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Abstract

Consider a mobile robot that must navigate as quickly as possible to the global maxima of a function (e.g. density
of seabed litter, pollutant concentration, wireless signal strength) defined over its operating area. This objective
function is initially unknown and is assumed to be Lipschitz continuous. The limited velocity of the robot restricts the
next samples to neighboring positions, and to avoid wasting time and energy, the robot’s path must be adapted as new
information becomes available. The paper proposes two methods that use an upper bound on the objective to iteratively
change the position targeted by the robot as new samples are acquired. The first method is FTW, which Turns When
the best value seen so far of the objective Function is larger than the bound of the current target position. The second is
FTWD, an extension of FTW that takes into account the Distance to the target. Convergence guarantees are provided
for both methods, and a convergence rate is proven to characterize how fast the FTW suboptimality decreases as the
number of samples grows. In a numerical study, FTWD greatly improves performance compared to FTW, outperforms
two representative source-seeking baselines, and obtains results similar to a much more computationally intensive
method that does not guarantee convergence. The relationship between FTW and FTWD is also confirmed in real-
robot experiments, where a TurtleBot3 seeks the darkest point on a 2D grayscale map.
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1. Introduction

Consider an autonomous mobile robot that must navigate as quickly as possible to the global maxima of some
position-dependent physical quantity (objective function) by sampling it online during its mission. The function,
defined over the search area of the robot, is unknown at the beginning of the experiment. An important constraint
is the robot’s limited velocity, which means it cannot sample the function arbitrarily far. Instead, the next sample is
restricted to a neighborhood of the robot’s current position. To reduce time and energy consumption [MLHL06], the
robot should update its trajectory towards the most likely optimum location using all information collected so far, i.e.
the pairs of sampled positions and their corresponding values. This setting is formally known as path-aware global
optimization [SBVM22], and has many applications: finding the maximal pollution source [JLG+22], the highest odor
plume to detect leak sources [BPL19] like gas emission points in landfill sites [WP22], or the strongest signal strength
in sensor networks for robot localization and communication purposes [BEF+96, BSH04]. Another application of
particular importance is the search for marine litter, as in the SeaClear 2.0 project (https://www.seaclear2.eu/).
In this example, one robot may map areas with the highest litter density [FHIS19, RB22], and share this mapping
information with another robot tasked with collecting the litter [GRB+23].
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The key objectives in path-aware global optimization are (i) to design methods for a mobile robot to quickly find
all global optima of a Lipschitz-continuous, but otherwise arbitrarily complex objective function (nondifferentiable,
any amount of local or global optima); and (ii) to guarantee asymptotic convergence and convergence rates.

In this paper, to address objective (i), two methods are presented to solve path-aware global optimization. These
methods are related to a branch-and-bound global optimization technique called deterministic optimistic optimiza-
tion (DOO), which under Lipschitz continuity guarantees convergence at known rates to a global optimum [Mun11,
Mun14]. The two methods exploit the Lipschitz continuity of the objective function to recompute at each step an
upper bound on it, from all the samples seen so far. The first method drives the robot optimistically towards target
positions corresponding to the maxima of the upper bound. At each step, it checks whether the bound at the target
position dropped below the best objective value seen so far, and if so, it updates its target to a new best-bound position.
Hence, this method is called Turn When the Function is larger than the bound, FTW for short, and was introduced in
our preliminary conference version [SBVM22]. The second method is novel, and is motivated by the fact that it often
makes sense to visit closer points before distant ones, even though their bounds might be slightly smaller. Therefore,
this second method modifies the target selection criterion so that large-bound points at smaller Distances to the robot’s
position are ranked higher, from where the acronym FTWD follows.

A key contribution of this paper is to thoroughly analyze both of these algorithms; such an analysis was missing
from [SBVM22]. Convergence rates to the global optima are given for FTW, thereby successfully achieving objective
(ii). A complexity measure that drives the convergence rate is defined, and a close relationship to the measure defined
for the original DOO in [Mun14] is established. The asymptotic analysis discussed earlier largely focuses on FTW
because analyzing FTWD would require additional regularity assumptions on the objective function, and therefore
reduce generality. Instead, a simpler form of convergence for FTWD (together with FTW) is proven only in the
approximate case when the bound is defined on a finite grid.

Nevertheless, a numerical study shows that FTWD performs significantly better than FTW, and almost as well as
an algorithm called Path-Aware Optimistic Optimization [SB22], which is much more computationally intensive and
has no convergence guarantees. In the same numerical study, FTWD outperforms two representative, state-of-the-art
baselines from source seeking control [SK23, MTS11] by always finding all global maxima. The convergence rate
of FTW is experimentally illustrated. Finally, the simulation results from the comparison between FTW and FTWD
are confirmed in a TurtleBot3 experiment, in which the real robot successfully searches for the darkest point of a 2D
grayscale surface.

Related work

The closest settings to path-aware optimization are source and extremum seeking, which aim to optimize a pro-
cess variable (e.g. performance/cost function) of a dynamical system, often through approximate gradient climbing,
when only online measurements of the objective are available. These techniques are usually employed to regulate
nonlinear plants to reach their optimal operating point [TNMA09, FÖ11], or – similar to the present paper – applied
to mobile robots when searching for the optimum of some physical quantity [KTMN14, GAH20]. In the latter case,
source/extremum seeking does not usually assume that absolute position coordinates are available (e.g. mobile robots
might operate in a GPS-restricted area) [GMM20, LK10b], although exceptions exist [KTMN14, GAH20].

The objectives of this paper are optimization-focused and are different from the typical goals in source/extremum
seeking, which heavily focus on analyzing practical asymptotic stability [TP01, FO09, GMM20, LK10b]. Moreover,
the shape of the function is significantly more general than in many source/extremum seeking methods [FÖ11, ASP12,
GMM20, LK10b], in which the function must often be differentiable and radially decreasing around the optimum.

Another major point of differentiation is that the current work provides asymptotic convergence rates, which to
the authors’ knowledge are very rare in source/extremum seeking, and have only been previously provided under the
assumption that the global optimum is unique [LK10b, CK09]. Two limitations of the proposed approach are that,
like in [KTMN14, GAH20], absolute robot positions are required; and that the asymptotic analysis disregards the
transients, as is not uncommonly done in source seeking, e.g. [TNMA09, TP01].

Additional work related to this paper can be found in coverage problems, where robots monitor an area and build
a surveillance path to quickly update a map of this area [Cho01, TOA07, FLAS22]. Another sample-based approach
used to examine a physical quantity in minimum time with robot sensors can be found in informative path planning
[SPK+20]. For instance, agricultural sites can be monitored with a high-resolution depth camera mounted on a UAV

2



[PVCH+20]. Well-established SLAM methods can be employed if both mapping and robot localization in unknown
environments are desired [ESC14, MBMM+22]. However, none of these methods directly optimize a function defined
over the robot’s space. In the multiagent framework, a heuristic method searching for the maximum signal strength
of an antenna was presented in [ZKW+15]. The method uses particle swarm optimization to find the global optimum
without imposing regularity assumptions on the signal function, although unlike the current work, that paper does not
provide a convergence analysis and is not suitable for single-robot optimization.

