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Abstract—We investigate the scenario where a controller com-
municates with a nonlinear plant via a wireless erasure channel.
We present an event-based control strategy to stabilize the plant
while sporadically using the unreliable wireless network. In
particular, control packets may be lost at any time with a certain
probability. Consequently, stability is ensured in a stochastic
sense. We then compare the proposed event-based policy with a
baseline policy that transmits according to the age of information,
i.e., the time elapsed since the last successful reception. For any
given baseline policy, we show how to design an event-based
policy that ensures the same guaranteed control performance
while leading, on average, to a strictly smaller channel utiliza-
tion. Numerical simulations suggest that the achieved channel
utilization may in fact be significantly smaller.

I. INTRODUCTION

This work aims at devising sporadic communication strate-
gies for wireless networked control systems (WNCS). Care-
fully choosing the communication instants is important as
it may reduce the induced energy consumption and network
load. In the wireless communication literature, various studies
have investigated the design of energy-efficient communication
systems, see [1] for an extensive survey. In that body of work,
the goal is to minimize the power consumed while maintaining
a certain data rate or packet success rate. However, designing
the communication system in such a manner is a priori not
well suited for control systems that have their own objectives
like stability and control performance.

The main directions of research for reducing communica-
tions in WNCS are: i) event-based communications, which
determine transmissions according to the past and present plant
states or outputs e.g., [2]–[5], ii) self-triggered communica-
tions, which determine the next transmission based on the
value of the state at the last successful transmission instant
e.g., [6], [7], and iii) time-based triggering communications,
which rely on the elapsed time since the last successful
transmission e.g., [8]–[11]. While time-based triggering rules
are easier to implement as they do not require computations
or repeated measurements at the transmitter, event-triggered
or self-triggered control may result in a significant reduction
in communications, see, e.g., [12], [13]. In this work, we
concentrate on event-triggered control strategies.
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Event-triggered control strategies for WNCS subject to
packet drops generally aim to reduce communications cost
with a state-dependent transmission rule. Most approaches are
dedicated to linear time-invariant models, see, e.g., [13]–[16].
Related results for nonlinear systems typically rely on strong
assumptions on the packet losses, specifically that there exists
a maximum number of consecutive packet drops, as considered
in [2], [17], [18]. A notable exception is [19], in which an
event-based rule is proposed for a class of continuous-time
nonlinear systems with sector bounded nonlinearities. Another
relevant work is [4], where an event-triggered anytime control
approach is studied, which relies on zeroing hold devices,
i.e., where the control input is set to zero when the packet
is dropped.

The literature on the event-triggered control for nonlinear
systems with stochastic packet drops is thus quite sparse,
and our main contribution is to address this issue when
communication occurs over binary erasure channels. In this
case, each packet may be dropped with a certain independent
probability, thereby relaxing the often assumed requirement
that the maximum number of consecutive packet losses is
bounded. In contrast, we present an event-triggered control
strategy for general nonlinear WNCS modeled in discrete-time
(and not continuous-time as in [19]), and for general holding
functions, which cover zeroing devices (as in [4]) as a special
case. We follow an emulation approach, in the sense that we
assume that we know a state-feedback law, which stabilizes
the origin of the closed-loop system under perfect, all-the-
time communications. The event-triggering rule consists in
imposing a decaying property of a given Lyapunov function
along the solutions. Our approach is thus akin to that in
[5], [7], [20], [21] for different, deterministic contexts. We
explain how to tune the event-triggering parameters based
on the (known) packet success probability so that the origin
of the closed-loop system is stable in a stochastic sense.
In addition, these parameters can be adjusted to enforce a
desired guaranteed convergence rate on the expectation of the
Lyapunov function along solutions, thereby ensuring a given
control performance.

