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Abstract

The paper focuses on the preservation of a given graph tgpelhich is usually chosen to ensure
its connectivity. This is an essential ingredient allowinterconnected systems to accomplish tasks by
using decentralized control strategies. We consider aor&ed system with discrete-time dynamics in
which the subsystems are able to communicate if an algel#kition between their states is satisfied.
Each subsystem is called agent and the connected subsyaternalled neighbors. The agents update
their state in a decentralized manner by taking into accthheighbors’ states. The characterization
of the local control feedback gains ensuring topology pregn is provided. The results are based on
invariance and set-theory and yield to conditions in Lindatrix Inequality (LMI) form. The conditions
for topology preservation are applied to an illustrativample concerning partial state consensus of

agents with double integrator dynamics.

Index Terms

Interconnected systems, set-theory, consensus, delcadraontrol.

I. INTRODUCTION

Multi-agent systems have been used in the last decade tal miffdeent dynamics occurring in
a large panel of applications going from biology and medidim transportation, communication
and sociology. It has also been emphasized that contralitegconnected systems in a decen-

tralized manner [8], [10], [11] has advantages related #® dbmputation and communication
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cost reduction. On the other hand the changes of the netwpddgy may hamper the global
coordination goal. To avoid this, recent works have beeented towards the connectivity
preservation of the interconnection graph of mobile neksof5], [13]. In [9] the authors
compute a robust connected spanning subgraph which alloevdhighest degree of freedom
for the agents position and find the initial states (positma velocities) assuring the graph
preservation. Starting from this idea, in this paper we gmegonditions for network topology
preservation. Note that the procedure may be designed foaurdic graph topologies with the
intersection given by the core graph to be preserved.

The main contribution of this paper is the characterizatodrthe control laws preserving
a given graph. As in [13], the primary aim of our method is nagizen global coordination
objective. However, the controllers that pursue secongdkmtyal objectives, as flocking or rendez-
vous, can be selected among those ensuring the graph tgpmiegervation.

We consider a networked system with discrete dynamics anka qterconnection topology.
The subsystems are able to communicate if an algebraidomlatefined in the next section,
between their states is satisfied. The connected subsyatenealled neighbors. The subsystems
update their state in a decentralized manner by taking iotount their neighbors states. Each
connection is preserved as far as the algebraic relatioarified. Our aim is to characterize the
decentralized control laws that ensure the satisfactioim@falgebraic constraint. The design of
the decentralized controllers satisfying the algebrarstaint can be done either by minimizing
a cost function [7], or by negociations through the netwdrleach step [6]. Our approach use
invariance based techniques (see [1]-[3] for the use ofi@mee in control theory) to characterize
the conditions assuring that the algebraic constraintsolthe resulting topology preservation
conditions rewrites as a convex constraint that may be posédll form. Thus, we not only

propose a new tool for decentralized control but also an @aplementable one.

Notation

The set of positive integers smaller than or equal to thegame € N is denoted asN,
i.,e. Np={xe N:1<x<n}. Given the finite sete C Ny, | 7] is its cardinality. Given a
symmetric matrixP € R™", notationP > 0 (P > 0) means thaP is positive (semi-)definite. By
AT we denote the left pseudoinverse of the ma#kixGiven the matrixT € R™™ andN e N,

diagy(T) € R™N*MN s the block-diagonal matrix whosié block-diagonal elements are given
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by T, while diagA,B,...,Z) is the block-diagonal matrix, of adequate dimension, wHusek-
diagonal elements are the matrig®d, ...,Z. Given a set olN matricesAx with k € Ny, denote
by {Ac}ken, the matrix obtained concatenatidg in column. Given a square matri¥ Amax(A)

denote the maximal eigenvalue Af

[I. PROBLEM STATEMENT

Throughout the paper we consider a system consisting Bf2 interconnected subsystems
assumed identical, whose states have dimensielN. Each subsystem is referred to as agent.
Let us suppose that the initial interconnection topologgiven by the graplc = (¥,&) where
the vertex set is¥ = Ny and the connecting edge s&tC 7 x ¥ represents the set of pairs
of agents that satisfy a distance-like condition. Pregjsir givenr >0, d € N, d < n and

T e R&" with TTT invertible, the initial edge set is given by
& ={(i,J) € Nv xNv [ [T(x(0) —xj(0))[2 <},

wherex; andx; are the states of thieth and j-th agents, respectively. Sindeis a matrix, i.e.
a linear application, the grap® is undirected, which means thét j) € & < (j,i) € &.

