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A B S T R A C T

In this article, we study a Networked Control System (NCS) with multiplexed communication and
Bernoulli packet drops. Multiplexed communication refers to the constraint that transmission of a
control signal and an observation signal cannot occur simultaneously due to the limited bandwidth.
First, we propose an 𝜀-greedy algorithm for the selection of the communication sequence that also
ensures Mean Square Stability (MSS). We formulate the system as a Markovian Jump Linear System
(MJLS) and provide the necessary conditions for MSS in terms of Linear Matrix Inequalities (LMIs)
that need to be satisfied for three corner cases. We prove that the system is MSS for any convex
combination of these three corner cases. We validate our approach with a numerical example that
shows the effectiveness of our method.

1. Introduction
A Networked Control System (NCS) consists of a plant, a

controller, and a communication network. These systems are
integral to various industries, such as chemical processing,
power grids, and warehouse automation [1, 5]. However, the
NCS has significant challenges like bandwidth constraints,
communication delays, random packet drops, and potential
cyberattacks, all of which can degrade system performance
[4, 6, 3, 14]. This study focuses on NCSs operating under
bandwidth constraints, modeled as a multiplexing scenario
where control and observation signals share limited commu-
nication resources. We also consider random packet drops,
which add further uncertainty. Our primary aim is to develop
a communication policy that ensures Mean Square Stability
(MSS) while optimizing a performance metric defined by a
quadratic cost function.

The uncertainty threshold principle proposed by Athans
et al. laid foundational stability conditions for control sys-
tems under uncertainty. This forms the basis of subsequent
work which gives stability conditions in different scenarios.
In [7], linear systems controlled over a network are analyzed
under packet drop uncertainties, modeled as Bernoulli ran-
dom variables with independent drop probabilities in both
communication channels. The necessary conditions for MSS
and optimal control solutions using dynamic programming
are then provided. Schenato et al. generalized the work by
considering noisy measurements and giving stronger condi-
tions for the existence of the solution [15]. The authors pre-
sented that the separation principle holds for the Transmis-
sion Control Protocol (TCP). The authors demonstrated that
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the separation principle holds for TCP. Other studies have
focused on designing Kalman filters for wireless networks
[9, 16] and deriving stability conditions for systems expe-
riencing packet drops [19]. Alternative methods to address
random packet drops include using redundant transmissions
[11] and developing event-triggered policies for nonlinear
systems under packet drop scenarios [18].

While the literature extensively addresses stability and
optimality in NCSs, the combined challenges of stability
and optimal scheduling under multiplexed communication
constraints in control and observation remain underexplored.
For example, [15] examines multiplexing and packet drops
but does not address optimal network selection, while [10]
proposes a joint strategy for selecting and controlling NCSs
but limits the focus to sensor signals. Existing research on
bandwidth constraints can be categorized as: i) multiplexing
across multiple sensor signals, e.g., [16], and ii) multiplexing
between sensor and control signals, e.g., [15]. Other commu-
nication uncertainties, such as packet drops and delays are
also analyzed in [20]. The primary goals of these studies are
to devise optimal control strategies or policies for selecting
communication channels, as seen in [13].

Leong et al. address the boundedness of error covariance
in a multiplexed sensor system with packet drops [8]. They
establish stability conditions based on packet drop prob-
abilities and develop an optimal communication sequence
by training a Deep Q-Network (DQN) using an 𝜀-greedy
algorithm.

In this article, our contributions are as follows:

i) We propose a modified 𝜀-greedy algorithm for the
selection of the direction of communication (transmit
or receive.)

ii) We establish the necessary conditions for the MSS of
an NCS with multiplexed communication and packet
drops.
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Notation
Let ℝ and ℕ denote set of real numbers and set of

integers respectively. ‖⋅‖ denotes Euclidean 2-norm. For
a discrete random variable 𝑋 ∈ {𝑥, 𝑦}, we denote the
Bernoulli distribution as Ber(𝑥, 𝑦, 𝑝) and is given by,

ℙ (𝑋 = 𝑥) = 𝑝
ℙ (𝑋 = 𝑦) = 1 − 𝑝

(1)

with 𝑝 ∈ [0, 1]. For an 𝑛 ∈ ℕ, we denote the identity matrix
as I𝑛 ∈ ℝ𝑛×𝑛.