Afterwards, we compare the proposed event-based strategy
with a baseline policy from [10] that transmits according to
the age of information (AoI), i.e., the time elapsed since the
last successful transmission, and ensures the same guaranteed
convergence property as the event-based policy. We demon-
strate that the average channel utilization (or transmission
rate) of the event-based rule is upper bounded by that of
the baseline policy. In other words, for the same guaranteed
control performance, the event-based strategies reduce the
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Fig. 1. Schematic of the WNCS (ETM: Event-Triggering Mechanism).

amount of communications compared to a baseline policy.
Moreover, simulations demonstrate that channel utilization
may be significantly reduced with the proposed event-based
policy.

Notation. Let R be the set of real numbers, R≥0 :=
[0,∞), Z be the set of integers, Z>0 := {1, 2, . . .} and
Z≥0 := {0, 1, 2, . . .}. We use Pr(·) for the probability and
E[·] for the expectation taken over the relevant stochastic
variables. A function α : R≥0 → R≥0 is of class K∞
(α ∈ K∞) if it is continuous, strictly increasing, α(0) = 0
and lims→∞ α(s) = ∞. For any x1 ∈ Rn1 and x2 ∈ Rn2

with n1, n2 ∈ Z>0, (x1, x2) stands for (x>1 , x
>
2 )> ∈ Rn1+n2 .

II. SETUP

In this section, we first describe the plant and controller
model, followed by the communication model. We then intro-
duce the event-based strategy and the baseline AoI policy we
will use for comparison.

A. Plant and controller model

We consider the discrete-time nonlinear plant model given
by

x(t+ 1) = f(x(t), u(t)) (1)

where x(t) ∈ Rnp is the plant state, u(t) ∈ Rnu is the
control input at time t ∈ Z≥0 with np, nu ∈ Z>0. We
proceed by emulation and assume that a stabilizing state-
feedback controller for system (1) is known and is of the
form u(t) = g(x(t)). The precise assumption we make on
the closed-loop system (1) with this controller is formalized
in the sequel.

We are interested in the scenario where plant (1) and its
controller communicate over a wireless channel as illustrated
in Figure 1. Specifically, the wireless link is used to communi-
cate information from the controller to the actuator. A practical
example of such a scenario would be a remote controlled
robot, with a camera providing measurements located at the
controller as in [22]. Consequently, the feedback loop is no
longer closed at every time instant t ∈ Z≥0, but only at
certain (a priori unknown) time instants tk ∈ T ⊆ Z≥0

with k ∈ I ⊆ Z≥0. Communications are attempted at these
instants according to the event-triggering conditions described
in the sequel, and packets are successfully received. In the
absence of successful communication, the actuator uses a so-
called networked version [11] of the control input denoted by
û ∈ Rnu .

We introduce the concatenated state χ := (x, û) ∈ Rnχ
with nχ := np + nu, and we write the closed-loop dynamics
of the WNCS as

χ(t+ 1) =

{
fS(χ(t)) for t ∈ T
fU (χ(t)) for t ∈ Z≥0\T ,

(2)

where fS(χ) := (f(x, g(x)), f̂(g(x))), fU (χ) :=
(f(x, g(û)), f̂(û)) for any χ ∈ Rnχ and f̂ is the holding
function1used to generate û, which can take various forms
including the zero-order-hold strategy f̂(û) = û, or the
zeroing policy f̂(û) = 0 for any û ∈ Rnu .

Remark 1: The results presented in this paper apply mutatis
mutandis when the network is located between the plant
and the controller, and not between the controller and the
actuator as in Figure 1, by changing the network variable to
be x̂ instead of û. However, the event-based rule that will
be developed in the sequel might be hard to implement at
sensor nodes that lack computational capabilities, as it requires
computing the Lyapunov function (as seen in the sequel).
When the network is used in both directions, the analysis
becomes quite convoluted, especially if communication events
occur independently. We leave this case for future work. �
The assumption we make on system (2) is stated next.