While the Path-Aware Optimistic Optimization method previously proposed by two of the authors [SB22] works
well in practice, it provides no convergence guarantees, and it is computationally much more expensive than FTW(D).

Next, some background on DOO and preliminary algorithmic development is given in Section 2, followed by the
presentation of FTW and FTWD in Section 3. Sections 4 and 5 provide convergence guarantees and rates, particularly
for FTW, for which a complexity measure that drives this rate is formally defined. Numerical results and real-robot
experiments are presented in Sections 6 and 7 respectively, while Section 8 summarizes the paper and gives possible
extensions for future work.

2. Background and preliminaries

This section briefly introduces DOO, which represents the foundation of the proposed methods, and then formally
defines the path-aware optimization setting.

2.1. Deterministic optimistic optimization
Consider a compact and connected, n-dimensional state space X. Practical examples of X include polyhedra (not

limited to hyper-rectangles or spheres) such as geographical regions. Over this state space, an objective function
f : X → R is defined. DOO [Mun14] is a global optimization algorithm belonging to the branch-and-bound class
that aims to find the optima x∗ ∈ X∗ B arg maxx∈X f (x) of the objective from successive function evaluations. It
sequentially splits the search space X into progressively finer partitions, and samples to further expand only the sets
associated with the largest upper bound values on f . After a numerical budget has been exhausted, the algorithm
approximates the maximum as the location x with the largest f value evaluated so far.

Assumption 1. Smoothness: The objective function f is globally Lipschitz continuous:

‖ f (x1) − f (x2)‖ ≤ M‖x1 − x2‖,∀x1, x2 ∈ X, (1)

where M denotes the Lipschitz constant and ‖ · ‖ is the Euclidean norm.

Even though DOO analysis in [Mun14] requires the Lipschitz-continuity assumption in (1) to hold only locally
around the maxima x∗ ∈ arg maxx∈X f (x), the property is needed here to hold globally in order to develop the analysis
in the following sections. Note that typically, a global optimization algorithm either requires sampling the entire space,
or relies on a smoothness assumption of the objective function [SK23], like Lipschitz continuity [GAH20, LK10a].
This assumption is necessary because without it, an unexplored region may contain positions where the function
experiences an arbitrarily rapid rate of change, potentially concealing a global optimum. This restriction is realistic
for many physical phenomena such as the distribution of ocean litter or gas and heat diffusion, which gradually spread
over time until reaching a rather smooth steady-state distribution [GAH20].

An alternative approach to the partition splitting in DOO will be used here: the construction of a so-called “saw-
tooth” upper bound [Mun14], defined as Bk : X → R so that:

f (x) ≤ Bk(x) B min
xs∈S k

[ f (xs) + M‖x − xs‖], ∀x ∈ X, (2)

where S k = {x1, . . . , xk} is the set of states sampled up to step k, with k indexing the last function evaluation; see
Figure 1 for an example. At each iteration, the next target (state to be sampled) is given by the formula:

xt B arg max
x∈X

Bk(x). (3)

This method will be called sawtooth DOO. Note that Bk is lowered (refined) implicitly via (2) with each new sample
added to S k.
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2.2. Path-aware optimization
Consider a mobile robot characterized by positions x ∈ X and control inputs u ∈ U, which searches for the global

maxima x∗ ∈ X∗ of the function f . Next, define the discrete time dynamics g : X × U → X so that:

xk+1 = g(xk, uk), (4)

where k denotes the time step. Note that the state signal consists of only robot positions and the robot moves with first
order dynamics, although this could be generalized like in [SB22]. In the search for x∗, the robot picks targets xt ∈ X
with (3). When driving towards these targets, the robot uses dynamics in (4) by applying the control action leading
closest to xt among all available actions:

uk = arg min
u
||xt − g(xk, u)||. (5)

Most often, due to velocity constraints in dynamics (4), multiple time steps and thus control actions will be required
for the robot to reach a given target xt.

Assumption 2. Reachability: ∃R > 0 such that ∀x ∈ X and ∀x′ ∈ B(x,R), ∃u ∈ U such that g(x, u) = x′, where
B(x,R) is the n-dimensional (hyper)sphere centered at x and of radius R.

Assumption 2 ensures that the robot can eventually reach all points within the set X. Such an assumption is not
uncommon and was made e.g. for the source seeking method of [ASP12]. When applied to the single-integrator
dynamics (4), it provides a reasonable approximation of more complex behavior, e.g. second or third order dynamics
[AB22], especially when robots move at relatively low velocities, their control actions are limited to simple maneuvers,
or when the operating area is much larger than the robots’ size [OSM04, ZS17]. Note that the convergence results of
the following sections hold under Assumptions 1 and 2.

Path-aware global optimization [SB22, SBVM22] can be described as follows. The mobile robot aims to locate as
quickly as possible all global maxima of objective function f , which per Assumption 1 is Lipschitz continuous with
a known Lipschitz constant, but can have properties such as non-differentiability and various local and global optima.
The robot lacks prior knowledge of the function f , making the problem model-free optimization. Consequently, the
robot learns the function online during a single trajectory, by observing samples at the positions it visits along this
trajectory. However, due to constraints on the robot’s dynamics (e.g., limited velocity), it can only sample at each step
neighboring states instead of being able to sample arbitrarily distant next-step positions.

In this setting, the sampling strategy of sawtooth DOO becomes inappropriate as most often a maximal B-state is
not reachable within one robot step, meaning that intermediate steps (samples) are required to reach these targets. The
approach in which the robot picks a target according to (3), travels towards this point by taking intermediate steps,
and only changes the trajectory once it has been reached, will be called committed DOO. Note that this approach
is susceptible to overcommitment: even though the newly acquired samples may suggest the current trajectory has
become suboptimal, the method is unable to make trajectory adjustments until the preset target is reached. Figure 1
below provides an example of a committed-DOO trajectory and gives more intuition on the overcommitment issue
[SBVM22].

3. FTW and FTWD algorithms

Next, the main methods of the paper are presented: FTW and its extension, FTWD. FTW was introduced in the
preliminary conference version [SBVM22], while FTWD is the main algorithmic novelty of this work.

FTW uses the sawtooth-DOO principle of refining with each new f -sample gathered the upper bound in (2), with
the goal of focusing the search towards x∗. To tackle the danger of overcommitment, FTW continuously monitors
the upper bound and function values. If after the latest sample the bound of the currently targeted state xt (the last-
chosen maximal-B location) becomes lower than an f -sample previously seen by the robot, the current path is clearly
suboptimal. In such a case, the robot updates its target to the current maximum of B. This method will be called FTW,
as the robot Turns When a previous Function value becomes larger than the current best upper bound.