2. Problem Setup
In this section, we first present a plant and controller

model. Then we present the communication model with
multiplexing constraints and packet loss. Lastly, we present
the networked model of the plant.

2.1. Plant and Controller Model
Consider a discrete-time linear system

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (2)

for all 𝑘 ∈ ℤ≥0, where 𝑥𝑘 ∈ ℝ𝑛𝑥 is the state, 𝑢𝑘 ∈ ℝ𝑛𝑢 is
the control input and 𝑦𝑘 ∈ ℝ𝑛𝑦 is the output at 𝑘th instant.
We make the following assumptions regarding the original
closed-loop system.

Assumption 1. There exists a state feedback controller of
the form

𝑢𝑘 = 𝐾𝑥𝑘 (3)

that stabilizes the system (2).

2.2. Networked System Model
In this article, we are interested in an application where

the plant and the controller are remotely located. The com-
munication between the plant and the controller occurs over
a wireless communication network. The networked system
is illustrated in Fig. 1. The networked system dynamics can
be written as

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢̂𝑘 (4)

where 𝑢̂𝑘 denotes the networked version of the control signal.
We proceed by emulation of the controller (3) and use the
controller as

𝑢𝑘 = 𝐾𝑥̂𝑘 (5)

where 𝑥̂𝑘 denotes the estimates of the state at the controller
end. A more detailed explanation of these quantities is
presented later in this section.

Motivated by real-world communication constraints in
the form of bandwidth limitations, we consider a communi-
cation constraint as described below. At any time instant, the
network scheduler has three choices:

Controller
𝑢𝑘 = 𝐾𝑥̂𝑘

Network
Plant

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢̂𝑘

Predictor

𝑥̂𝑘 =

{

𝑥𝑘

𝐴𝑥̂𝑘−1 + 𝐵𝑢̂𝑘−1

𝑢𝑘 𝑢̂𝑘

𝑥𝑘

𝑥̂𝑘

𝑢̂𝑘 ∶=

{

𝑢𝑘, if 𝑎𝑘 = 1 and 𝛾𝑘 = 1;
𝑢̂𝑘−1, otherwise

Figure 1: Schematic of a Networked Control System with
information multiplexing and packet drops in the network.

i) transmit the control input from the controller to the
plant or,

ii) transmit the measured signal from the plant to the
predictor or,

iii) not communicate at all.

These three choices are encapsulated in the form of a switch
variable 𝑎𝑘 that takes values in a discrete set ∶= {−1, 0, 1}
where,

𝑎𝑘 ∶=

⎧

⎪

⎨

⎪

⎩

1 if the control is transmitted;
−1 if the observation is transmitted;
0 if there is no communication.

(6)

We also consider lossy communication in the sense of a
packet drop scenario. Consider 𝛾𝑘 to denote the packet drop
event, modeled as an independent Bernoulli random variable
with the probability distribution as Ber(1, 0, 𝛿). Here 𝛾𝑘 =
1 indicates a successful packet transmission and 𝛾𝑘 = 0
indicates failure.

Based on the switching and the packet drop assumptions,
the transmitted control information through the network is
written as

𝑢̂𝑘 ∶=

{

𝑢𝑘 if 𝑎𝑘 = 1 and 𝛾𝑘 = 1;
𝑢̂𝑘−1 otherwise

(7)

for all 𝑘 ∈ ℕ with 𝑢̂0 = 𝑢0.

Assumption 2. The predictor is collocated with the con-
troller, enabling efficient and delay-free exchange of data
between them.

