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SUMMARY

The paper proposes several fault-tolerant control (FTC) laws for singularly perturbed systems (SPS) with
actuator faults and disturbances. On of the main challenges in this context is that the fast-slow decomposition
is not available for actuator faults and disturbances. In view of this, some conditions for the asymptotic
stability of the closed-loop dynamics are investigated by amending the composite Lyapunov approach.
On top of this, a closed-form expression of the upper-bound of singular perturbation parameter (SPP)
is provided. Moreover, we design several SPP-independent composite FTC laws which can be applied
when this parameter is unknown. Finally, the chattering phenomenon is eliminated by using the continuous
approximation technique. We also emphasize that, for linear SPSs, the FTC design can be formulated as a set
of linear matrix inequalities while the SPP upper-bound can be obtained by solving a convex optimization
problem. Two numerical examples are given to illustrate the effectiveness of the proposed methodology.
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1. INTRODUCTION

In response to ever-increasing need for stability and safety of the control systems, fault tolerant
control (FTC) received a lot of attention over the past decades. There have been abundant
and outstanding achievements on the FTC of various dynamical systems, such as uncertain
linear/nonlinear systems [1, 2, 3, 4, 5, 6], switched systems [7, 8, 9, 10], fuzzy systems [11, 12, 13],
Markovian jump systems [14, 15, 16], singular systems [17, 18], multi-agent systems [19, 20], and
so on.

While existing FTC techniques are developed for systems that evolve on a single time scale, real
systems may involve processes that vary on multiple time-scales. Such systems can be found in
various application areas such as power systems [21], mechanical systems [22], chemical reaction
process [23], etc. In those cases the state variables can be divided into two types: slow and fast.
To mathematically describe this complex dynamics one uses the framework of singularly perturbed
systems (SPSs) which are analyzed by decoupling the slow and fast dynamics (see [24] for details).
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It is noteworthy that, the analysis and control synthesis design proposed for dynamical systems
evolving on one time-scale are not directly applicable to SPSs. Indeed the presence of two time-
scales and of the singular perturbation parameter (SPP) characterizing the time scale separation will
lead to numerical ill-conditioning and stiffness problems [24]. Consequently, the design of suitable
FTC scheme for SPSs is an important and challenging problem that is addressed in this paper.

It is worth noting that several results on the FTC design for SPSs already exist in the literature.
In [25] it is addressed the problem of FTC design for delayed SPSs with sensor fault while in
[26], the authors considered the FTC design for nonlinear SPSs under actuator faults. As in many
practical applications one has to also take into account external disturbances, [27] addressed the
FTC design for linear SPSs face both actuator faults and external disturbances. Recently, Wang
et al. [28] constructed a reliable FTC controller for discrete-time Takagi-Sugeno fuzzy SPSs with
Markov jump topology. One of the main challenges in the FTC design for SPSs is the fact that the
fast-slow decomposition for dynamics with actuator faults and disturbances is not available. While
the control design proposed in [27, 28] depends on the SPP, this value cannot be accurately known
in many applications. This is the reason why, we are proposing some SPP-independent FTC laws
that guarantee asymptotic stability of the closed-loop even when the SPP is roughly known.

In this context we propose a FTC strategy for nonlinear SPSs that can deal with both actuator
faults and external disturbances. By employing composite Lyapunov function method, we propose
conditions guaranteeing asymptotic stability of the closed-loop dynamics. Moreover we derive
the upper-bound of SPP for which the aforementioned conditions hold. On top of that, several
SPP-independent composite FTC laws are proposed. To avoid the chattering phenomenon, the
designed FTC laws are further improved by using continuous approximation method. To sum up,
the contributions of this work are summarized as follows:

1. We propose a general FTC design framework for a class of nonlinear SPS in presence of
actuator faults and external disturbances, which cannot be decomposed according to the fast-
slow dynamics.

2. The proposed composite FTC laws consist of a composite controller designed to ensure the
stability of the nominal model, and a compensation law used to suppress the effects of the
external disturbance and actuator fault. Moreover, several SPP-independent composite FTC
laws are developed to reduce the design complexity and expand their applications.