Standing Assumption 1 (SA1): There exist α, α ∈ K∞, aS ∈
[0, 1), aU > 1 and V : Rnχ → R≥0 such that, for any χ ∈
Rnχ ,

α(|χ|) ≤ V (χ) ≤ α(|χ|) (3a)
V (fS(χ)) ≤ aSV (χ), (3b)
V (fU (χ)) ≤ aUV (χ). (3c)

�
Properties (3a) and (3b) in SA1 imply that the origin of

the ideal system χ(t + 1) = fS(χ(t)) is uniformly globally
asymptotically stable (UGAS), which means the feedback law
g has been designed to ensure that the origin of system (1) is
UGAS. Moreover, aS in (3b) is a guaranteed decay rate of the
Lyapunov function along χ(t+1) = fS(χ(t)) in the absence of
the network. Property (3c) in SA1 imposes a condition on the
growth rate of V along solutions to (2) when using û instead
of u as control input. These assumptions can be easily verified
for linear time-invariant systems and a detailed discussion of
other classes of systems satisfying it is available in [10, Section
V].

To conclude the description of the closed-loop system
(2), we need to explain when a communication attempt is
successful or not.

B. Communication setup

We now describe the sequence of successful communication
instants tk ∈ T , k ∈ I. We assume that the control packet can
be perfectly communicated (without any additive noise) over
the wireless channel with a certain probability π ∈ (0, 1),
the packet success rate, hence the wireless channel is an i.i.d
erasure channel.

1Note that û is never reset to the actual value of u in (2).



The controller may decide at any time t ∈ Z>0, to
attempt communication over the wireless channel. We use
η(t) ∈ {0, 1} to denote the channel utilization at time t, with:
• η(t) = 1 implying that the channel is utilized and

transmission is attempted at time t;
• η(t) = 0 implies that the transmitter was not active and

the channel is not utilized at time t.
In view of random packet dropouts, we can write Pr(t ∈ T ) =
πη(t).

We focus on event-based transmission policies that deter-
mine the channel utilization η(t) at each instant t ∈ Z>0.
Before describing this triggering rule, we first introduce the
AoI variable τ(t) ∈ Z>0 for all t ∈ Z>0, which counts
the number of time instants elapsed since the last successful
communication as follows

τ(t+ 1) =

{
1 for t ∈ T
τ(t) + 1 for t ∈ Z≥0\T .

(4)

We assume that the initial time is a successful communication
instant, i.e., we set t1 = 0 resulting in 0 ∈ T and τ(0) =
1. The event-triggered policy is described in the following
subsection.

C. Event-based transmission policies

Inspired by [7], [20], [21], the idea is to enforce that
V (χ(·)), with V from SA1, decreases (in expectation) with
a given decay rate along the solutions to (2). We introduce
for this purpose the variable V̂ to keep track of the value
of V (χ) at the last successful transmission instant. We set
V̂ (0) := V (χ(0)) and note that

V̂ (t+ 1) =

{
V (χ(t)) for t ∈ T
V̂ (t) for t ∈ Z≥0\T .

(5)

Under the proposed policy, the channel is utilized in the
following manner

η(t) =

{
1 if V (fU (χ(t))) > µτ(t)+1νV̂ (t)
0 otherwise,

(6)

where ν ∈ [0, 1] and µ ∈ (aS , 1) are tunable parameters,
and fU and τ(t) come from (2) and (4). The policy in (6)
implies that, at every time t, the transmitter compares the value
of the Lyapunov function if no transmission is attempted to
the imposed upper-bound µτ(t)+1νV̂ (t). Parameter µ denotes
the desired convergence rate of the Lyapunov function and
ν must be selected carefully in order to ensure the desired
control property as explained in Section III. If π = 1, then
ν = 1 can be chosen to ensure that the Lyapunov function is
exponentially decreasing with rate µ, along the solutions to (2),
for any given µ ∈ (aS , 1). However, since the transmissions
are stochastic, a ν strictly smaller than one must be selected to
compensate for potential packet drops. Additionally, policy (6)
enforces that (re)transmissions are attempted until successful
as long as (6).