Assumption 3. Communication is established over the Trans-
mission Control Protocol (TCP), ensuring reliable data
transfer via acknowledgment-based mechanisms.

Assumption 2 ensures that the predictor has access to the
control input 𝑢𝑘, while Assumption 3 guarantees availability
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of the acknowledgment signal 𝛾𝑘. Consequently, the predic-
tor can reconstruct or retain the applied control input 𝑢̂𝑘−1.
The coarse estimate of the state at the controlled end is

𝑥̂𝑘 =

{

𝑥𝑘 if 𝑎𝑘 = −1 and 𝛾𝑘 = 1;
𝐴𝑥̂𝑘−1 + 𝐵𝑢̂𝑘−1 otherwise

(8)

for all 𝑘 ∈ ℕ with 𝑥̂0 = 𝑥0. Define the concatenated state as
𝜒𝑘 ∶=

(

𝑥⊺𝑘, 𝑥̂
⊺
𝑘−1, 𝑢̂

⊺
𝑘−1

)⊺ ∈ ℝ2𝑛𝑥+𝑛𝑢 . Therefore the overall
model of the system is written as

𝜒𝑘+1 =

⎧

⎪

⎨

⎪

⎩

𝖠1𝜒𝑘 if 𝑎𝑘 = 1 and 𝛾𝑘 = 1;
𝖠−1𝜒𝑘 if 𝑎𝑘 = −1 and 𝛾𝑘 = 1;
𝖠0𝜒𝑘 otherwise

(9)

for all 𝑘 ∈ ℕ, where

𝖠1 =
⎛

⎜

⎜

⎝

𝐴 𝐵𝐾𝐴 𝐵𝐾𝐵
0 𝐴 𝐵
0 𝐾𝐴 𝐾𝐵

⎞

⎟

⎟

⎠

,𝖠−1 =
⎛

⎜

⎜

⎝

𝐴 0 𝐵
I𝑛𝑥 0 0
0 0 I𝑛𝑢

⎞

⎟

⎟

⎠

,

and 𝖠0 =
⎛

⎜

⎜

⎝

𝐴 0 𝐵
0 𝐴 𝐵
0 0 I𝑛𝑢

⎞

⎟

⎟

⎠

.

3. Switching Strategy
To develop an optimal switching strategy within a multi-

stage system, we define a performance measure that captures
the cost associated with each state-action pair, balancing
penalties on state deviations, control efforts, and communi-
cation constraints. The per-stage cost is defined as

𝐽
(

𝜒𝑘, 𝑎𝑘
)

∶= 𝜒⊺
𝑘𝑆𝜒𝑘 + 𝜆𝑎2𝑘 (10)

where 𝑆 ∈ ℝ(2𝑛𝑥+𝑛𝑢)
2

is a positive definite matrix, en-
suring penalization of state deviations and control inputs,
and 𝜆 ∈ 𝑅≥0 is a factor that weighs penalty on com-
munication. This structure reflects the trade-offs between
control performance and communication overhead, which
is critical for networked control systems operating under
limited bandwidth and energy constraints. We use the value
function, denoted as (𝜒), representing a discounted future
cost sum. The value function is defined as:

(𝜒𝑘) ∶= min
𝑎𝑘∈

𝔼
[

𝐽
(

𝜒𝑘, 𝑎𝑘
)

+ 𝛽(𝜒𝑘+1)
]

(11)

with the discount factor 𝛽 ∈ ]0, 1[. The optimal action that
minimizes the value function is given by

𝑎⋆𝑘 ∶= argmin
𝑎𝑘∈

𝔼
[

𝐽
(

𝜒𝑘, 𝑎𝑘
)

+ 𝛽(𝜒𝑘+1)
]

. (12)

Bellman’s principle of optimality, given in (11), holds for our
problem. In discrete state–action spaces, the optimal policy
can be obtained via value iteration [17]. For continuous
spaces, where direct computation is infeasible, we approx-
imate the Bellman equation in (11)–(12) using Deep Rein-
forcement Learning (DRL) [12], representing (𝜒) with a
neural network 𝜃(𝜒, 𝑎) over a finite action set and network
weight (𝜃), that is trained via minimizing a loss with a target
network 𝜃− .