3. Unlike [25, 26, 27], we further provide an upper-bound on SPP guaranteeing that our results
can be applied.

Notations: Rn is the set of real n dimensional vectors. A real symmetric matrix P which is
negative (positive) definite is denoted by P < (>)0. He{A} denotes A+AT . The symbol ∗ denotes
the symmetric element in block matrix. A function φ : [0,+∞) 7→ [0,+∞) belongs to class K∞ if
φ is continuous, strictly increasing and φ(0) = 0.

2. FTC FOR NONLINEAR SPS

This section provides results concerning the FTC design for a general class of nonlinear SPSs
with actuator faults and disturbances. Furthermore, we provide a closed form characterization of
an upper-bound on the SPP that guarantee the proposed FTC design is effective.

2.1. Nonlinear SPS With Actuator Fault and Disturbances

Consider the following class of nonlinear SPSs with the external disturbance and the actuator fault:{
ẋ = f1(x, z) + g1(x, z)(u+ Fa) + %1(x, z)w,
εż = f2(x, z) + g2(x, z)(u+ Fa) + %2(x, z)w,

(1)

where x ∈ Bx ⊂ Rnx is the slow state, z ∈ Bz ⊂ Rnz is the fast state, u ∈ Bu ⊂ Rnu is the control
input, and w ∈ Rnw represents the external disturbance with the upper bound w̄, i.e., ‖w‖ ≤ w̄.
SPP ε > 0 characterizes the difference of speed variation between the fast and slow dynamics. The
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FTC OF SPS WITH ACTUATOR FAULTS AND DISTURBANCES 3

nonlinear functions fi(·, ·), gi(·, ·) 6= 0, and %i(·, ·) are locally Lipschitz in Bx ×Bz . Fa represents
the actuator bias fault.

Remark 1: Note that the FTC design problem for nonlinear SPSs was also investigated in [26].
Unlike [26] we consider a more general class of dynamics that presents both external disturbances
and actuator faults. In particular the external disturbances %1(x, z)w and %2(x, z)w are not limited
to be matched. Moreover, we go beyond the results proposed in [26] by proposing an explicit upper-
bound on the SPP that guaranties the FTC design will be efficient.

Throughout this paper, the following assumption is made.
Assumption 1 The actuator bias fault is bounded, i.e., there exists positive constant F̄ such that

‖Fa‖ ≤ F̄ .
Remark 2: Assumption 1 is quite natural and is common in the FTC literature, such as [26, 29].
The main objective of this work is to solve the following problem.
Control Problem: Design an SPP-independent FTC law for singularly perturbed nonlinear

system (1) that guaranty the asymptotic stability of the closed-loop in presence of actuator faults
and external disturbances.

2.2. Composite FTC Schemes

In this subsection, the composite FTC law is constructed as:

u = unc + ua. (2)

Remark 3: The proposed FTC law u consists of two parts, a composite control law unc and the
compensate control law ua. The former is developed based on the nominal model and is designed to
achieve the desirable stability of the nominal model, while the latter is used to eliminate the effect
of the actuator fault and the external disturbances.

The nominal open-loop system associated with system (1) is defined as{
ẋ = f1(x, z) + g1(x, z)unc,
εż = f2(x, z) + g2(x, z)unc.

(3)

where unc is the composite nominal control law for system (3). Assume that system (3) is a
standard SPS for each unc ∈ Bu ⊂ Rnu , that is, the equation 0 = f2(x, z) + g2(x, z)unc owns a
unique solution z = h(x, unc) in Bx ×Bz ×Bu.

Let unc = us + uf , where us is the control law depends on the slow state variable x, while
uf is the control law depends on both the state variables x and z. Specifically, us and uf can be
expressed as us = Ks(x) and uf = Kf (x, z), respectively. As pointed out in [30], uf = Kf (x, z)

is such that 1) z = H(x) , h(x,Ks(x)) defined on Bx ×Bz is a a unique solution of f2(x, z) +
g2(x, z)(Ks(x) +Kf (x, z)) = 0; 2) Kf (x,H(x)) = 0.