Figure 1 provides some intuition on the difference between committed DOO and FTW. The global maximum
of the function is marked with a red star and denoted with f ∗, the robot samples are marked with black stars, and
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Figure 1: 1D trajectory example showing the overcommitment issue faced by committed DOO (CDOO). FTW changes direction when its path
clearly becomes suboptimal.

the blue line represents the upper bound on f . The robot is heading towards the left endpoint of the search space
X = [0; 25], where initially the bound was maximal (marked with a blue star at the end of the blue dotted line). A
future turnaround is exemplified: at step k + 3 the refined bound at the initial target point will become lower than the
current function sample f (xk), as shown by the horizontal dotted line, and thus FTW will change direction towards
the right. In contrast, committed DOO will continue the suboptimal trajectory until reaching the position initially
targeted, thus wasting energy and time.

Algorithm 1 summarizes the FTW method. The method starts in position x1 with no prior knowledge of f (S 0 ←

∅), apart from the Lipschitz constant M. At each step k, the robot takes a new sample f (xk), adds it to S k−1, and
updates both the upper bound Bk and f ∗k = max{ f (xs)|xs ∈ S k}, the maximal f -value seen so far. The robot updates
its current target xt with (3) as soon as f ∗k > Bk(xt), or when xt is reached. The control action in (5) guides the robot
towards xt, resulting in a new robot position xk+1.

The algorithm stops when either the total number of iterations was exhausted or convergence was reached. Con-
vergence is obtained when f ∗k becomes larger than all (or equal to some) Bk values. In that case, the position corre-
sponding to f ∗k is returned as an approximation of the optimum.

Algorithm 1 FTW/FTWD
Input: search space X, dynamics g, Lipschitz constant M, maximum number of trajectory steps N

1: measure initial state x1
2: initialize target xt = x1 and sample set S 0 ← ∅

3: for each step k = 1, . . . ,N do
4: sample f (xk), add xk to S k−1, obtaining S k

5: update max f -sample f ∗k = maxxs∈S k f (xs) and upper bound Bk (2)
6: if Bk(xt) ≤ f ∗k then
7: update target with:

FTW: xt = arg maxx∈X Bk(x)
or

FTWD: xt = arg maxx∈X Dk(x) from (6)
8: if Bk(xt) ≤ f ∗k then
9: convergence occurred, break loop

10: end if
11: end if
12: find uk = arg minu ||xt − g(xk, u)|| and apply uk to reach xk+1
13: end for
14: return x̂∗ = arg maxxs∈S N

f (xs).
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Figure 2: Left: Illustration of the oscillating behavior of the robot trajectory for a FTW run. Right: The oscillating behavior is reduced for FTWD,
so the trajectory length greatly decreases. Results are part of the FTW/FTWD comparison from Section 6.1, and details on the experiment are
provided on page 14.

A meaningful extension to FTW can be obtained by accounting for the distance to the (locally) maximal bound
states while choosing the next target position. To understand why this approach might be preferred, consider the
case when two or more, not necessarily global, optima in X are present. If FTW is used, the robot will continue to
lower the bound around the first optimum until the next max-bound state is located in the neighborhood of the second
optimum. The robot will refine next the bound states around the second optimum, until the first one becomes attractive
again, and so on. This leads in practice to oscillating behavior: a trajectory that repeatedly passes through the high
bound-regions of different optima, as can be seen on the left of Figure 2.

To reduce the oscillations, and get a trajectory similar to the one on the right of Figure 2, one can consider also
the distance (which is used here as a proxy for travel cost) required by the robot to reach the maximal-bound states.
To achieve this, define the following quantity:

Dk(x) B
Bk(x) − f ∗k
‖x − xk‖

, (6)

where xk is the current position of the robot, Bk(x) is the bound in x ∈ X \ {xk}, and f ∗k is the maximum sample seen so
far (up to step k). The term f ∗k in (6) ensures that the robot will not target states where the bound is below the maximal
value sampled so far. Then, the next target point is chosen as:

xt ∈ arg max
x∈X

Dk(x), (7)

instead of the standard choice in (3). The new FTW variant, since it also accounts for the Distance, will be called
FTWD, and a simulation comparison to FTW will be made in Section 6.1. Note that like for FTW, convergence of
FTWD is reached when Bk(x) ≤ f ∗k , ∀x ∈ X.

Due to the non-trivial global maximization of the bounds Bk over the entire X, an approximate grid-based version
of FTW and FTWD will be implemented in practice. In this case, Bk and Dk are evaluated over an equidistant grid Xg

of resolution δ defined over X (the distance between adjacent points across each dimension of X is δ) and the optimum
x∗ will be found with an accuracy given by the resolution. The convergence for the grid-based methods is reached
when Bk(x) ≤ f ∗k , ∀ x ∈ Xg. Note that the results of Figure 2 were generated with the grid-based algorithms.

4. Convergence guarantees

In this section, convergence guarantees are provided for sawtooth DOO, committed DOO and FTW, followed by
a convergence proof applicable to the grid-based versions of the same methods, as well as of FTWD. The proof for
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FTWD is only given for its grid-based version, as in the continuous setting the convergence cannot be guaranteed
without making additional assumptions on the function f , which would reduce generality. Such a setting is not in the
scope of this paper, but may be studied in future work.

Theorem 1. Convergence of sawtooth DOO and committed DOO: The sequence of best function values obtained up
until each step k, f ∗k , will converge to f ∗ as k → ∞.

Proof. f ∗k is convergent due to being monotonously increasing and bounded from above ( f ∗k ≤ f ∗). Suppose that
f ∗k 9 f ∗ in the limit k → ∞. Thus, ∃ε f > 0 s.t.:

f ∗k → f ∗ − ε f C f ∗∞. (8)

Take any global maximum x∗, which by assumption is never sampled. Thus, for any sample xk+1:

Bk(xk+1) > Bk(x∗) ≥ f ∗ (9)

as otherwise x∗ would be sampled. Let x′s ∈ S k and denote by B′k(xk+1) = f (x′s) + M · ‖xk+1 − x′s‖ the bound in xk+1
given by x′s. Then, using (2) one can obtain:

B′k(xk+1) = f (x′s) + M · ‖xk+1 − x′s‖ ≥ Bk(xk+1). (10)

Using f ∗∞ ≥ f (x′s) and (9), the last inequality leads to:

f ∗∞ + M · ‖x′s − xk+1‖ > f ∗. (11)

Finally:

‖x′s − xk+1‖ >
f ∗ − f ∗∞

M
=
ε f

M
> 0, ∀x′s ∈ S k. (12)

Inequality (12) implies that at any k, xk+1 is placed at a distance greater than ε f

M from all states in S k. This leads to
a contradiction, as there is only a finite number of samples that can be taken in X such that the minimum distance
between any new sample and those already available in S k is greater than ε f

M . Thus, the assumption initially made
( f ∗k 9 f ∗) is false and the convergence of sawtooth DOO is proven.