3.1. 𝜀-Greedy Algorithm for Switching
We employ the 𝜀-greedy switching strategy for the

decision-making process [17]. Classically, the algorithm
consists of two parts: exploration and exploitation. Explo-
ration addresses finding new possible solutions, whereas
exploitation addresses utilizing the already known optimal
solution. The variable 𝜀 acts as a parameter that weighs
the two. In contrast to the classical framework with a large
(perhaps infinite) action set, in this work, 𝜖 is used to
ensure that communication occurs sufficiently frequently
(only two actions) so that the mean square stability of
the system is preserved even if the greedy part decides
to never communicate. The switching strategy is defined
mathematically as follows:

𝑎𝑘 =

{

Ber(1,−1, 12 ) with probablity 𝜀
𝑎⋆𝑘 as in (12) with probability 1 − 𝜀

(13)

With probability 𝜀 the switching variable 𝑎𝑘 is chosen uni-
formly randomly from {−1, 1}. This random selection rep-
resents exploration by allowing the system to consider other
strategies that might not be optimal for that instance but
could provide a better solution over a longer horizon. With
probability 1 − 𝜀, the switch variable 𝑎𝑘 is determined by
the exploitation part, i.e., minimizing the value function as
in (12).

3.2. Switching Probabilities with 𝜀-Greedy
Algorithm

In this subsection, we discuss in detail the generalized
switching probability under the 𝜀-greedy algorithm and an-
alyze the effect of the 𝜀-greedy switching strategy on the
MSS of the closed loop system. The switching probability
distribution function 𝑔 ∈ [0, 1]3 is given by

𝑔 ∶=
(

ℙ(𝑎𝑘 = 1),ℙ(𝑎𝑘 = 0),ℙ(𝑎𝑘 = −1)
)

(14)

with some switching algorithm 𝑔. Given the switching strat-
egy defined in (13), the probabilities of switching states are
influenced by the choice of 𝜀. The choice of 𝜀, in turn,
decides the balance between exploration and exploitation.
With the switching strategy (13), the switching probability
distribution (denoted as 𝜀) can be written as

𝜀 = 𝜀
(1
2
, 0, 1

2

)

+ (1 − 𝜀)
(

𝑝𝑘, 1 − 𝑝𝑘 − 𝑞𝑘, 𝑞𝑘
)

=
(𝜀
2
+ (1 − 𝜀)𝑝𝑘, (1 − 𝜀)(1 − 𝑝𝑘 − 𝑞𝑘),

𝜀
2
+ (1 − 𝜀)𝑞𝑘

)

.

(15)

Here, the first term represents the probability distribu-
tion in the exploration phase, and the second term, (1 −
𝜀)
(

𝑝𝑘, 1 − 𝑝𝑘 − 𝑞𝑘, 𝑞𝑘
)

, represents the probability distribu-
tion in the exploitation phase with some 𝑝𝑘, 𝑞𝑘 ∈ [0, 1] and
𝑝𝑘 + 𝑞𝑘 ≤ 1. Without loss of generality, we omit the time
argument associated with 𝑝𝑘 and 𝑞𝑘.

Remark 1. The choice of 𝜀 impacts the MSS of the system
which is one of the main interests of this article.
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3.3. Formulation as a Markovian Jump Linear
System

In this section, we elaborate on the framework of the
Markovian Jump Linear System (MJLS) that relates to the
system described in (9). An MJLS is a linear system that
goes through random transitions between a finite number
of modes, each governed by linear dynamics. The random
transitions are governed by Markovian probabilities associ-
ated with switching from one mode to another mode. In the
problem, the randomness takes place at two levels: the first
is at the switching under 𝜀-greedy policy and the second is
the random packet drop. With this backdrop, we introduce
modes of operation under varying circumstances.