Following standard developments in the analysis of SPSs, the reduced order subsystem is
described by:

ẋ = f1(x, h(x, us)) + g1(x, h(x, us))us, (4)

and the boundary layer subsystem by:

dz

dτ
= f2(x, z) + g2(x, z)(us + uf ). (5)

It is noteworthy that x is treated as a fixed parameter in the boundary layer subsystem (5), the
expanded time variable can be represented as τ = t/ε.

The design procedure of the composite FTC law (2) can be summarized as follows.
Step 1: Design the slow control law us = Ks(x) such that the controlled reduced order subsystem

(4) is asymptotically stable. Then, there exist a Lyapunov function V (x) and a positive constant α1

such that for all x ∈ Bx
∂V

∂x
[f1(x,H(x)) + g1(x,H(x))Ks(x)] ≤ −α1ζ

2(x), (6)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



4 W. YANG, ET AL

where ζ(x) ∈ K∞.
Step 2: With the selected slow control law us = Ks(x), design the fast control law uf = Kf (x, z)

such that the boundary layer subsystem (5) has a globally asymptotically stable equilibrium
z = H(x), which implies that there exist a Lyapunov function W (x, z) and a positive constant α2

such that for all (x, z) ∈ Bx ×Bz

∂W

∂z
[f2(x, z) + g2(x, z)(Ks(x) +Kf (x, z))] ≤ −α2η

2(z,H), (7)

where η(z,H) = η(z −H(x)) ∈ K∞.
Step 3: Choose proper constants β1, β2 and γ to ensure the following interconnection conditions

hold

∂V

∂x
[f1(x, z) + g1(x, z)(Ks(x) +Kf (x, z))

− f1(x,H(x))− g1(x,H(x))Ks(x)] ≤ β1ζ(x)η(z,H), (8)
∂W

∂x
[f1(x, z) + g1(x, z)(Ks(x) +Kf (x, z))] ≤ γη2(z,H) + β2ζ(x)η(z,H). (9)

Step 4: Design the compensate control law ua

ua = −ΠT F̄

‖Π‖
− ΠT ‖Ψ‖w̄
‖Π‖2

, (10)

where Π = (1− θ)R1g1(x, z) + θR2g2(x, z) + θεR3g1(x, z), θ ∈ (0, 1), Ψ = (1− θ)R1%1(x, z) +
θR2%2(x, z) + θεR3%1(x, z), R1 , ∂V

∂x , R2 , ∂W
∂z , R3 , ∂W

∂x .

2.3. Stability Analysis

Theorem 1: Consider nonlinear SPS (1) with Assumption 1 is fulfilled. If the composite FTC law
(2) is designed based on Steps 1-4, system (1) is asymptotically stable for any ε ∈ (0, ε∗), where ε∗

can determined as follows:

• If γ = 0, then

ε∗ =

{
+∞, if β2 = 0, χ(θ, α1, α2, β1) > 0,
−(1−θ)β1+2

√
θ(1−θ)α1α2

θβ2
, if β2 6= 0,

• If γ 6= 0, then

ε∗ =

{
χ(θ,α1,α2,β1)

θα1γ
, if β2 = 0, χ(θ, α1, α2, β1) > 0,

−b+
√
b2−4ac

2a , if β2 6= 0,

with χ(θ, α1, α2, β1) = θα1α2 − 0.25(1− θ)β2
1 , θ ∈ (0, 1), a = θ2β2

2 , b = 2θ(1− θ)(α1γ +
2β1β2), c = (1− θ)2β2

1 − 4θ(1− θ)α1α2.
Proof: Define the composite Lyapunov function candidate v(x, z) = (1− θ)V (x) + θεW (x, z),

where θ ∈ (0, 1) and Lyapunov functions V (x) and W (x, z) are as in Step 1 and Step 2. Then, the
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time derivative of v(x, z) along the trajectories of system (1) is given by

v̇(x, z) = (1− θ)∂V
∂x

[f1(x,H(x)) + g1(x,H(x))Ks(x)]

+ θ
∂W

∂z
[f2(x, z) + g2(x, z)(Ks(x) +Kf (x, z))]

+ (1− θ)∂V
∂x

[f1(x, z) + g1(x, z)(Ks(x) +Kf (x, z))

