(0, 0) = (0, 0), ϕ is
always equal to 0 in view of (10) and more transmissions are
generated, thereby justifying the use of the auxiliary variable
ϕ. We also have the expected result that the fast variables lead
to more transmissions than the slow ones.
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Fig. 2. States evolution of the closed-loop system (top), and the associated
transmission instants (bottom)

V. CONCLUSION

The event-triggered fixed-time stabilization problem was in-
vestigated for linear two time scales system. We have supposed
that we know a state-feedback controller, which solves the
problem in absence of sampling and we have proposed two
event-triggering conditions, one for the slow, and one for the
fast subsystem, to approximately preserve the original fixed-
time stability property. It would be interesting in future work
to further take into consideration implementation aspects of
the presented controllers, to address output feedback control,
and the distributed context where several singularly controller-
plant pairs have to synchronize.

VI. APPENDIX
A. Technical lemmas

We present several lemmas, which play a key role in the
proof of Theorem 1. We first recall Lemma 4.1 of [19]. We
provide its proof because the definition of fixed-time stability
differs from [19].

Lemma 1. Consider the following system

ẏ = f(y), y(0) = y0, (17)
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where f : Rn → Rn is continuous and f(0) = 0. If there
exists a continuously positive definite function V : Rn → R,
b, c > 0, α > 1, 1 > β > 0, such that, for any y ∈ Rn,

α(|y|) ≤ V (y) ≤ α(|y|), (18)

〈∇V (y), f(y)〉+b(V (y))
1+α
2 +c(V (y))

1+β
2 ≤ 0 (19)

where α, α are two class K∞ functions. Then, the origin of
system (17) is T-globally fixed-time stable, and the settling
time satisfies T ≤ 1

c(1−β) + 1
b(α−1) .

Proof: Let ζ(t) satisfy the differential equation

ζ̇ = −bζ
1+α
2 − cζ

1+β
2 , ζ(0) = V (y(0)) ≥ 0. (20)

Following the proof of Lemma 4.1 in [19], we have ζ(t) =
σT (ζ(0), t), where σT ∈ KL which satisfies that, for each
s ∈ [0,∞), σT (s, t) = 0, t ≥ 1

c(1−β) + 1
b(α−1) = T . Then,

from the comparison principle, we have, for any y(0) ∈ R,

V (y(t)) ≤ σT (V (y(0)), t).

Therefore, we have ‖y(t)‖ ≤ α−1(σT (V (y(0)), t)) ≤
σ−1

1 (σT (α(‖y(0)‖), t)) := βT (‖y(0)‖), t) for any y(0) ∈ R,
where βT is a class KL function, which satisfies that, for each
s ∈ [0,∞), βT (s, t) = 0, t ≥ T . Thus, the origin of system
(17) is T -globally fixed-time stable.

Lemma 2. [19] For any xi ∈ R, i = 1, . . . , n, and 0 < β ≤
1, α ≥ 1,( n∑

i=1

|xi|
)β ≤ n∑

i=1

|xi|β ≤ n1−β( n∑
i=1

|xi|
)β
,( n∑

i=1

|xi|
)α ≥ n∑

i=1

|xi|α ≥ n1−α( n∑
i=1

|xi|
)α
.

Lemma 3. Let x = (x1, x2, . . . , xn), e = (es, ef , . . . , en),
where xi, ei ∈ R, i = 1, . . . , n,

x>sig(x+e)β≥(x>x)
1+β
2 − 21−β

2β1
x>x− β1

2
(4n)

1−β
2 (e>e)β ,

x>sig(x+e)α≥(4n)
1−α
2 (x>x)

1+α
2 − 1

2α1
x>x−α1

2
(e>e)α,

where 0 < β ≤ 1, α ≥ 1, β1 > 0, α1 > 0.

Proof: We firstly prove that for any a, b ∈ R,

asig(a+ b)β ≥ |a| (|a|β − 21−β |b|β), (21)

asig(a+ b)α ≥ |a| (21−α |a|α − |b|α). (22)

Let a, b ∈ R, when sign(a) = sign(b),

asig(a+ b)β = |a| (|a|+ |b|)β

≥ |a| (|a|β − 21−β |b|β),

asig(a+ b)α = |a| (|a|+ |b|)α

≥ |a| (21−α |a|α − |b|α).