System Modes: The system can operate in one of several
modes at any instance, which is determined by the switch
position and the status of packet transmission. The mode of
operation is denoted by 𝑖 for all 𝑖 ∈ {1, 2,… , 5}. These
modes represent different scenarios of switching and packet
drop. We define the modes of the Markovian switching
system as follows:

1 ∶
(

1, ,𝖠1
)

,2 ∶
(

1, ,𝖠0
)

,

3 ∶
(

−1, ,𝖠−1
)

,4 ∶
(

−1, ,𝖠0
)

,

and 5 ∶
(

0,−,𝖠0
)

(16)

where the first entry in each 3−tuple indicates the switch
position 1,−1, or 0; the second entry denotes whether the
packet transmission was successful () or failed ( ), and
the third entry corresponds to the system matrix 𝖠 that
governs the dynamics in that particular mode. The mode
transition probability, 𝑝𝑖𝑗 , represents the likelihood of the
system switching from mode 𝑖 to mode 𝑗 in the next time
step.

Definition 1 (Mode Transition Probability). Define the mode
transition probability of switching from 𝑖 to 𝑗 as,

ℙ(𝑎𝑘+1 = 𝑗|𝑎𝑘 = 𝑖) ∶= 𝑝𝑖𝑗

with 𝑖, 𝑗 ∈ {1, 2,… ,𝑀} where 𝑝𝑖𝑗 ∈ [0, 1],
∑𝑀

𝑗=1 𝑝𝑖𝑗 = 1
and 𝑀 denotes the total number of modes.

Definition 2 (Mean Square Stability, [2]). The system (9)
is mean square stable if and only if for some 𝜁 ≥ 1, 0 < 𝜉 < 1
and for every 𝜒0 ∈ ℝ2𝑛𝑥+𝑛𝑢 ,

𝔼
[

𝜒⊺
𝑘𝜒𝑘

]

≤ 𝜁𝜉𝑘𝜒⊺
0𝜒0 for all 𝑘 ∈ ℤ≥0. (17)

Objective: Our goal is to determine the value of 𝜀, given a
𝛿 ∈ ]0, 1], that ensures the origin of the system (9) remains
Mean Square Stable under the switching algorithm (13).

4. Mean Square Stability of an MJLS
In this section, we propose the methodology used to

address the problem. System (9) is seen as a convex combi-
nation between three corner cases. The coefficients used in
the convex combination represent the switching probabilities

Case Switch probabilities

General
(

𝜀
2
+ (1 − 𝜀)𝑝, (1 − 𝜀)(1 − 𝑝 − 𝑞), 𝜀

2
+ (1 − 𝜀)𝑞

)

C1
(

𝜀
2
, 0, 1 − 𝜀

2

)

C2
(

1 − 𝜀
2
, 0, 𝜀

2

)

C3
(

𝜀
2
, 1 − 𝜀, 𝜀

2

)

Table 1
Switching probability distribution in different corner cases.

between the corner cases. With the given packet transmis-
sion success probability 𝛿 ∈ ]0, 1], we provide the necessary
conditions for the MSS of the system using the Linear Matrix
Inequalities (LMIs) [2].

4.1. Corner Cases
We study this through three specific corner cases:

C1. 𝑝 = 0 and 𝑞 = 1: This case represents the switch
being in position−1 throughout the entire exploitation
phase, indicating that only observations are transmit-
ted.

C2. 𝑝 = 1 and 𝑞 = 0: This case represents the switch being
in position 1 throughout the entire exploitation phase,
indicating that only control signals are transmitted.