In committed DOO the robot pays the travelling cost to xk+1 in order to sample this maximal B-state. Thus, the
set of samples contains (without being equal to) the set of max B-states recommended by the sampling strategy of
sawtooth DOO. Nevertheless, the same proof line exploiting the inequalities (9)-(12) can be applied to prove that
limk→∞ f ∗k → f ∗.

Remark 1. The proof also implies that, for any ε > 0, f ∗ will be found with ε accuracy in a finite number nε ∈ Z+ of
function evaluations.

Remark 2. The global maximum x∗ used in the proof was an arbitrarily chosen element of the set X∗. Thus, the proof
holds for any x∗ ∈ X∗, and the sawtooth-DOO method will find all global maxima in X∗ with arbitrary accuracy. This
does not guarantee that a maximum x∗ will eventually become a sampled state, but rather that the method is building
a dense set of samples around optima.

The convergence guarantee of the FTW method will be given in the sequel. The following Lemma represents an
intermediate step towards this.

Lemma 1. Let x1, x2 ∈ X. Then:
Bk(x1) ≤ Bk(x2) + M · ‖x1 − x2‖. (13)

Proof. Let xs ∈ S k be the sample that gives the bound Bk(x2). Thus:

Bk(x2) = f (xs) + M · ‖x2 − xs‖. (14)

Using (2) with x = x1:
Bk(x1) ≤ f (xs) + M · ‖x1 − xs‖, (15)
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and by the triangle inequality:
Bk(x1) ≤ f (xs) + M · ‖x1 − x2‖ + M · ‖x2 − xs‖. (16)

Finally, by (14):
Bk(x1) ≤ Bk(x2) + M · ‖x1 − x2‖.

Theorem 2. Convergence of FTW: In the FTW method limk→∞ f ∗k → f ∗.

Proof. Similarly to the proof of Theorem 1, f ∗k is convergent and suppose that f ∗k → f ∗ − ε f C f ∗∞, where ε f > 0.
Different from that proof, the set of samples does not necessarily contain the max B-states recommended by the
sampling strategy of DOO, due to possible FTW turnarounds when the target’s bound becomes lower than f ∗k . Thus,
the contradiction in Theorem 1 cannot be obtained in the same way because the max-bound recommendations could
still be at a distance larger than ε f

M from all samples in S k.
To obtain the contradiction, it is enough to prove that the total number of FTW turnarounds is finite, i.e., that ∃k

after which all max-bound recommendations will eventually become sampled states. Thus, FTW will asymptotically
behave as the committed-DOO method, for which the convergence was already proven.

Suppose the contrary: that there exists an infinite number of FTW turnarounds. Denote by xt, j the jth max
bound state on which an FTW turnaround was performed, and by k j the step index of the sampled state at which
the turnaround from xt, j was done. Then:

Bk j (xt, j) < f ∗k j
(17)

and a next target xt, j+1 is chosen so that:
Bk j (xt, j+1) = max

x∈X
Bk j (x). (18)

Then, by taking x1 equal to x ∈ X and x2 = xt, j in Lemma 1, it follows that:

Bk j (x) ≤ Bk j (xt, j) + M · ‖xt, j − x‖. (19)

Consider at step k j the ball B
(
xt, j,

ε f

M

)
, centered in xt, j and of radius ε f

M > 0, and take x in this ball. As ‖xt, j − x‖ < ε f

M ,
using (17) in (19) leads to:

Bk j (x) < f ∗k j
+ M ·

ε f

M
= f ∗k j

+ ε f < f ∗. (20)

Finally:

Bk j (x) < f ∗ ≤ Bk j (x∗),∀ x ∈ B
(
xt, j,

ε f

M

)
, (21)

which means that future max-B states chosen by FTW will not belong to B(xt, j,
ε f

M ). Note that the size of each such
ball is bounded from below by a positive quantity, as the radius ε f

M > 0.
Future max B-states will not belong to the union of the previous balls either, since the bounds in these regions are

below f ∗k j′
, ∀ j′ > j. Thus:

xt, j′ <

j⋃
i=1

B
(
xt, j,

ε f

M

)
,∀ j′ > j. (22)

Note that the balls defined above are not necessarily disjoint. Nevertheless, since xt, j′ belongs to the exterior or
the frontier of the above union (refer to Figure 3 for some intuition), and given the assumption that there is an infinite
number of turnarounds, leading to an infinite number of such balls, the union in (22) will grow infinitely large. The
last statement contradicts the compactness property of the state space X. Thus, the number of FTW turnarounds is
finite and the method will asymptotically behave like committed DOO, leading to the property f ∗k → f ∗ as in Theorem
1.
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Figure 3: The shaded area represents the union of two 2-dimensional balls (disks), inside which no future target points are located. Implicitly, all
maxima of f will be found outside of the area covered by this inclusion.

Remark 3. In the proof of Theorem 2, a union of balls was considered to gradually restrict the regions containing
future maximal-B states and implicitly x∗. Using Lemma 1, the bounds inside each ball B

(
xs,

f ∗− f (xs)
M

)
will be below

f ∗, ∀xs ∈ S k, and:

xt <
k⋃

s=1

B
(
xs,

f ∗ − f (xs)
M

)
, (23)

where xt is any maximal-B state to be chosen as target by FTW at steps k′ ≥ k. In what follows, the union in (23)
will be denoted by ∪B. All the points outside ∪B have the bounds greater than f ∗ and, as the number of trajectory
samples increases, the volume covered by ∪B will also increase. To get an empirical signal on the convergence rate
to f ∗, the rate at which the volume covered by ∪B grows will be experimentally studied in Section 6.3.

Theorem 3. Convergence of sawtooth DOO, committed DOO, FTW and FTWD on a grid: For each one of the
methods mentioned, when bounds are evaluated on a grid Xg of resolution δ, f ∗k is convergent and limk→∞ f ∗k = f ∗∞ ≥

f ∗ − M
√

nδ
2 .