From Lemma 2,

|a|β − |b|β ≤ (|a| − |b|)β ≤ 21−β |a|β − |b|β ,
|a|α − |b|α ≥ (|a| − |b|)α ≥ 21−α |a|α − |b|α .

Thus, when sign(a) 6= sign(b) and |a| ≥ |b|, it has

asig(a+ b)β = |a| (|a| − |b|)β

≥ |a| (|a|β − 21−β |b|β),

asig(a+ b)α = |a| (|a| − |b|)α

≥ |a| (21−α |a|α − |b|α).

Similarly, when sign(a) 6= sign(b) and |a| ≤ |b|, it has

asig(a+ b)β = − |a| (|b| − |a|)β

≥ − |a| (21−β |b|β − |a|β),

asig(a+ b)α = − |a| (|b| − |a|)α

≥ − |a| (|b|α − 21−α |a|α).

Thus, (21) and (22) are obtained. Let x, e ∈ Rn, from (21),
we have, for 0 < β ≤ 1,

x>sig(x+e)β≥
n∑
i=1

|xi| (|xi|β − 21−β |ei|β)

≥(x>x)
1+β
2 − 21−β

2β1
x>x− β1

2
(4n)

1−β
2 (e>e)β

Similarly, from (22), it can be obtained that, for α ≥ 1,

x>sig(x+e)α≥
n∑
i=1

|xi| (21−α |xi|α − |ei|α)

≥(4n)
1−α
2 (x>x)

1+α
2 − 1

2α1
x>x−α1

2
(e>e)α.

B. Proof of Theorem 1

Let T, ν > 0 and ε ∈ (0, ε̄) where ε̄ > 0 is specified in the
following. We define U(χ) := ξ>c Pεξc +ϕ>ϕ for any χ ∈ X,
where we recall that χ := (x, z, x̂, ẑ, ϕ), ξc := (xs, zf ), and
P is defined before (30). There exist class K∞ functions αU
and αU such that, for any χ ∈ X,

αU (‖(ξ, ϕ)‖) ≤ U(χ) ≤ αU (‖(ξ, ϕ)‖). (23)

Let χ ∈ C. Since ξ̂ = ξ+ e, from (7) and Lemma 3, we have

〈∇U(χ), F (χ)〉

≤ − 1

2
ξ>c Qξc − b(ξ>c Pξc)

1+α
2 − (4nu)

1−β
2 c(ξ>c Pξc)

1+β
2

+2ξ>c PεBDKstabe+µ1α1(e>K>ft Kfte)
α

+
µ1

α1
ξ>c PεBDB

>
DPεξc+µ2β1(4n)

1−β
2 (e>K>ft Kfte)

β

+
21−βµ2

β1
ξ>c PεBDB

>
DPεξc+2ϕ>ϕ̇. (24)

where ϕ̇ = −ω1ϕ − ω2sig(ϕ)α − ω3sig(ϕ)β . Denote ωi :=
min{ωi,s, ωi,f}, for i = 1, 2, 3. From (14), (15), we derive

〈∇U(χ), F (χ)〉

≤− 3

8
ξ>c Qξc−b(ξ>c Pξc)

1+α
2 −(4nu)

1−β
2 c(ξ>c Pξc)

1+β
2

−2(ω1‖ϕ‖2+ω2‖ϕ‖1+α+ω3‖ϕ‖1+β)

+$1e
>e+2α−1µ1α1‖K>ft Kft‖α((e>s es)

α + (e>f ef )α)

+µ2β1(4n)
1−β
2 ‖K>ft Kft‖β((e>s es)

β + (e>f ef )β)). (25)
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Then, from (25), we have

〈∇U(χ), F (χ)〉≤− 1

4
ξ>c Qξc−b̄(ξ>c Pεξc)

1+α
2 −c̄(ξ>c Pεξc)