C3. 𝑝 = 0 and 𝑞 = 0: This case depicts the switch remain-
ing in position 0 for the duration of the exploitation
phase, signifying that no transmissions occur.

The probability of switching in each of the corner cases is
tabulated in TABLE 1.

4.2. Mode Transition Probabilities for Corner
Cases

Let 𝖯(𝑐)(𝜀) ∈ [0, 1]5×5 denote the mode transition prob-
ability matrix associated with the corner case 𝑐, where 𝑐 ∈
{1, 2, 3}. Here, the superscript 𝑐 is the variable representing
each corner case. For all 𝑖, 𝑗 ∈ {1, 2,… , 5} we define
𝖯(𝑐)𝑖𝑗 (𝜀) = 𝖯(𝑐)𝑗 (𝜀) i.e., one has the same probability of
transitioning from each mode to the mode 𝑗 in the corner
case 𝑐 and this probability is denoted as 𝖯(𝑐)𝑗 (𝜀) ∈ [0, 1]. For
mode 𝑗, the associated system matrix is denoted by 𝙰1 = 𝖠1,
𝙰2 = 𝙰4 = 𝙰5 = 𝖠0, and 𝙰3 = 𝖠−1. The mode transition
probabilities, for each case, are described in Table 2. For a
positive definite matrix 𝑉 let us introduce the LMIs

5
∑

𝑗=1
𝖯(𝑐)𝑗 (𝜀)𝙰⊺𝑗𝑉 𝙰𝑗 < 𝑉 , ∀𝑐 ∈ {1, 2, 3} (18)

and the set

𝐸 ∶=
{

𝜀 ∈ ]0, 1]||
|

∃𝑉 = 𝑉 ⊺ > 0 s.t. (18) holds
}

.

With these notations, we are ready to give the main theoret-
ical result of this work.
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𝖯(𝑐)1 (𝜀) 𝖯(𝑐)2 (𝜀) 𝖯(𝑐)3 (𝜀) 𝖯(𝑐)4 (𝜀) 𝖯(𝑐)5 (𝜀)

C1 𝛿 𝜀
2

(1 − 𝛿) 𝜀
2

𝛿(1 − 𝜀
2
) (1 − 𝛿)(1 − 𝜀

2
) 0

C2 𝛿(1 − 𝜀
2
) (1 − 𝛿)(1 − 𝜀

2
) 𝛿 𝜀

2
(1 − 𝛿) 𝜀

2
0

C3 𝛿 𝜀
2

(1 − 𝛿)(1 − 𝜀
2
) 𝛿 𝜀

2
(1 − 𝛿)(1 − 𝜀

2
) 1 − 𝜀

General 𝛿
(

𝜀
2
+ (1 − 𝜀)𝑝

)

(1 − 𝛿)
(

𝜀
2
+ (1 − 𝜀)𝑝

)

𝛿
(

𝜀
2
+ (1 − 𝜀)𝑞

)

(1 − 𝛿)
(

𝜀
2
+ (1 − 𝜀)𝑞

)

(1 − 𝜀)(1 − 𝑝 − 𝑞)

Table 2
Mode transition probabilities for different cases.

Theorem 1. Given a scalar 𝛿 ∈ ]0, 1] and the mode transi-
tion probability matrix 𝖯(𝑐)(𝜀) as given in Table 2, if the set
𝐸 is nonempty, then the origin of the system (9) is MSS for
any 𝜀 ∈ 𝐸 under the 𝜀-greedy algorithm (13).