− f1(x,H(x))− g1(x,H(x))Ks(x)]

+ θε
∂W

∂x
[f1(x, z) + g1(x, z)(Ks(x) +Kf (x, z))]

+ (1− θ)∂V
∂x

g1(x, z)(ua + Fa) + θ
∂W

∂z
g2(x, z)(ua + Fa)

+ θε
∂W

∂x
g1(x, z)(ua + Fa) + (1− θ)∂V

∂x
%1(x, z)w

+ θ
∂W

∂z
%2(x, z)w + θε

∂W

∂x
%1(x, z)w. (11)

It follows from the conditions (6)-(9) that

v̇(x, z) ≤ − (1− θ)α1ζ
2(x)− θα2η

2(z,H) + (1− θ)β1ζ(x)η(z,H)

+ θεβ2ζ(x)η(z,H) + θεγη2(z,H) + (1− θ)∂V
∂x

g1(x, z)(ua + Fa)

+ θ
∂W

∂z
g2(x, z)(ua + Fa) + θε

∂W

∂x
g1(x, z)(ua + Fa)

+ (1− θ)∂V
∂x

%1(x, z)w + θ
∂W

∂z
%2(x, z)w + θε

∂W

∂x
%1(x, z)w

,

[
ζ
η

]T
Ω(ε)

[
ζ
η

]
+ Π(ua + Fa) + Ψw, (12)

where Ω(ε) =

[
−(1− θ)α1

(1−θ)β1+θεβ2

2
∗ θεγ − θα2

]
.

Substituting the compensate control law (10) into the above inequality yields

v̇(x, z) ≤
[
ζ
η

]T
Ω(ε)

[
ζ
η

]
.

Note that for any ε ∈ (0, ε∗), the matrix Ω(ε) is a Hurwitz matrix. Then, it can be concluded that
for a sufficient small positive scalar δ,

v̇(x, z) ≤ −δ(‖ζ‖2 + ‖η‖2) < 0,∀ε ∈ (0, ε∗).

Which means the origin of system (1) is asymptotically stable for any ε ∈ (0, ε∗). The proof is thus
completed. �

We notice that the compensate control law ua proposed in (10) relies on the accurate knowledge
of the SPP. Consequently, the proposed FTC law cannot be applied in many applications in which
the SPP cannot be obtained precisely. To overcome this drawback, when the SPP is unknown but
sufficiently small, an SPP-independent FTC law is given as ūc = unc + ūa, where

ūa = − Π̄T F̄

‖Π̄‖
− Π̄T ‖Ψ̄‖w̄
‖Π̄‖2

, (13)

where Π̄ = (1− θ)R1g1(x, z) + θR2g2(x, z), Ψ̄ = (1− θ)R1%1(x, z) + θR2%2(x, z).
As a result, the following corollary can be achieved directly.
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Corollary 1: Under Assumption 1, the FTC law ūc asymptotically stabilizes the nonlinear SPS
(1) as far as ε is unknown but sufficiently small.

Note that the composite FTC laws uc and ūc will lead to the undesirable chattering phenomenon
due to the discontinuous of the compensate control law. To mitigate the fluctuation of the actuator,
by utilizing the continuous approximation technique, the composite FTC laws ūc can be replaced
by

ûc =

{
unc + ūa, if ‖Π̄‖ ≥ µ,
unc − Π̄T F̄

µ − Π̄T ‖Ψ̄‖w̄
µ2 , otherwise.

(14)

where µ is a predefined small positive constant.
Applying the composite FTC law (14) to system (1), according to the classical analysis result [30],

the solutions of the closed-loop system are only uniformly ultimately bounded, and their bounds
depend on the parameter µ.

3. FTC FOR LINEAR SPS

This section is motivated by the fact that for nonlinear systems the construction of an appropriate
Lyapunov function remains a challenging problem. Here, we provide several efficient FTC schemes
for a class of linear SPSs. The most attractive feature of the obtained result in this section is that FTC
schemes are provided as a set of linear matrix inequalities (LMIs) which are numerically tractable
and the upper bound of ε can also be determined by solving an optimization problem.