1+β
2

−2(ω1‖ϕ‖2+ω2‖ϕ‖1+α+ω3‖ϕ‖1+β)+ν

≤−āU−b̄U
1+α
2 −c̄U

1+β
2 +ν, (26)

where ā = min{λmin(Q)
4‖Pε‖ , ω1}, b̄ = (4nu)

1−β
2 min{b, 2ω2},

c̄ = min{c, 2ω3}. From (26), we obtain that, when U(χ) ≥ ν
ā

〈∇U(χ), F (χ)〉+ b̄U
1+α
2 + c̄U

1+β
2 ≤ 0. (27)

Moreover, for χ ∈ D and any g ∈ G(χ), U(g) = ξ>c Pεξc +
ϕ>ϕ. Using similar arguments as in the proof of Lemma 1,
there exist a class KL function σT1,ε which satisfies that, for
each s ∈ [0,∞), σT1,ε(s, t) = 0, t ≥ T1 := 1

c̄(1−β) + 1
b̄(α−1)

,
such that for any solution χ and any (t, j) ∈ domχ

U(χ(t, j)) ≤max
{
σT1,ε(α

−1
U (‖χ(0, 0)‖), t), ν

ā

}
. (28)

We now prove that system (11) generates solution with
a uniform semiglobal average dwell-time. In view of the
definitions of the set Df , the time between two continuous
successive jumps due to Df is lower-bounded by the time
it takes for e>s es +$1(e>s es)

α +$2(e>s es)
β to grow from

0 to ν1. Let ∆ > 0 and χ be a solution to (11) such that
||χ(0, 0)|| ≤ ∆. From (28), α > 1 and 1 > β > 1

2 , there
exists a positive constant δ1(∆), such that
D+(e>s es+$1(e>s es)

α+$2(e>s es)
β)

≤(‖es‖+$1‖es‖2α−1+$2‖es‖2β−1)‖A11x+A12z+B1u‖
≤δ1(∆),

where D+(·) denotes the upper right-hand Dini derivative.
Thus, the continuous time between two successive jumps

due to the slow triggering rule is lower bounded by τs(∆) =
ν1

δ1(∆) > 0. Similarly, there exist a positive constant δ2(∆),
such that the continuous time between two successive jumps
due to the slow triggering rule is lower bounded by τf (∆) =
εν2
δ2(∆) > 0. Hence, for any (s, i), (t, k) ∈ domχ with

s+i ≤ t+k, we have k−i ≤ (t−s)
τs(∆) + (t−s)

τf (∆) +2. Thus, system
(11) generates solution with a uniform semiglobal average
dwell-time. In view of the definition of system (11), (23),
(27) and the non-increasing of U at jumps, we derive from
[29, Proposition 6.1] that maximal solutions are complete.

From (28), for any solution χ to (11) and (t, j) ∈ domχ,

‖(x(t, j), z(t, j))‖2 ≤
max{σT1,ε(α

−1
U (‖χ(0, 0)‖), t), νā}
λmin(Pε)

.

However, since λmin(Pε) depend on ε, we do not have yet
that (13) holds with a γ ∈ K independent of ε. This issue is
overcome below.

Let V2(χ) := ϕ>ϕ+ εz>f P2zf for any χ ∈ X, there exists
a class K functions α̃U , such that V2(χ) ≤ α̃U (‖χ‖). Using
similar arguments as those invoked to obtain (26), there exists
0 < ε̄ < ε̄1 such that for any 0 < ε ≤ ε̄, χ ∈ C,

〈∇V2(χ), F (χ)〉

≤ − 1

4
z>f Q2zf − b(z>f P2zf )

1+α
2 − c(z>f P2zf )

1+β
2

+
1

4
x>s Q1xs + b(x>s P1xs)

1+α
2 + c(x>s P1xs)

1+β
2

−(ω1‖ϕ‖2+2ω2‖ϕ‖1+α+2ω3‖ϕ‖1+β)+ν.