Remark 2: Since we consider noiseless system dynamics
and measurements, and deal with state feedback, assuming that
the controller knows fS , it can easily determine if a packet was
successfully transmitted at t by comparing x(t + 1) with the

predicted value using fS . However, when the system is noisy,
packet acknowledgements (which are often implemented in
wireless links) can be used in order to determine τ(t). �

Under policy (6), the WNCS in (2) becomes

 χ(t+ 1)

V̂ (t+ 1)
τ(t+ 1)

 =



 fS(χ(t))
V (χ(t))

1

 if V (fU (χ(t))) >

µτ(t)+1νV̂ (t) with
probability π, fU (χ(t))

V̂ (t)
τ(t) + 1

 otherwise.

(7)

D. AoI policies

As mentioned in the introduction, we will compare the
proposed event-based strategy with an AoI policy, which we
now present. As before, we assume that the initial time is a
successful communication instant, i.e., we set t1 = 0 resulting
in 0 ∈ T and τ(0) = 1. The AoI policy is characterized by
τ̄ ∈ Z>0, which denotes the threshold on the AoI after which
transmissions are attempted [10]. Under the proposed policy,
the channel utilization evolves in the following manner

η(t) =

{
1 if τ(t) ≥ τ̄
0 otherwise. (8)

Implementing this policy implies that after each successful
communication, the next transmission is only attempted after
τ̄ steps have passed. The (random) closed loop dynamics can
thus be described as follows

(
χ(t+ 1)
τ(t+ 1)

)
=


(
fS(χ(t))

1

)
if τ(t) ≥ n+ 1
with probability π(

fU (χ(t))
τ(t) + 1

)
otherwise.

(9)

III. DESIGN SPECIFICATIONS

A. Control guarantees

The primary objective of this work is to preserve the
stability of the WNCS and the secondary objective is to reduce
a communication cost compared to an AoI policy, which
ensures the same control guarantees as the proposed event-
based strategy. Due to the stochastic nature of communication
success, we can no longer ensure the original UGAS property
guaranteed by SA1. Instead, we rely on the stochastic notion
of stability defined next, which is inspired by [4].

Definition 1: The set {(χ, V̂ , τ) : χ = 0} is stochastically
stable for system (7), if there exists α ∈ K∞, such that
for any solution to (7) with V̂ (0) = V (0), τ(0) = 0,∑∞
t=0 E[α(|χ(t)|)] <∞. �
Definition 1 implies that we are interested in stability of

the set where χ = 0 consistently with SA1. In addition to
the stability property described above, we also want to ensure
that the Lyapunov function V in SA1 converges in expectation,
with a given decay rate µ ∈ (aS , 1) defined previously, along
any solution χ to (7) with τ(0) = 0 and V̂ (0) = 0, i.e.,

E[V (χ(t))] ≤ µtV (χ(0)), ∀t ∈ Z>0. (10)



The desired stability property (10) serves as a measure of the
control performance of system (2) and satisfying it automati-
cally ensures Definition 1 as µ < 1 in view of (3a).

B. Network usage

To evaluate the amount of network usage, we consider the
expected average channel utilization over an infinite horizon.
Specifically, the communication cost for the event-triggered
policy for any given ν ∈ [0, 1], and any solution χ to (7) with
τ(0) = 1, is given by

JET(ν, χ) := lim
T→∞

1

T
E

[
T∑
t=1

η(t)

]
, (11)

where η(1), η(2), . . . is the sequence of transmission attempts
applied at instances dictated by (6). Since, t1 = 0 by definition,
if ν and the sequence χ are given, then V (χ), V̂ , τ can be
evaluated for any time and thus the sequence η is fixed. This
allows us to write JET as a function of ν and χ.

We evaluate the average channel utilization for an AoI
policy described in Section II-D as

JAoI(τ̄) := lim
T→∞

1

T
E

[
T∑
t=1

η̃(t)

]
=

1

1 + (τ̄ − 1)π
(12)

where η̃(1), η̃(2), . . . is the sequence of transmission attempts
applied at instances dictated by the AoI policy (8). The
sequence η̃ is a Markov process that is independent of the
plant state as seen from (8) and this expectation becomes
independent of χ, in contrast to (11). Since transmissions
are attempted until a packet is successfully communicated,
the expected length of attempted transmissions is given by
π−1. On the other hand, after every successful transmission,
transmissions are stopped for a duration of τ̄−1 (by definition
of the AoI policy). Thus, the average channel utilization,
which is the fraction of time during which transmissions are
attempted, is given by π−1