3.1. Linear SPSs With Actuator Fault and Disturbances

Consider a class of linear SPSs in the presence of actuator bias faults and disturbances, which is
given by {

ẋ = A11x+A12z +B1(u+ Fa) +D1w,
εż = A21x+A22z +B2(u+ Fa) +D2w,

(15)

where x ∈ Rnx , z ∈ Rnz , u ∈ Rnu and w ∈ Rnw are the slow state, the fast state, the control
input, and the external disturbance, respectively. Fa is again the actuator bias fault and satisfies
Assumption 1. For any i, j = 1, 2, Aij , Bi and Di are known real constant matrices with appropriate
dimensions. Here, we do not require that Di = BiG, i = 1, 2, where the matrix G is of appropriate
dimensions, which means that the disturbances considered in this paper are not limited to the
matched external disturbances.

The nominal model of system (15) can be expressed as{
ẋ = A11x+A12z +B1unc,
εż = A21x+A22z +B2unc.

(16)

Assume that system (16) is a standard SPS, that is, A22 is nonsingular. System (16) is assumed to
be strongly controllable. Moreover, the reduced order subsystem of system (16) is given as follows{

ẋs = A0xs +B0us,
zs = −A−1

22 (A21xs +B2us),
(17)

where xs, zs and us are the slow components of the corresponding variables x, z and u, A0 =
A11 −A12A

−1
22 A21, B0 = B1 −A12A

−1
22 B2, and the boundary layer subsystem of system (16) is

given as follows

dzf
dτ

= A22zf +B2uf , (18)

where zf = z − zs and us = u− us are the fast components of the corresponding variables x and
u, τ = t/ε is the fast time scale variable.
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3.2. Composite FTC Schemes

Since system (16) is strongly controllable, then, both (A0, B0) and (A22, B2) are controllable.
Which implies that there exist the gain matrices K0,K2 and positive definite matrices P0, P2 such
that A0 +B0K0 and A22 +B2K2 are Hurwitz and satisfy the following LMIs:

He{P0(A0 +B0K0)} < 0, (19)
He{P2(A22 +B2K2)} < 0. (20)

Therefore, the slow control law and the fast control law can be designed as us = K0xs and
uf = K2zf , respectively. Then, combining us and uf , the composite control law unc for the nominal
model (16) is represented as

unc = K1x+K2z, (21)

where K1 = (In +K2A
−1
22 B2)K0 +K2A

−1
22 A21.

Furthermore, the compensate control law ua is designed as

ua = − Π̃T F̄

‖Π̃‖
− Π̃T ‖Ψ̃‖w̄
‖Π̃‖2

, (22)

where Π̃ = 2(φTP0B̄1 + ψTP2B̄2), Ψ̃ = 2(φTP0D̄1 + ψTP2D̄2), B̄1 = B1 − H̄B2 −
εH̄L̄B1, B̄2 = B2 + εL̄B1, D̄1 = D1 − H̄D2 − εH̄L̄D1, D̄2 = D2 + εL̄D1, H̄ = Ā12Ā

−1
22 , L̄ =

Ā−1
22 Ā21, Āij = Aij +BiKj , i, j = 1, 2, φ and ψ satisfy[

φ
ψ

]
=

[
I − εH̄L̄ −εH̄

L̄ I

] [
x
z

]
. (23)

Next, the main result on the asymptotic stability of the closed-loop system (15) is given.

3.3. Stability Analysis

Theorem 2: Consider linear SPS (15) with Assumption 1 is fulfilled. If the composite FTC law (2)
is designed according to (21) and (22), then there exists a positive constant ε∗ such that the origin
of system (15) is asymptotically stable for any ε ∈ (0, ε∗).

Proof: The closed-loop system (15) can be represented as{
ẋ = Ā11x+ Ā12z +B1(ua + Fa) +D1w,
εż = Ā21x+ Ā22z +B2(ua + Fa) +D2w.