Proof. After a finite number of steps, ∃xt ∈ Xg, a target chosen to be sampled for the second time. Note that this
will happen at worst after sampling all the states on the grid Xg, which are finite in number as X is compact. If xt is
revisited, then xt ∈ S k and:

Bk(x) ≤ Bk(xt) = f (xt) ≤ f ∗k ,∀x ∈ Xg, (24)

which represents the convergence criterion of the DOO-based methods on a grid.
Next, let x̃ ∈ Xg be the closest point to an arbitrarily chosen global maximum x∗. Then:

‖x∗ − x̃‖ <
√

nδ
2

, (25)

where
√

nδ comes from the diagonal of n−dimensional cubes with side length δ, whose centers are given by the points
on the grid Xg. Using Lemma 1 for x1 = x∗ and x2 = x̃, one can obtain:

Bk(x∗) ≤ Bk(x̃) + M · ‖x∗ − x̃‖, (26)

and by combining f ∗ ≤ Bk(x∗), (25) and (26), it follows that:

f ∗ < B(x̃) + M
√

nδ
2

. (27)

9



Next, the inequality from the theorem statement will be proven by contradiction. The contrary of that inequality, along
with (27), lead to:

f ∗∞ < f ∗ − M
√

nδ
2

< B(x̃), (28)

which contradicts the convergence criterion ( f ∗∞ ≥ B(x),∀ x ∈ Xg).

Remark 4. The remark in Theorem 3 may seem trivial at first since any exhaustive search algorithm could find the
optimum on a grid. However, it ensures that the grid-based methods do not get stuck in a loop without sampling
the entire space. Finally, even though the proof relies on the worst-case exhaustive search in which the grid is fully
sampled, FTW and FTWD are expected to actually do better in practice, as will be shown later in Section 6.1.

5. Convergence rate of FTW

The goal of this section is to study the convergence rate of FTW, i.e. to bound the number of samples a robot needs
to acquire to reach a given distance from f ∗, or equivalently, to characterize the error reached after a given number of
samples. As mentioned in the introduction, the convergence rates proven here are asymptotic in nature, i.e. they hold
for large numbers of samples.

Consider optimal sphere packing, or similarly the highest coverage density of point lattices, extensively studied
in [CS13] and [LS99]. These problems are relevant to the FTW convergence rate, because the optimal packing can
give a bound on the largest amount of samples needed to fill X at a given pairwise distance in order to reach a certain
near-optimality. While optimal coverage has been solved in 1D-3D [Hal11], 8D [Via17] and 24D [CKM+17], for
other dimensions mostly bounds on the best packing densities were found [SY12].

The following Lemma is a prerequisite to the convergence rate. Note that the multidimensional (hyper)-sphere
will be referred to as a ball.

Lemma 2. Denote by Nσ the maximum number of points taken inside or on the frontier of an n-dimensional ball of
radius R such that the distance between any two points is greater than or equal to σ. Then:

Nσ <

(
1 +

2R
σ

)n

. (29)

Proof. Nσ is first placed in a relationship to the ball packing problem. Indeed, to guarantee a minimum distance σ
between any two different points, we can take them to be the centers of non-overlapping balls of radius σ

2 . Since the
points can be taken also on the frontier of an n-dimensional ball of radius R, they have to be centers of balls packed
inside a larger ball of radius R′ = R + σ

2 .
Denote by S′ the n-dimensional ball of radius R′ and by N(R′, r) the maximal number of balls of radius r ≤ R′ to fit

inside S′. Following the reasoning above, Nσ = N(R′, σ2 ). A simple upper-bound on N(R′, r) is obtained by computing
the ratio between the Lebesgue measure of the ball of radius R′, denoted by V(R′), and the Lebesgue measure of the
ball of radius r, denoted V(r). Consequently:

N(R′, r) <
V(R′)
V(r)

=

(
R′

r

)n

. (30)

By replacing R′ = R + r = R + σ
2 in (30) one gets:

Nσ = N
(
R′,

σ

2

)
<

(
R + σ

2
σ
2

)n

=

(
1 +

2R
σ

)n

.

Remark 5. The bound in (29) is by no means tight, and could be tightened by computing Nσ numerically using linear
programming techniques such as the ones presented in [SY12] and [AJCH+20]. However, this rough result is enough
to derive the complexity measure of FTW later given in Theorem 4.
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Figure 4: Examples of (optimal) packing in 2D with circles of different radius.

To give some intuition on Lemma 2, Figure 4 illustrates two packing examples with balls of different radii. The
well-known honeycomb obtained by choosing σ = R in Lemma 2 is drawn on the left of Figure 4. The blue and red
circles represent the disks (2D balls) S′ and S, and their radii are given as follows: R′ = 1 is the radius of S′, and
R = 0.66 of S (recall that R′ = R + σ

2 ). The radius of the packing circles is r = 0.33. Note that Nσ = 7, meaning
that at most 7 points (circle centers) can be taken in S such that each of their pairwise distances is at least σ; and the
bound on Nσ ≤

(
1 + 2R

σ

)n
= 9 holds true. On the right of Figure 4, one of the optimal packings with circles of radius

for r = 0.11 is given, where R′ = 1, R = 0.88 and σ = 0.22. At most Nσ = 64 points can be taken in S such that their
pairwise distance does not drop below σ = 0.22, and thus the bound Nσ ≤

(
1 + 2R

σ

)n
= 81 is verified.

The complexity of FTW will be studied next for a single global optimum x∗ = arg maxx∈X f (x), and then extended
to multiple, possibly infinitely many global maxima. Based on the convergence proof of FTW in Theorem 2, ∃kε such
that ∀k > kε, ∃B∗(xc,R) a ball centered in xc ∈ X, of radius R and containing x∗, such that maxx∈B∗ Bk(x) ≥ f ∗ >
maxy∈X\B∗ Bk(y). In other words, while converging to f ∗ (and implicitly to x∗), the robot will eventually sample only
inside a neighborhood of the maximum, contained inside the ball B∗(xc,R). In the convergence rate of Theorem 4, it
will be important that every point within this ball can be reached in a single step.

Define next the loss criterion rk = f ∗ − f ∗k , which measures the closeness to optimality reached by FTW after k
samples. Obviously, rk is a monotonously decreasing sequence and rk → 0 as f ∗k → f ∗, per the convergence Theorem
2.

Theorem 4. Worst-case convergence rate of FTW and committed DOO for a single global optimum: Let ε > 0.
After taking at most

(
1 + 2MR

ε

)n
samples inside B∗(xc,R), the loss will be bounded by rk < ε, and ∃xs ∈ S k such that

‖xs − x∗‖ < ε
M .