In the sequel we denote hyy” C & the set of edges that must be preserved. Hence, it is
sufficient to suppose that every ageérknows the state of th¢-th one if (i, j) € 4.

Definition 1: For alli € 7 we define the set of connected neighbors ofitlie agent as

S={ieNv:(i,j) e}

The dynamics of each agent is given by
X" = Ax +Bu, (1)

for all i € Ny, with A€ R™" B c R™M and wherex; € R" is the state andj € R™M is the
control input of thei-th agent. As usual in multi-agent systems, the intercoinme@ppears in
the control inputy; which is designed by taking into account not only the statbut also the
statesxj, for all j € 4.

In order to clarify the concepts let us consider a network obile@ agents moving in a two
dimensional space which are able to select the variatiomeif welocity. Modelling the input

as a velocity variation or, equivalently, the variationsral the two Cartesian axis, the dynamics
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of thei-th agent, withi € Ny, along thex axis is given by

pr(k+1) = PX(K) + (k). o
Vi(k+1) = vi(k) + uf(k),
where p* is the position the velocity,u’ the control input and the sampling time. So, the

overall dynamics of thé-th agent along the& axis is given by a linear system with matrices

1 <[]

The dynamics along thg axis are clearly analogous. Then the full dynamics of ittle agent

A O B 0
A= — | B= — | >
[o A} [o B}

where the state ig (k) =[pX(k), V¥(k), p/(K), W (k)] T and the inputs = [u¥, U] T. Supposing that
the agents can communicate only if the euclidean distanteelea them is smaller than is
equivalent to defing as the projectior x (k) = [p*(k), p/ (k)] .

Given the set of connectiong’, the objective is to design a decentralized control law gngu

is given by (1) with

that none of these connections is lost. Thus, the objecawvel® posed in terms of the error

dynamics between connected neighbors:
&' =% =X =AX —Xj)+B(u —uj), (3)
for all (i, j) € 4. In the sequel, théth input is defined by

u= Y Kjx-xj)= >y Kijaj, (4)
iezwi jeZ/Vi
with the controller gainX ; depending on the current states and chosen such that the link
(i,]) is preserved. Thus, the design of eaghs reduced to the design of the controller gains

associated to eadhj system:

] K
&' = (A+BK,j+BKj)a,+ ¥ BKyek— 3 BKjejk, (5)
keH keA]

for all (i,j) e 4.
Remark 1:Our objective is to characterize the feedback gains inebive(5) such that the

link (i, ]) is preserved. Since such a characterization must be shgréek band thej agents to
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be useful in the decentralized context, only the informmattommon to both of them should be
involved. Such information consists in the states ofithed j agents and of those of the common
neighbors. The shared information on the non-common neighizduces to their number (and
implicitly a bound on their position). Such knowledge is diger determining a bound on the
effect of the non-common neighbors on th¢ system, as shown in the following.
The dynamics of the, j system is given by the matrik+ BK; ; +BK;; if no interaction with

the other agents is present. The perturbation on,thgystem induced by such an interaction can
be bounded within a set depending on the radiasd on the knowledge of common neighbors

of thei-th and j-th agents. Consider the sets

M= MOM, A= AN AU, ©
Ni =M\ (A Udi}),
then,.4{ ; denotes the common neighbors of ikd and thej-th agents and/lzj the neighbors
of thei-th one which are neithey nor one of its neighbors, analogously t@ﬁ. The elements
of J_{, UJVH are referred to as the non-common neighbors ofi thesystem. The dynamics of
thei, j system, perturbed by the non-common neighbors, is
&7 =(A+BK;j+BKjj)&,j+ Y (BKi k& k— BKjkejK) +Wj, 7)
ke,
with the bounded perturbation described by
wij= Y (BKixek)— > (BKjej)). (8)
ke A leAj;

For all the neighbors of th¢-th and thei-th agents, the following relations hold
ITaxll2<r, if ke A, [Texla<r, if ke 4. 9)

The problem addressed in this paper can be stated as follows.
Problem 1: Design a procedure to find at each step a condition on the ttateed control
gainskK; x, with I,k € Ny in (7) and (8) such that the following algebraic relation aisfied

ITefjlla<r, V(i) e (10)
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[1I. CONVEX CONDITIONS FOR TOPOLOGY PRESERVATION

In the following, we restrict the study to the generi¢ system with(i, j) € .4". In this way,
Problem 1 reduces to a set of simpler problems as explainiedvbe

Problem 2: Given thei, j system (7) and (8) withi, j) € .4, pose a condition on the gains
Kik, with k € 4{, andK;j |, with | € _#j, such that the following algebraic relation is satisfied

ITg5ll2 <, (11)

if |[Takll2<r, || Tejll2<r forall gk, ke A4 ande;, | € 4].