(24)

According to the variable transformation (23), system (24) can be rewritten in the following
equivalent form: [

φ̇

εψ̇

]
= (Θ0 + εΘ1 + ε2Θ2)

[
φ
ψ

]
+

[
B̄1(ua + Fa) + D̄1w
B̄2(ua + Fa) + D̄2w

]
, (25)

where

Θ0 =

[
Ā0 0
0 Ā22

]
,Θ2 =

[
0 −H̄L̄Ā0H̄
0 L̄Ā0H̄

]
,Θ1 =

[
−H̄L̄Ā0 Ā0H̄ − H̄L̄Ā12

L̄Ā0 L̄Ā12

]
.

Choose the following Lyapunov function candidate V (t) = φTP0φ+ εψTP2ψ. Then, the time
derivative of V (t) along the trajectories of system (24) in the coordinates (φ, ψ) is given by

V̇ (t) = 2φTP0φ̇+ 2ψTP2εψ̇

=

[
φ
ψ

]T
(Ξ0 + εΞ1 + ε2Ξ2)

[
φ
ψ

]
+ 2(φTP0B̄1 + ψTP2B̄2)ua

+ 2(φTP0B̄1 + ψTP2B̄2)Fa + 2(φTP0D̄1 + ψTP2D̄2)w, (26)
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where

Ξ0 =

[
He{P0Ā0} 0

0 He{P2Ā22}

]
,Ξ2 =

[
0 −P0H̄L̄Ā0H̄
∗ He{P2L̄Ā0H̄}

]
,

Ξ1 =

[
−He{P0H̄L̄Ā0} P0(Ā0H̄ − H̄L̄Ā12) + L̄Ā0P2

∗ He{P2L̄Ā12}

]
.

Substituting the compensate control law ua into the inequality above can deduce that

V̇ (t) ≤
[
φ
ψ

]T
(Ξ0 + εΞ1 + ε2Ξ2)

[
φ
ψ

]
. (27)

In fact, the following equation holds

Ā0 = Ā11 − Ā11L̄ = (A11 +B1K1)

− (A12 +B1K2)(A22 +B2K2)−1(A21 +B2K1) = A0 +B0K0. (28)

Then, based on the condition (19), it can be obtained that He{P0Ā0} < 0. Note also from the
condition (20) that He{P2Ā22} = He{P2(A22 +B2K2)} < 0. Therefore, it can be concluded that
Ξ0 < 0, which implies that there exists a sufficiently small ε∗ such that

Ξ0 + εΞ1 + ε2Ξ2 < 0,∀ε ∈ (0, ε∗). (29)

Therefore, the origin of system (15) is asymptotically stable for any ε ∈ (0, ε∗). This ends the proof.
�

Remark 4: Theorem 2 gives a sufficient condition for stability of the closed-loop system, and the
existence of SPP. The following result shows how to evaluate SPP.

Theorem 3: For a given positive constant ε̄ > 0 and the selected gain matrices K1 and K2, if
there exist P0 > 0 and P2 > 0 satisfying the following LMIs

Ξ0 < 0, (30)
Ξ0 + ε̄Ξ1 < 0, (31)

Ξ0 + ε̄Ξ1 + ε̄2Ξ2 < 0, (32)

then for any ε ∈ (0, ε̄], the system (15) is asymptotically stable under the proposed FTC law.
Proof: From the inequalities (30)-(32) and Lemma 1 in [31], the asymptotical stability of the

closed-loop system (15) can be realized for any ε ∈ (0, ε̄], where ε̄ is a predefined positive scalar.
So the detailed proof is omitted here. This ends the proof. �

According to Theorem 3, the upper bound of ε can be obtained by solving the following
optimization problem:

max
P0,P2

ε̄

s. t. (30)− (32). (33)

Similarly, when ε is unknown and sufficiently small, the following ε-independent FTC law is
presented for system (15):

ūc = unc −
Π̂T F̄

‖Π̂‖
− Π̂T ‖Ψ̂‖w̄
‖Π̂‖2

, (34)

where Π̂ = 2(φ̂TP0B̂1 + ψ̂TP2B̂2), Ψ̂ = 2(φ̂TP0D̂1 + ψ̂TP2D̂2), B̂1 = B1 − H̄B2, B̂2 = B2,
D̂1 = D1 − H̄D2, D̂2 = D2, φ̂ = x, and ψ̂ = L̄x+ z, the other notations are defined in (22).