Proof. Consider k =
(
1 + 2MR

ε

)n
and define ∆k B maxx∈X Bk(x) − f ∗k . Suppose that ∆k ≥ ε. For convenience, the

indexing starts with k = 1 as the samples acquired outside the ball B∗ can be omitted for this proof. Note that a
contradiction to ∆k ≥ ε would prove the bound on the loss, since:

rk = f ∗ − f ∗k ≤ Bk(x∗) − f ∗k ≤ ∆k < ε. (31)

Since by Assumption 2 all states inside B∗ are reachable from each other within one robot step, the next max-B state
targeted by the robot will become an actual sample at the next FTW iteration, i.e. xk+1 = arg maxx∈X Bk(x). Denote by
x̃ the closest sample to xk+1 taken inside B∗ up to step k. The following inequalities hold true:

∆k = max
x∈X

Bk(x) − f ∗k ≤ f (x̃) + M‖x̃ − xk+1‖ − f ∗k ≤ M‖x̃ − xk+1‖, (32)

because f (x̃) ≤ f ∗k . Using ∆k ≥ ε, (32) leads to:

‖x̃ − xk+1‖ ≥
ε

M
. (33)
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The result in (33) implies that the pairwise distance of the samples acquired up to step k + 1 does not decrease below
ε
M . This statement represents a contradiction, as according to Theorem 2, where σ B ε

M , the maximum number of
samples located at least ε

M farther away from each other is less than
(
1 + 2MR

ε

)n
. This contradiction ends the first part

of the proof, showing that rk < ε.
To study how close the samples in B∗ get to the optimum x∗, consider the following inequality:

ε > ∆k = max
x∈X

Bk(x) − f ∗k > Bk(x∗) − f ∗k . (34)

Note that ∃xs ∈ S k, a sample which gives the bound in x∗:

Bk(x∗) = f (xs) + M · ‖xs − x∗‖. (35)

Using (34) and (35), it follows that:

ε > f (xs) + M · ‖xs − x∗‖ − f ∗k ≥ M · ‖xs − x∗‖, (36)

and then:
‖xs − x∗‖ <

ε

M
. (37)

Lastly, it will be proven that for a large enough number of steps k > kε so that at least one sample is acquired inside
B∗, ∃C ∈ (0, (4MR)n] such that: (

1 +
2MR
ε

)n

< Cε−n = O(ε−n). (38)

By multiplying the inequality in (38) with εn one can obtain:

(ε + 2MR)n < C. (39)

A bound on ε once ∃xs ∈ B∗ is:

ε = max
k

∆k = max
k

(max
x∈X

Bk(x) − f ∗k ) ≤ M max
x∈B∗
‖x − xs‖ = 2MR, (40)

as the maximum distance between any max-B state located inside B∗ and xs is at most equal to the diameter of the
ball, i.e. 2R. Using (39) and (40):

C ∈ (0, (4MR)n]. (41)

Thus, the O(ε−n) worst-case number of steps/samples for FTW and committed DOO has been obtained.

The interpretation of Theorem 4 is that FTW and committed DOO need at worst O(ε−n) samples to get ε
M -close to

the unique optimum x∗. Note that in practice the algorithm will sample fewer points. To characterize this, a complexity
measure of FTW will be given next.

Definition 1. Define the complexity measure of the optimization problem to be the smallest constant m ∈ [0, n] for
which there exists C > 0, such that for any ε > 0 the maximum number of samples taken inside B∗ for FTW to reach
a loss rk < ε is less than Cε−m.

The existence of C and m are verified by Theorem 4 and by the continuity of Cε−γ in γ. Then, by definition, the
number of samples to get a loss rk < ε in the case of a single x∗ is O(ε−m). Next, this result will be generalized to any
number of optima.

Theorem 5. Convergence rate of FTW and committed DOO in the general case: Let ε > 0. The number of samples
to reach ε

M -close to all optima of f in X is O(ε−m).
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Proof. To bound the number of steps required to reach ε
M -close to multiple, possibly infinite number of maxima, the

near-optimal regions in X can be packed with balls similar to B∗ from above. Again, as FTW finds all global maxima,
and following Assumption 2, ∃kε such that ∀k > kε, ∃p balls B∗i (xc,i,Ri) of radius Ri, containing global maxima, such
that maxx∈∪p

i=1B
∗
i

Bk(x) ≥ f ∗ > maxy∈X\∪p
i=1B

∗
i

Bk(y). Note that the number of the balls B∗i is finite (as X is compact)
and they are not necessarily disjoint. Denote by Nmax the maximum number of steps required by the robot to travel
between any two balls. In the worst-case scenario the robot will sample inside one ball and then immediately move to
the next max B-state located in another ball. This will lead to a computational complexity of O(pNmaxε

−m) = O(ε−m),
with the same rate as in the case of a single x∗.

To cover also the transient regime, the number of trajectory samples until all new target points will be chosen
inside ∪p

i=1B
∗
i is finite (recall the existence of kε in the above proof). Thus, ∃C ≥ C such that the maximum number

of samples across the whole trajectory in order to reach a loss bound rk < ε is at most Cε−m, i.e. the same complexity
O(ε−m).

The complexity measure m of FTW is closely related to the near-optimality dimension d in [Mun14], which was
used to characterize the original DOO. Both measures are related to the maximum number of disjoint, metric balls
used to cover a set (ball) of near-optimal states. In what follows, a relation between m and d will be sought.

For a given k, consider the smallest ε > 0 and ε′ > 0 such that the loss rk = f ∗ − f ∗k < ε and the suboptimality
r′k B f ∗ − f (xk) < ε′, where xk is the state recommended to be sampled by FTW at step k. Define next the set of
ε-optimal states:

Xε B {x ∈ X | f (x) > f ∗ − ε}. (42)

Since rk ≤ r′k, it follows that ε ≤ ε′ and Xε ⊆ Xε′ .
From the definition of the near-optimality dimension in [Mun14], there exists d ≥ 0 and C′ > 0, such that the

total number of disjoint balls of radius ε′

2M used to cover Xε′ and reach a suboptimality of r′k < ε′ is at most C′ε′−d.
Note that in this case, the measure is called the 1

2M -near optimality dimension and the constant which ensures that the
near-optimal regions are well-shaped in [Mun14] is ν = 1. Using Definition 1, there exists m ≥ 0 and C > 0 such that
the number of disjoint balls of the same radius ε′

2M used to cover Xε and to reach a loss rk < ε ≤ ε
′ is less than Cε′−m.

As Xε ⊆ Xε′ , fewer balls of the same radius are required to cover the set of ε-optimal states, i.e.:

Cε′−m ≤ C′ε′−d, (43)

an inequality that holds for any ε′ > 0. The result in (43) can be rewritten as:

m ≤ d +
log(C′/C)
log(ε′−1)

,∀ε′ > 0 (44)

and by taking the limit ε′ → 0, it finally follows that m ≤ d. The complexity measure of FTW is therefore at most the
near-optimality dimension in DOO.