π−1+(τ̄−1) = (1 + (τ̄ − 1)π)−1.
Minimizing JET over ν directly is challenging as the trigger

times are a priori unknown and thus the communication cost
for a given ν is hard to evaluate as it depends on the trajectory
of χ, which is stochastic due to the random packet drops. As a
consequence, our secondary objective is to find an AoI policy
with the largest τ̄ ∈ Z>0 which ensures the same guaranteed
rate of convergence µ as an event-triggered policy and satisfies
JET(ν, χ) ≤ JAoI(τ̄). This will provide us with a bound on the
communication cost for the event-triggered policy.

IV. MAIN RESULTS

In this section, we first provide conditions on (π, ν) to
ensure the stability property (10), when the event-triggered
policy (6) is used, thereby satisfying Definition 1. Given a
desired convergence rate µ ∈ (aS , 1) for the expected value
of V along (7) as in (10), we first identify a set of feasible ν
ensuring (10).

A. Stability guarantees

We first provide conditions on ν to ensure the desired
stability property in (10).

Theorem 1: Consider system (7) with µ ∈ (aS , 1) and π ∈
[0, 1] such that πaS < µ− aU (1− π). If

ν ∈
[
aS
µ
,
µ− aU (1− π)

µπ

]
, (13)

then (10) holds for any solution with τ(0) = 1 and V̂ (0) =
V (0), and the system is thus stochastically stable according
to Definition 1. �

Proof: Let µ, ν, π be such that (13) holds and consider an
arbitrary solution (χ, τ, V̂ ) to (7) with τ(0) = 1 and V̂ (0) =
V (0). Recall that we use T to denote the set of time instants
where the communication succeeded and t1 = 0 ∈ T by
definition. Let us first denote by t′1 the first time instant where
(6) triggered. If no such time instant exists, then that implies
that

V (χ(t)) ≤ µtνV (χ(0))

for all t ∈ Z>0 by definition of the event-triggering rule,
leading to the desired stability property without any communi-
cation as ν < 1 from (13), with the upper-limit of (13) being
increasing in π and taking the value 1 when π = 1. If such a
t′1 exists, then we have

V (fU (χ(t′1))) > µτ(t′1)+1νV̂ (t′1) (14)

by (6). On the other hand (3b) implies that

V (χ(t1 + 1)) ≤ µνV (χ(t1)) (15)

as ν ≥ aS
µ . By iteration and (6), we have that for any t ∈

{t1 + 1, . . . , t′1}, we have

V (χ(t)) ≤ µt−t1νV (χ(t1)) (16)

as (6) will first trigger when this inequality is false at the time
instant t′1 + 1. Thus, we have

V (χ(t′1)) ≤ µt
′
1−t1νV (χ(t1)), (17)

leading to the desired stability property and concluding the
proof for this case. On the other hand, given any tk ∈ T ,
k ∈ I, the k-th successful transmission, let us denote by t′k <
∞ the first time instant after tk where (6) was satisfied. We
will use T ′ ⊆ Z>0 to collect all such time instants where the
event-triggered policy (6) was first met before communication
succeeded and V̂ was reset. We have

V (fU (χ(t′k))) > µτ(t′k)+1νV̂ (t′k) (18)

by (6) and we can repeat the same logic as applied for t1, t′1
to obtain that for any t ∈ {tk + 1, . . . , t′k}

V (χ(t)) ≤ µt−tkνV (χ(tk)) (19)

This implies that if t′k =∞ for some k, then

V (χ(t)) ≤ µt−tkνV (χ(tk)). (20)

for all t > tk. By design, we know that for any t ∈
{t′k, . . . , tk+1} communication was attempted, with a success
probability π. Consider {Pj}j∈Z>0

, with Pj ∈ {ν, aUµ−1} for
any j ∈ Z>0, a sequence of independent Bernoulli variables,
with Pr(Pj = ν) = π and Pr(Pj = aUµ