Moreover, to avoid the chattering due to the discontinuous of the compensate control law, the
revised composite FTC law ûc is developed as

ûc =

{
ūc, if ‖Π̂‖ ≥ µ,
unc − Π̂T F̄

µ − Π̂T ‖Ψ̂‖w̄
µ2 , otherwise.

(35)

where µ is a predefined small positive constant.
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4. NUMERICAL ILLUSTRATIONS

In the section, two examples are proposed to show the effectiveness of the obtained results. In
particular, Example 1 is related to the case of nonlinear SPS with unmatched disturbance, while
Example 2 is related to that of the linear one with matched disturbance.

Example 1: Consider the nonlinear SPS (1) with the following parameters:

f1(x, z) =− x+ (x+ 0.5)z, g1(x, z) = 0, %1(x, z) =
|x|z

1 + z2
,

f2(x, z) =− x2 + z, g2(x, z) = 1, %2(x, z) =
x|z|

1 + x2
,

the external disturbance w = 0.5 sin(t) with the bound w̄ = 0.5, Bx = [−3, 3], Bz = [−3, 3], and
the actuator bias fault Fa = cos(3t). It is clear that Assumption 1 holds with F̄ = 1.

4.1. The Effectiveness of Theorem 1

According to the proposed FTC scheme in Section 2, the reduced order subsystem and boundary
layer subsystem of the nominal system in this example are given as follows, respectively,

ẋ = −x+ (x+ 0.5)(x2 − us), (36)

and
dz

dτ
= −x2 + z + us + uf . (37)

For subsystem (36), design the slow control law us = x2, and construct the Lyapunov function
V (x) = 0.5x2, it can be verified that the inequality (6) hold with α1 = 2. For subsystem (37), design
the fast control law uf = −2z and W (x, z) = 0.5z2, it is easy to see that all conditions in Step 2 are
satisfied with α2 = 2. Then, the composite control law for the nominal model is given as

unc = us + uf = x2 − 2z. (38)

Next, select the parameter d = 0.5, β1 = 1.75, β2 = 0, and γ = 0, it can be found that the
interaction conditions (8) and (9) are satisfied. Meanwhile, design the compensate control law

ua = − z

|z|
− 0.5z|%2(x, z)z|

|z|2
. (39)

With the proposed formula on upper bound of SPS, one obtains that ε∗ = +∞ since dα1α2 −
0.25(1− d)β2

1 > 0. Hence, it follows from Theorem 1 that for any ε, the system in Example 1 under
the proposed composite control law is asymptotically stable. Fig. 1 shows the state trajectories and
the control signal of the close-loop system in Example 1. Obviously, the proposed composite FTC
law (38) and (39) can stabilize the system in this example. In the simulation, the initial state is
chosen as

[
x z

]
=
[
0 1

]
and ε = 0.01. However, it is easy to see that the compensate control law

(39) lead to the chattering phenomenon.
4.2. Discussion on The Chattering Phenomenon

To eliminate the chattering while maintaining the stability of the controlled system, the following
revised compensate control law is adopted to replace the control law (39).

ûa =

{
− z
|z| −

0.5z|%2(x,z)z|
|z|2 , if |z| ≥ µ = 0.05,

− z
µ −

0.5z|%2(x,z)z|
µ2 , otherwise.

(40)

Fig. 2 demonstrates the simulation results of the considered systems under the composite FTC law
(38) and (40). It follows from Fig. 2 that the stability of the considered systems can be guaranteed
and the chattering phenomenon mentioned above is eliminated.
4.3. Comparison with Some Related Works

The classical composite state feedback control law for nonlinear SPSs is considered in [24] and can
be described as the control law (38) for this case. Fig. 3 shows that the state trajectories of the system
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Figure 1. Simulation results of the closed-loop system in Example 1 under the control law (38) and (39).
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Figure 2. Simulation results of Example 1 under the control law (38) and (40).

under the control law (38) are divergent, which means that the classical composite state feedback
control law is inapplicable to handle both the actuator fault and the disturbance.