6. Numerical results

This section numerically studies the FTW and FTWD methods, compares them to path-aware and source seeking
baselines, and provides insights into the convergence rate and complexity of FTW. The following experiments will be
performed using a simulated robot with the motion dynamics (4) defined as a unicycle:

xk+1 = xk + Ts · uk,1 · [cos(uk,2), sin(uk,2)]T , (45)

where state xk = [xk,1, xk,2]T , sampling period Ts = 1 s and control action uk = [uk,1, uk,2]T . The robot velocity will be
taken as uk,1 ∈ [0, 0.2] m/s and the heading uk,2 ∈ [0, 2π). To find the maxima, the robot will search inside the space
X = [0, 4] m × [0, 4] m. The bound B will be evaluated over a discretized grid with 41 × 41 points equally spaced by
δ = 0.1 m across both dimensions of X.

All the methods in the experiments will use the objective function:

f (x) = max{φ1,2,3(x), ψ1,2,3(x)}, where φi(x) = hi · exp

− 2∑
j=1

(x j − ci j)2

b2
i j

 andψi(x) = λi · [ f ∗ − M′‖x − c′i‖], (46)
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i.e. f is the maximum amplitude among 3 cone functions ψ and 3 radial basis functions φ (RBFs). The parameters of ψ
are as follows: slope coefficients λi = [1; 2/3; 1/2] and centers c′i = [3.25; 1.5], [1; 0.75], [1.5; 0.5], where M′ = 312.5;
and of φ: widths bi = [1.4; 1.4]λi, heights hi = 255λi and centers: ci = [2.75; 3.5], [0.75; 2.5], [3.75; 1.75]. Figure 5
below includes a contour representation of f .

The Lipschitz constant is set to the maximal absolute value of the derivative of f among all points where it exists,
i.e. M = M′ = 312.5, and the global maximum f ∗ = 255 is attained at two different locations: x∗1 = [2.75; 3.5] and
x∗2 = [3.25; 1.5]. Moreover, the slope of the cone centered in x∗2 equals the Lipschitz constant and the cone functions are
nondifferentiable at their peaks, thus f is overall nondifferentiable. The generality of the function shape is important
because as stated in the introduction, most extremum and source seeking techniques assume a single global optimum
and global differentiability for f , while FTW(D) methods accommodate multiple global optima, relying on the weaker
property of Lipschitz continuity instead. The performance of the proposed methods on the previously described f will
be highlighted in the following experiments, particularly in the baseline comparison within Section 6.2.

The first two methods used in the comparison to FTW(D) are from path-aware optimization: committed DOO and
Path-Aware Optimistic Optimization (OOPA) [SB22], and were previously developed by the authors of the present
paper. For implementation details and parameter tuning, please refer to [SB22]. To allow for a fairer comparison, and
in order to partly offset the higher computation times of OOPA, its grid resolution will be increased to δ = 0.2 m. The
execution times of FTW(D) and OOPA will be later given in Section 6.2.

FTW(D) will also be compared against two representative, state-of-the-art source seeking baselines detailed in
[SK23, MTS11]. The method in [SK23] replaces the often-used gradient with a local spatial average of the objective
function computed by taking the mean of f over a circle centered in the robot’s center, with its radius determined
by the distance r of a forward-mounted sensor. Assuming certain conditions hold (e.g., local extrema do not occur
within the robot’s averaging radius), the robot is directed away from local extrema towards the global maximum. The
tuning of the method remains consistent with [SK23] (in particular, r = 0.2 m), while adopting the objective function
from (46) and the search area X defined earlier. For clarity and ease of reference, we will refer to this method as the
rotating-robot baseline, as it implies a rotational movement of the robot’s sensor.

The second baseline [MTS11] applies a sliding mode control strategy to steer the robot to the location of an
optimum, and thus will be referred to as the sliding-mode baseline. The motion dynamics in [MTS11] are of a
single-integrator type similar to (4). They involve a constant translational velocity uk,1, and an angular velocity
given by u̇k,2 = u̇k,2sgn{ ḟ (xk) − v∗}, where |u̇k,2| ≤ u̇,∀k, and v∗ is a controller parameter influencing the size of
the optimum’s neighborhood in which the robot should converge. The parameters for this baseline were tuned as
follows: uk,1 = 0.2 m/s (same as the maximum velocity of FTW(D)), u̇ = 1.25 rad/s and v∗ = 5. Note that the
method in [MTS11] assumes the only critical point is given by a single (global) optimum, which is not the case for
f . To address this issue, the method is modified such that once the robot converges to the required neighborhood of
a maximum, it travels to a randomly chosen location in X before resuming its sliding-mode search strategy. This is
done to increase the chance of finding global optima in X. Note that the rotating-robot and sliding-mode baselines
were chosen because, after the above modification, they perform a version of global search.

The experiments are reported in the following order. Section 6.1 compares FTW to FTWD, while Section 6.2 gives
a comparison of the two with the committed DOO, OOPA and [SK23, MTS11] baselines. Section 6.3 experimentally
studies the convergence of FTW across its whole trajectory, as well as inside a ball containing an x∗ in order to give
some intuition on the value of m.

6.1. Comparison between FTW and FTWD
Recall first the issue of the oscillating trajectory of FTW, previously presented at the end of Section 3. An example

of such a trajectory was given on the left of Figure 2, where the robot repeatedly moves between multiple maxima that
are close in amplitude (the ones marked with the red and orange squares), instead of refining around one maximum
and then moving on to the next one. Note that the initial robot position was arbitrarily chosen as x0 = [0.74; 1.96] for
that experiment.

With the improved algorithm FTWD, the robot spends fewer steps oscillating from one maximum to another when
started from the same x0. The plot on the right of Figure 2 shows that compared to FTW, FTWD requires roughly
40.66% less distance till convergence1. Note that tuning parameters remained unchanged between FTW and FTWD.

1The distance is reported in this work instead of the number of steps until reaching convergence since some of the methods involved have an
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Figure 5: Results (convergence distance) of 25 runs of FTW and FTWD are separated by a slash and placed near the starting robot positions, drawn
with cyan ’x’s.

It is instructive to check the performance of the two methods from more than one initial position. For this, 50
randomly chosen points in X are taken as initial positions of the robot. Figure 5 shows the trajectory length until
reaching convergence for the first 25 runs of the two methods (the number of results plotted is reduced to keep the
readability of the figure). FTWD always converges sooner, scoring on average, for all 50 runs, 35.16% less distance
compared to FTW.

6.2. Comparison to baselines

The FTW and FTWD methods will be studied next in a baseline comparison against committed DOO, OOPA, as
well as the rotating-robot and sliding-mode baselines. The evolution of the best value seen so far, f ∗k , will be reported
for all methods, on average over 50 runs, along the first 250 trajectory steps. The initial positions of the robot are
chosen as in the experiment of Section 6.1. Figure 6 shows that FTWD drastically improves the performance of FTW,
getting close to the performance of OOPA. This is important since gathering better samples faster translates to earlier
convergence to f ∗ and implicitly to x∗. Recall that OOPA has no convergence guarantees. Due to the finer grid used,
FTW(D) reached closer to f ∗ compared to OOPA, without sacrificing computational time: a step of FTW or FTWD
took on average two orders of magnitude less than OOPA (0.01 s vs 1.85 s). The performance of committed DOO
was between FTW and the rotating-robot baseline. While all path-aware methods found both global maxima, this was
achieved in only 24% of all runs by the sliding-mode baseline and never by the rotating-robot baseline. The latter
method reached one global maximum in 50% of all runs, while the sliding-mode baseline found at least one global
maximum in 80% of the runs.