Moreover, for χ ∈ D, and g ∈ G(χ), V2(g) = εz>f P2zf +

lϕ>ϕ = V2(χ). Let χ be a solution to (11). Since
‖xs(t, j)‖2 ≤ 1

λmin(P1) max{σT1,ε(α
−1
U (‖χ(0, 0)‖), 0), νā ,

there exist two class K functions γ1, γ2, for any (t, j) ∈ domχ,
〈∇V2(χ), F (χ)〉

≤ − 1

4
z>f Q2zf − b(z>f P2zf )

1+α
2 − c(z>f P2zf )

1+β
2

−ω1(ϕ)2−2ω2(ϕ)1+α −2ω3(ϕ)1+β

+γ1(σT1,ε(α
−1
U (‖χ(0, 0)‖), 0))+γ2(ν)

≤−āV2(χ)−b̄V
1+α
2

2 (χ)−c̄V
1+β
2

2 (χ)

+γ1(σT1,ε(α
−1
U (‖χ(0, 0)‖), 0))+γ2(ν),

where we omit (t, j) dependency for the state of convenience.
Then, with a similar proof as above, it can be obtained that,
there exist a class KL function σ̄T1,ε, which satisfies that, for
each s ∈ [0,∞), σ̄T1,ε(s, t) = 0, t ≥ T1, and there exist two
class K functions γ3 and γ4 independent of T1, ε, such that
for (t, j) ∈ domχ with t ≤ T1,
‖zf (t, j)‖2 ≤ max{σ̄T1,ε(α̃

−1
U (‖χ(0, 0)‖), t),

γ3(σT1,ε(α
−1
U (‖χ(0, 0)‖), 0))+γ4(ν)}.

For t ≥ T1, we have ‖xs(t, j)‖2 ≤ ν
āλmin(P1) ≤ ν̄. Thus, for

(t, j) ∈ domχ with t ≥ T1,

〈∇V2(χ), F (χ)〉 ≤ −āV2−b̄V
1+α
2

2 −c̄V
1+β
2

2 +γ2(ν).

Then, following the same reasoning as above, for (t, j) ∈
domχ with t ≥ T1,
‖zf (t, j)‖2≤max{σ̄T1,ε(V2(χ(T1, jT1

)), t− T1), γ4(ν)}.
Thus, there exist a class KL function σ̂2T1,ε which satisfies
that, for each s ∈ [0,∞), σ̂2T1,ε(s, t) = 0, t ≥ 2T1, such that,
for (t, j) ∈ domχ,

‖zf (t, j)‖2 ≤ σ̂2T1,ε(‖χ(0, 0)‖, t) + 2γ4(ν).

Furthermore, there exist a class K function γ5 such that for
all 0 < ε ≤ ε̄, we have, for (t, j) ∈ domχ,

‖ξc(t, j)‖2 ≤
σT1,ε(α

−1
U (‖χ(0, 0)‖), t)
λmin(P1)

+σ̂2T1,ε(‖χ(0, 0)‖, t)+γ5(ν).

Since 2
c(1−β) + 2(4nu)

1−β
2

b(α−1) ≤ T and 1
ω3(1−β) + 1

ω2(α−1) ≤ T ,
we have 2T1 < T . Thus, there exists a class KL function
βT,ε which satisfies that, for each s ∈ [0,∞), βT,ε(s, t) = 0,
t ≥ T , and a class K function γ independent of T, ε, such
that, for t ≥ 0, (13) is satisfied.
C. Example of a controller ensuring Assumption 3

Lemma 4. Under Assumptions 1-2 and assuming B :=
[B>1 , B

>
2 ]> is of full-row rank, for any given T > 0, the

origin of the closed-loop system (1), (4) is T -globally fixed-
time stable when
• Kstab = (K1,K2) with K1 := (1 − K2A