Note that the FTC design for nonlinear SPSs under actuator faults is studied in [26] and
the corresponding FTC law is provided. However, [26] does not take into account the external
disturbances. The proposed FTC law in [26] cannot be applied here directly. Recently, [27]
addressed the FTC design for linear SPSs face both actuator faults and external disturbances. But
the results in [27] don’t work for our case since the considered model is nonlinear one. In addition,
both [26] and [27] do not provide the upper bound of SPP. Here, we can check that the SPP is
smaller than the upper-bound proposed in Theorem 1 and consequently, the proposed FTC design
can be applied.

Example 2: Let us consider the magnetic tape control system described in [32]. The dynamics
can be represented as (15) where

A11 =

[
0 0.4
0 0

]
, A12 =

[
0 0

0.345 0

]
, A21 =

[
0 −0.524
0 0

]
,

A22 =

[
−0.465 0.262

0 −1

]
, B1 = D1 =

[
0
0

]
, B2 = D2 =

[
0
1

]
,

the external disturbance w(t) = sin(π6 t) with the bound w̄ = 1, and the actuator bias fault

uF =

{
0, if 0 ≤ t ≤ 8,
5 + 2 sin(0.1t), t > 8.

(41)

One can easily check that Assumption 1 is satisfied with F̄ = 7.
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Figure 3. State response of the closed-loop system in Example 1 under the control law (38).

Based on the FTC scheme proposed in Section 3, it can be found that the slow and
fast control laws are designed as us = K0xs = −

[
21.3607 8.8482

]
xs and uf = K2zf =

−
[
0.7144 0.2241

]
zf , respectively, then, the composite control law for the nominal model in this

example is

unc = −
[
34.7469 15.1982

]
x−

[
0.7144 0.2241

]
z. (42)

Then, based on Theorem 3, choose the predefined value of singular perturbation parameter
ε̄ = 0.1, it can be found that all conditions all Theorem 3 are satisfied with

P0 =

[
21.6908 1.1513
1.1513 2.2731

]
, P2 =

[
0.5152 0.4833
0.4833 2.1324

]
,

which means that for any ε ∈ (0, 0.1], the asymptotical stability of the system in Example 2 can be
ensured under the FTC law (34).

Moreover, by solving the obtained optimization problem (33), it can be found that ε̄ = 0.1666 >
0.1. By using Theorem 3 again, we know the controlled system in Example 2 is asymptotically
stable for any ε ∈ (0, 0.1666]. Fig. 4 depicts the simulation results of the Example 2 when the
considered system imposed by the ε-independent FTC law (34), where the initial condition is chosen
as
[
−2 3 −4 1

]T
and SPP ε = 0.1.

Note that the proposed FTC law will leads to the chattering phenomenon. To avoid such
undesirable side-effects, by employing the proposed FTC law (35), the asymptotical stability of
the system still can be maintained. Fig. 5 shows the state response and the control signal of the
system in Example 2 under the continuous FTC law, where µ = 0.05.

Remark 5: Fig. 6 exhibits the state trajectories of the closed-loop system imposed by the
composite law (42). It follows from Fig. 6 that the composite control law (42) cannot stabilize
the system with the actuator fault. Note also that the FTC problem for a class of SPSs has been
investigated in [28] and the sliding mode control design for SPSs in the presence of matched
disturbances has been investigated in [32]. The aforementioned control laws depend on the SPP,
therefore, they cannot be applied if the SPP is unknown even if sufficiently small.

5. CONCLUSIONS

In this paper, the FTC design problem for SPSs both actuator faults and external disturbances has
been studied. First, a new composite FTC scheme has been proposed for nonlinear SPSs. Moreover,
an ε-independent FTC scheme has been developed to ensure the desired stability of the controlled
systems for unknown but sufficiently small SPP. The synthesis has been tailored to the case of
linear SPSs by rewriting the results in term of LMIs. Moreover the computation of the SPP has
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Figure 4. Simulation results of Example 2. (a) State response of the closed-loop system in Example 2 under
the ε-independent FTC law; (b) Control signal.

been reformulated as a convex optimization problem. Two examples have been given to show
the effectiveness of the proposed results. Future research will be focus on the FTC of singularly
perturbed switched systems.
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