−1) = 1−π. For any
t ∈ Z>0, we can exploit the definition of Pj , (3c) in SA1 and



(19) to derive

V (χ(t)) ≤ µt
J∏
j=1

PjV (χ(0)) (21)

where J ≤ t is the number of time instants before t such that
transmissions were attempted. This simplification is possible
because the packet loss or success events are i.i.d and occur
at all t ∈ {t′k, . . . , tk+1}. We thus can replace the growth
or decay of the Lyapunov function relative to µ during these
instants with Pj . On the other hand, (19) bounds the Lyapunov
function for the remaining time instants. We have

E[Pj ] = πν + (1− π)aUµ
−1. (22)

The expectation of a product of independent random vari-
ables is simply the product of their expectations. Therefore,
E[
∏J
j=1 Pj ] ≤ 1 for all J , as πν + (1 − π)aUµ

−1 ≤ 1 from
(13). Since E[

∏J
j=1 Pj ] ≤ 1 for all J , (21) implies that

E[V (χ(t))] ≤ µtV (χ(0)). (23)

for all t and therefore (10) holds, and our statement is proven.

Theorem 1 implies that we can pick any ν according to (13)
and the event-based policy (6) will result in stochastic stability
and (10) is satisfied. If π is sufficiently close to 1 and µ > aS ,
any ν ∈ [aSµ , 1) results in the desired stability property. Next,
we look to compare and upper bound the communication cost
of the event-triggered policy with an AoI policy.

B. Comparison with AoI policies

We now compare control-communications tradeoff of the
event-triggered policy (6) with parameters designed in a spe-
cific manner with that of the AoI policy (8), while both policies
ensure the same guaranteed rate of convergence µ. For any
given µ ∈ (aS , 1), π ∈ [0, 1] and τ̄ ∈ Z>0 (see Section II-D),
we define the next quantity, which we use in the proposition
below to determine if (10) holds along solutions to (9),

βAoI(τ̄) :=
πaSa

τ̄−1
U

µτ̄
+
aU (1− π)

µ
. (24)

The next proposition gives conditions for the AoI policy to be
stochastically stable, inspired by [10].

Proposition 1: Consider (9) with µ ∈ (aS , 1) and π ∈ [0, 1].
If βAoI(τ̄) ≤ 1, then (10) holds with V from SA1, for any
solution with τ(0) = 0. �
Sketch of proof: The desired result is obtained by following the
proof of Theorem 1 and replacing the event-based counter with
a constant τ̄ , i.e., we can set t′k = tk+ τ̄ for all tk ∈ T , k ∈ I.
We also replace ν := aSa

τ̄−1
U µ−τ̄ to get the condition on

βAoI(τ̄). �
Proposition 1 provides conditions under which, for any given
µ ∈ (aS , 1), system (9) satisfies the property (10) with decay
rate µ. Next, for any AoI policy such that βAoI(τ̄) ≤ 1, we
find an event-triggered policy ensuring the same convergence
rate and a reduced communication cost.

Theorem 2: Given µ ∈ (aS , 1) and τ̄ ∈ Z>0 such
that βAoI(τ̄) ≤ 1, any solution (χ, V̂ , τ) to (7) with ν =

aSa
τ̄−1
U µ−τ̄ , τ(0) = 1 and V̂ (0) = V (0) satisfies (10) and

JET(ν, χ) ≤ JAoI(τ̄).
Proof: As a first step, we prove that the event-triggered

policy with ν := aSa
τ̄−1
U µ−τ̄ has convergence rate µ, i.e., we

need to show this ν respects (13). We know that βAoI(τ̄) ≤ 1,
i.e.,

πaSa
τ̄−1
U

µτ̄
+
aU (1− π)

µ
≤ 1 (25)

replacing aSa
τ̄−1
U µ−τ̄ with ν we have ν ≤ µ−aU (1−π)

µπ .
Furthermore, as aU > 1 and µ < 1, we have that ν ≥ aS

µ
for any τ̄ ∈ Z>0. Thus, we have that ν respects (13) ensuring
the desired control property in (10) by using Theorem 1.