−1
22 B2)K0 +

K2A
−1
22 A21, K0 = B>0 P̄1, K2 := B>2 P̄2 and P̄1, P̄2 as

defined in (2) and (3), respectively,

• Kft := B>
(

P̄1 0

P̄2Λ−1
22 Λ21 − Λ−T22 Λ>12P̄1 P̄2

)
,

• Ξ̂k := P̄εT
−1
c E−1ΞkTc+T

>
c Ξ>k E

−1T−Tc P̄ε satisfies,
m∑
k=1

q2
k(t)≤σ−1

max(

m∑
k=1

(Q̄−
1
2 Ξ̂kQ̄

− 1
2 )2), ∀t ≥ 0 (29)

where P̄ε := diag(P̄1, εP̄2), Q̄ := diag(Q̄1, εQ̄2)
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• 0 < λ ≤ λmin(P̄
1
2EBDB

>
DEP̄

1
2 ), P̄ := diag(P̄1, P̄2),

b = µ1λ
1+α
2 , c = µ2λ

1+β
2 , µ1, µ2 > 0 verify 1

c(1−β) +
1

b(α−1) ≤ T .

Proof: Let T > 0 and Vc(ξc) = ξ>c P̄εξc for any
ξc ∈ Rnx+nz , where ξc := (xs, zf ). Then, there exist two
class K∞ functions α(‖ξc‖) = λmin(P̄ε)‖ξc‖2, α(‖ξc‖) =
λmax(P̄ε)‖ξc‖2, such that for any ξc ∈ Rnx+nz ,

α(‖ξc‖) ≤ Vc(ξc) ≤ α(‖ξc‖). (30)
We write ξ̇c= f(ξc) for the sake of convenience. Let ξc ∈

Rnx+nz , we have
〈∇Vc(ξc), f(ξc)〉=x>s ((As+BsKs)

>
P̄1+P̄1(As+BsKs))xs

+z>f ((Af+BfK2)
>
P̄2+P̄2(Af+BfK2))zf

−2ξ>c P̄BD(µ1sig(Kftξ)
α+µ2sig(Kftξ)

β)

+ξ>c (P̄εΞc + Ξ>c P̄ε)ξc,

From the definition of L, H and Kft, we have
T−Tc P̄εBD = K>ft +O(ε), As+BsKs = A0+B0K0+O(ε),

Af +BfK2 = A22 +B2K2 +O(ε).

From (29), we have Q̄− P̄εΞc − Ξ>c P̄ε ≤ 0. Thus
〈∇Vc(ξc), f(ξc)〉 ≤ −x>s (Q̄1+O(ε))xs−z>f (Q̄2+O(ε))zf

−2ξ>(K>ft +O(ε))(µ1sig(Kftξ)
α+µ2sig(Kftξ)

β). (31)
Since B := [B>1 , B

>
2 ]> is of full-row rank, we derive

that K>ft Kft > 0 and the definition of Kft in Theorem 1.
Consequently, there exists ε̄ > 0 such that for all ε ∈ (0, ε̄],

〈∇Vc(ξc), f(ξc)〉≤−
1

2
x>s Q̄1xs−

1

2
z>f Q̄2zf

−µ1(ξ>K>ft Kftξ)
1+α
2 −µ2(ξ>K>ft Kftξ)

1+β
2 .

From the definition of ξc, we have
ξ>K>ft Kftξ ≥ λmin(P̄

1
2EBDB

>
DEP̄

1
2 )ξ>c Pξc.

Thus
〈∇Vc(ξc), f(ξc)〉≤−

1

2
x>s Q̄1xs−

1

2
z>f Q̄2zf

−µ1(ξ>K>ft Kftξ)
1+α
2 −µ2(ξ>K>ft Kftξ)

1+β
2

≤− 1

2
ξ>c Q̄ξc−b(ξ>c P̄ ξc)

1+α
2 −c(ξ>c P̄ ξc)

1+β
2

≤− 1

2
ξ>c Q̄ξc− b(Vc(ξc))

1+α
2 −c(Vc(ξc))

1+β
2 .

According to Lemma 1, the origin of system (1)-(4) is 1
c(1−β)+

1
b(α−1) -globally fixed-time stable. Since µ1 and µ2 are chosen
to verify T ≥ 1

c(1−β) + 1
b(α−1) , thus the origin of system (1)-

(4) is T -globally fixed-time stable.
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