6.3. Convergence rate estimation for FTW

The rate at which the inclusion of the balls in (23), denoted by ∪B, fills the search space will be first studied.
Because optima are found in the region outside the covered area, the evolution of the area of ∪B gives an idea of the
convergence rate of the algorithm, especially during its transient regime. For a quantitative study, consider the same
50 initial positions of the robot from the previous sections. The left plot in Figure 7 reports the average of the area
covered at each step for all runs until convergence. Results show a logarithmic increase of the mean area covered by
∪B, approaching the total area of X (16 m2), which serves as a notable indicator of convergence.

adaptive step length.
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Figure 6: Comparison between OOPA, committed DOO (CDOO), FTW(D), the rotating-robot and sliding-mode baselines. The experimental
results are reported as the best sample seen so far for the first 250 trajectory samples (on average).
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Figure 7: Left: Result of the convergence rate experiment in terms of area covered by the union of the balls (disks). Recall that this area is an
exclusion zone in which no global maximum can be located. Right: Approximating C and m in an FTW convergence rate experiment.

Next, the FTW complexity measure is approximated in a numerical experiment. Consider the ball B∗(xc,R), where
xc B x∗1 and R =

Ts·max{uk,1}

2 = 0.2 m. For a better accuracy while searching for f ∗, a different, finer grid of 151 points
spaced equally across each dimension in X is considered. The robot is initialized in an arbitrarily chosen position
x0 = [2.71; 3.46].

According to Definition 1, the number of samples k taken inside B∗ to reach rk < ε is such that k < Cε−m < Cr−m
k .

This inequality leads to:
log(k) < log(C) + m log(r−1

k ). (47)

Thus, by fitting the relationship between log(r−1
k ) and log(k) with a line, its intercept helps in approximating the

constant C, while the slope approximates the FTW complexity measure m. Note that by studying log (k) versus
log(r−1

k ) in a single experiment, only a lower bound m0 on m can be found, since the constants C and m in Definition
1 ensure that k < Cε−m for any initial position of the robot. Indeed, for experiments initialized in different starting
positions, the value of the slope might be higher.

The right plot in Figure 7 shows the results. The slope of the resulting line can be computed by linear regression,
leading to m0 ≈ 0.8. An intercept to satisfy k < C0r−m

k can be chosen as log(C0) > 2, i.e. C0 > e2. Therefore, m ≥ 0.8.

7. Real-robot experiments with a TurtleBot3 platform

In this section, real-robot experiments will be performed to verify the simulated comparison results between FTW
and FTWD previously presented in Figure 2 of Section 3 and Figure 5 of Section 6.1. The experiments will be
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Figure 8: TurtleBot3 experimental testbed.
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Figure 9: Left: The oscillating behavior of the FTW trajectory from simulations (Figure 2) is also present in the TurtleBot3 experiment. Right: The
oscillating behavior is reduced for FTWD, like in the simulations.

conducted using the ROBOTIS TurtleBot3 platform, and the goal is for the robot to reach the darkest location of a 2D
printed grayscale map.

The experimental setup, whose overview is given in Figure 8, is similar to the setups used in [SB22, SBVM22].
Different from those implementations, the AMCL package was deployed here to increase the localization accuracy
of the robot, using LiDAR information from the surrounding walls. The AMCL-based approach has significantly en-
hanced localization accuracy, reducing the mean error to approximately 5 cm. This represents a notable improvement
over the dead reckoning method utilized in [SBVM22], which incurred average localization errors exceeding 10 cm.

For the following experiments, the number of trajectory samples is set to N = 250 (leading to 50 m travel distance),
and the Lipschitz constant is tuned empirically to M = 300.

Figures 9 and 10 present the results of two TurtleBot3 experiments, one performed with FTW and another with
FTWD. The oscillating behavior of the FTW trajectory, previously seen in the simulation of Figure 2, Section 3, can
also be observed on the left plot of Figure 9. Similar to the experiment of Figure 2 the plot on the right of Figure
9 shows that FTWD greatly reduces the oscillating behavior, reaching convergence in 26% shorter path than FTW
(FTW: 37.5 m vs FTWD: 27.8 m). In Figure 10, the magenta and red lines respectively give for each of the two
algorithms the best sample acquired up to step k, f ∗k . The dotted lines drawn with the same colors point out the step at
which convergence was reached for each method: 190 steps for FTW and 146 steps for FTWD. For clarity, recall the
convergence criterion shared by the two methods: f ∗k ≥ Bk(x),∀x ∈ Xg.

In both experiments, the global maximum was found with good accuracy: FTW reached as close as 7 cm to x∗:
x̂∗ = [1.44; 1.76] ( f̂ ∗ = 175.7), while FTWD approximated x∗ with an error of 4 cm: x̂∗ = [1.41; 1.76] ( f̂ ∗ = 180.4).
Such errors are expected due to localization inaccuracies and hardware/setup limitations. In particular, the rather poor
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Figure 10: Experimental results of the TurtleBot3 applying the FTW and FTWD methods.

quality of the camera and of the printed plot flattened the real function to the smaller [80; 180] interval, different from
the [0; 255] interval from the simulations. That is why the curves stop around 180 on the y-axis in Figure 10.

Videos corresponding to the TurtleBot3 experiments in Figures 9 and 10 and to the video still in Figure 8 are avail-
able online at http://rocon.utcluj.ro/files/nahs_ftw_tb3.mp4 and http://rocon.utcluj.ro/files/

nahs_ftwd_tb3.mp4, for FTW and FTWD respectively. To shorten the length of the videos such that they fit in
1.5 min or less, each video was accelerated by a factor of approximately 20.

8. Conclusions

This work presented two techniques called FTW and FTWD for mobile robots to find the maximum of a physical
quantity defined over their operating area. Convergence guarantees and rates were analytically provided for FTW,
whereas the convergence of FTWD was proven for a discrete search space (grid of points). An FTW complexity mea-
sure was identified and a relation was found with the already-established near-optimality dimension of DOO. FTWD
greatly improved the practical performance of FTW, reaching close to the performance of a much more computation-
ally intensive method that does not have convergence guarantees. In the same baseline study, FTWD outperformed
two representative methods from source seeking control by always reaching close to all global maxima. Finally,
TurtleBot3 experiments validated the simulation results. Future work includes extensions such as obstacle avoidance
and the development of multiagent versions of the techniques.
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