Consider an arbitrary solution (χ, V̂ , τ) to (7), due to SA1,
we know that the V (χ(tk + τ̄)) ≤ aSa

τ̄−1
U V (χ(tk)), where

V (χ(tk)) was the value at the successful transmission instant.
Since ν = aSa

τ̄−1
U µ−τ̄ , we have that t′k ≥ tk + τ̄ for all tk ∈

T . Due to the erasure channel, the expected time instants spent
transmitting per attempt is π−1. Therefore, we can evaluate

JET(ν, χ) ≤ π−1

π−1 + τ̄ − 1
= JAoI(τ̄). (26)

concluding our proof.
Theorem 2 provides the design of an event-triggering policy

that ensures the same guaranteed convergence rate as a given
AoI policy, but has reduced communication cost. However,
it is important to note that we have merely established a
bound for the convergence rate of the expectation of the
Lyapunov function along the solutions to (9), i.e., for the AoI
policy. The simulations in the next section demonstrate that the
communication rate may in fact be much smaller for the event-
triggered policy even when the convergence rate is similar.

V. NUMERICAL EXAMPLE

We illustrate our results on a single-link robot arm model,
obtained by discretizing the continuous-time system using an
Euler method with a sampling period of 10−3 seconds. System
(1) with state x = (x1, x2) ∈ R2 is given by(

x1(t+ 1)
x2(t+ 1)

)
=

(
x1(t) + 10−3x2(t)

x2(t) + 10−3(sin(x1(t)) + u(t))

)
.

(27)
The emulated feedback law is given by u = − sin(x1)−25x1−
10x2 and we use zero-order-hold when the communication
packet is dropped. We consider that the packet success rate
is given by π = 0.8. SA1 is verified with V (χ) 7→ χ>Pχ,
aS = 0.98, aU = 1.0009 and where

P =


0.0384 −0.0019 −0.0336 0.0031
−0.0019 0.0015 0.0033 −0.0008
−0.0336 0.0033 0.0341 −0.0032
0.0031 −0.0008 −0.0032 0.0009

 .

We take a range of µ ∈ {0.992, 0.993, . . . , 0.996} and
apply Theorem 1 with ν = µ−aU (1−π)

µπ , which ensures the
desired stability property for the event-triggered control after
verifying that aSµ−1 < ν. We draw inspiration from works
like [13] that study the control-communication trade-off of
event-triggered policies and compare it with simpler policies,
namely AoI as described in Section IV-B. In Fig. 2, we plot



the control-communication trade-off incurred by the proposed
event-triggered (for various µ) and AoI policies from [10] that
ensure (10) for the considered µ. Specifically, we look at the
time it takes (on average over 1000 simulations with random
initial conditions) for the Lyapunov function to decrease by
a factor of 104 as a measure of the control performance
and the average transmissions per time instant as an estimate
of JET. We plot the same trade-off for AoI policies with
τ̄ ∈ {14, 16, . . . , 22}. We observe that the event-triggered
policies significantly outperform the AoI policies in both
control and communication performance, and this figure offers
insights on how to design µ based on desired performance.

Fig. 2. The average time for the Lyapunov function to decrease by a factor
of 104 along the solutions to the systems (7) and (9) respectively and the
corresponding average channel utilization.

VI. CONCLUSIONS

We have proposed an approach to design event-triggered
transmission policies for nonlinear systems communicating
over a lossy channel. We have compared its control and
communication performance with a AoI policy ensuring the
same convergence rate guarantees on the expectation of the
Lyapunov function along the respective solutions. Numerical
simulations demonstrate the proposed event-triggered policy
may have a smaller channel utilization even when both classes
of policies have the same convergence rate. Some of the
limitations of the current approach include assuming perfect
measurements and noiseless dynamics, lack of communication
delays, and considering that the wireless channel is only
present between the plant and the actuator. Future works will
focus on resolving these issues.
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