PROOF. The MSS conditions given in [2, Corollary 3.26]
are tailored to the specific problem to obtain the LMI (18).
Suppose there exists a positive definite matrix 𝑉 and a 𝜀 ∈
𝐸, then the origin of the system is stable for the corner cases
C1, C2, and C3. To prove the origin of the system (9) is MSS
under (13) with 𝜀 ∈ 𝐸 for any general case, we prove that
the general case can be written as a convex combination of
the three corner cases and then prove the LMI holds for the
general case. Let 𝛼1, 𝛼2 ∈ [0, 1] and 𝛼1 + 𝛼2 ≤ 1. Taking the
convex combination of mode transition probabilities for all
corner cases (see TABLE 2),

𝛼1
(

𝛿 𝜀
2
, (1 − 𝛿)𝜀

2
, 𝛿(1 − 𝜀

2
), (1 − 𝛿)(1 − 𝜀

2
), 0

)

+𝛼2
(

𝛿(1 − 𝜀
2
), (1 − 𝛿)(1 − 𝜀

2
), 𝛿 𝜀

2
, (1 − 𝛿)𝜀

2
, 0
)

+
(

1 − 𝛼1 − 𝛼2
)

(

𝛿 𝜀
2
, (1 − 𝛿)(1 − 𝜀

2
), 𝛿 𝜀

2
,

(1 − 𝛿)(1 − 𝜀
2
), 1 − 𝜀

)

=
(

𝛿
(𝜀
2
+ (1 − 𝜀)𝛼2

)

, (1 − 𝛿)
(𝜀
2
+ (1 − 𝜀)𝛼2

)

,

𝛿
(𝜀
2
+ (1 − 𝜀)𝛼1

)

, (1 − 𝛿)
(𝜀
2
+ (1 − 𝜀)𝛼1

)

,

(1 − 𝜀)(1 − 𝛼2 − 𝛼1)
)

.

(19)

Comparing (19) with the mode transition probability of the
general case in TABLE 2, we have 𝛼1 = 𝑞 and 𝛼2 = 𝑝.
To prove that (9) is MSS for any 𝑝, 𝑞 ∈ [0, 1] and 𝑝+ 𝑞 ≤ 1,
let 𝖯(𝑔) be the general mode transition probability matrix.
Then

𝖯(𝑔)𝑗 (𝜀) = 𝑞𝖯(1)𝑗 (𝜀) + 𝑝𝖯(2)𝑗 (𝜀) + (1 − 𝑞 − 𝑝)𝖯(3)𝑗 (𝜀)

for all 𝑗 ∈ {1, 2,… , 5}.
5
∑

𝑗=1
𝖯(𝑔)𝑗 (𝜀)𝙰⊺𝑗𝑉 𝙰𝑗

=
5
∑

𝑗=1

(

𝑞𝖯(1)𝑗 (𝜀) + 𝑝𝖯(2)𝑗 (𝜀) + (1 − 𝑞 − 𝑝)𝖯(3)𝑗 (𝜀)
)

𝙰
⊺
𝑗𝑉 𝙰𝑗

=𝑞
5
∑

𝑗=1
𝖯(1)𝑗 (𝜀)𝙰⊺𝑗𝑉 𝙰𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
<𝑉

+𝑝
5
∑

𝑗=1
𝖯(2)𝑗 (𝜀)𝙰⊺𝑗𝑉 𝙰𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
<𝑉

+(1 − 𝑞 − 𝑝)
5
∑

𝑗=1
𝖯(3)𝑗 (𝜀)𝙰⊺𝑗𝑉 𝙰𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
<𝑉

(a)
< 𝑞𝑉 + 𝑝𝑉 + (1 − 𝑞 − 𝑝)𝑉 = 𝑉

The inequality (a) follows from (18) and the fact that all
quantities on both sides of (18) are non-negative. Hence,
if 𝜀 ∈ 𝐸 then, (18) is satisfied for any general switching
strategy (13). □

To determine the value of 𝜀 that satisfies the LMIs
required for MSS, we utilize a method involving Semi-
Definite Programming (SDP) solvers and the bisection
method. Based on Theorem 1, we set up the necessary
LMIs involving symmetric positive definite matrix 𝑉 . These
LMIs establish the conditions for MSS that the system must
satisfy. We employ an SDP solver to numerically solve the
formulated LMIs. Given the dependence of the 𝑉 matrix on
𝜀, we apply the bisection method to determine the value of
𝜀 ∈ 𝐸. Starting with an initial range for 𝜀 ∈ [0, 1], the
bisection method iteratively narrows down to 𝜀 ∈ 𝐸 by
checking the existence of solutions of LMIs at midpoints
within the range.

5. Numerical Experiments
In this section, we validate our approach on system (9)

with the following data:

𝐴 =
(

1 0.1
0 1

)

, 𝐵 =
(

0
1

)

, and 𝐾 =
(

−0.012
−0.07

)⊺

where the controller gain 𝐾 stabilizes as per Assumption 2.
First, we fix the packet transmission success probability 𝛿 ∈
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]0, 1], typically determined by the communication system. It
represents the probability of successful packet transmission
and is influenced by the type of communication medium and
its properties.

For a fixed 𝛿, we determine the corresponding value of 𝜀
that ensures mean square stability (MSS) for all corner cases.
The relationship between the packet transmission success
probability 𝛿 and the 𝜀̄ required for ensuring MSS is depicted
in Figure 2.
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0.2
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0.7
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Figure 2: For the given 𝛿, 𝜀 satisfying all three corner cases.

Following that we examine the Mean-Square Stability
(MSS) property of the system when using the proposed 𝜀-
greedy algorithm. The analysis focuses on varying packet
transmission success probabilities and their corresponding
values of 𝜀, as determined by Theorem 1. Figure 3 illustrates
a scenario where the packet transmission success probability
is low. Under such conditions, achieving MSS requires a
relatively high value of 𝜀. A higher value of the 𝜀 ensures that
the communication exchange happens sufficiently. A higher
value of 𝜀 based on (13) suggests that the switch would be
either in the 1 or −1 position with a higher probability. In-
tuitively, sufficient communication ensures that the updated
information from the plant reaches the controller and vice
versa, thereby ensuring MSS. In contrast, Figure 4 shows
that with the same low transmission success probability but
a lower value of 𝜀, the system fails to achieve MSS. This
highlights the sensitivity of the system’s stability to the
choice of 𝜀 under challenging transmission conditions. On
the other hand, Figure 5 demonstrates that when the packet
transmission success probability is high, a low value of 𝜀 is
sufficient to ensure MSS.

Observe that 𝜀𝛿
2 forms a bound on the probability of

transmission in any one direction. We choose switch position
1 or −1 with equal probability 𝜀

2 and the success probability
is 𝛿 that makes an overall bound 𝜀𝛿

2 . This can also be
corroborated through Table 2 in all corner cases.

Table 3 presents the mean total cost along with the
standard deviation for different combinations of the trans-
mission success rate 𝛿 and the 𝜀-greedy parameter 𝜀, with
the weighting factor 𝜆 fixed at 0.5. Each entry represents
the average over multiple independent simulation runs, pro-
viding a measure of both the expected performance and

its variability due to the randomness of packet drops and
scheduling. From the table, it is observed that for a fixed 𝜀,
the total average of cost decreases as 𝛿 increases, reflecting
improved closed-loop performance with fewer packet drops.
Conversely, for a fixed 𝛿, increasing 𝜀 tends to increase
the total cost because more frequent transmissions raise
the communication penalty. The standard deviation values
indicate that variability is larger at lower 𝛿 and mid-range 𝜀,
highlighting the effect of stochasticity in the scheduling and
transmission process.
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Figure 3: Low success probability, with high 𝜀.
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Figure 4: Low success probability, with low 𝜀.

6. Conclusion
In this article, we have proposed a modified 𝜀-greedy

algorithm for selecting communication direction in a mul-
tiplexed NCS. We have established the necessary condi-
tions for the mean square stability (MSS) of an NCS with
multiplexed communication and packet drops. We displayed
the stability for various combinations of packet success
probability and necessary 𝜀.
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