Let us consider the|2//|-uples of gaing; j, (i, j) € .4 ordered lexicographically. We suppose
that the Problem 2 is solved for the lirfk j) and the solution is given b$ol;, the set of all
tuples of gains satisfying its conditions. A solution of Blem 1 is then obtained by applying

the following decentralized algorithm:

Algorithm 1 Solving Problem 1
Input: valuer, distance matrixT, the set.4", the set?

1: initialize x
2. for ie ¥ do
3: for j € 4{ do

4: agenti solves Problem 2 and ge®i;

5: end for

6: if _ﬂ Solj = 0 then Problem 1 has no solutioBtop
o endif

8: end for

Remark 2:1t is important to recall that in this paper we provide onlycessary conditions
and sufficient ones for the existence of controllers presgrthe graph topology. Due to local
knowledge it is clear that agentan only find conditions to preserve its own links. The design
of the controllers preserving the whole topology can be doneninimizing cost functions that

may be also related to a secondary agreement goal (seerSg}io
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Definition 2: Given (6), (7) and (8), define

N =204 j| +1, N = [Afj] +[ A,

Eij = {&kfkes;> Eji = {& kbke,

E=[g,E,E]" eR™  Z=diag(T)E € RN

Kij = [{Ki\ ke T Ris = [{—K] her)]T
A=T[A+B(Kj+K;,), BKH, BK]‘J] diag\,(T)T e RU*dN, (12)
E_i,j - {Q,k}k@%__i, E_JI = {ej,k}ke%i’

Ej=[E}E]TeRN  Z=diagy(T)E RN

KL] = [{Ki:i(}keyl{ij]—r7 Kj,i = [{_KjT,k}keJﬁi]Tﬂ

[ =T[BKi;, BKj;]diagg(T)" € ROxIN,
Notice thatE, Z andA are two vectors and a matrix which are functions of the stateksthe

gains of the, j system and its common neighboks;Z andl” concern the states and gains of the
non-common neighbors of thej system. The dependenceMf N, E, Z, A, E, Z andl" on the
indicesi, j is omitted to simplify the notation. Using Definition 2, we\Aeathathfj =AZ+TZ

and then the algebraic constraint (11) is equivalent to
IAZ+TZ)T[AZ+TZ] <2, (13)
and the uncertainties bounds are given, in the terma, dfy
Z'DZ<r?  vkeNg, (14)
from (9), for allk € Ng, with
Dy = diag(Og, ..., Og, I, Og, ..., Og) € RINXAN,

wherelgq € R99 js the identity, @ € R9%4 is the zero matrix and indicates thaty is thek-th
block of Dy.

Remark 3:We have shown that Problem 2 is equivalent to: (13) is satisfieeveryZ e RAN
fulfilling (14).

A. Necessary condition for network preservation

In this section we derive some bounds on the gains assodiati® non-common neighbors

that are necessary for the feasibility of Problem 2. In otherds, we look for constraints on

April 26, 2013 DRAFT



the matrixI” that hampers the existence of admissible realizations efuticertaintyZ which
lead to the break of thé, j) link.

Consider the matriX "I which is real, symmetric, positive semidefinite and blockgtinall,
i.e. there areMy € R9*d, with k € Ny, real, symmetric and positive semidefinite such that
[T =diagMy, ..., My). Then there exisG, € R9*¢ diagonal andHy € R9*9 unitary, for all
k € Ny, such that

[T =diagMy,...,Mg)
= diag(H; G1Hy, ..., HyGyHy) = HTGH,
with G =diag(Gy, ..., Gy) andH =diag(Hy, ..., Hy) such thaHH " =I4y. The diagonal entries

of Gy (resp. of G) are the eigenvalues ol (resp. of ') and the columns of—lkT (resp. of

(15)

HT) are the related eigenvectors, for kit Ng. All the eigenvalues are nonnegative.
Assumption 1:The matrixI" is such that 5 AmaxM) <1.
The necessity of Assumption 1 is proveléierﬁelow.
Proposition 1 (Necessary condition)f Assumption 1 does not hold, then thereZsz RIN
such that (14) holds and

AZ+TZ]T[AZ+TZ] > r?, (16)

for all Z e RIN andA.

Proof: Givenl' 'T as in (15), denote with, the maximal eigenvalue &y, i.e. Ax = Amax(Mk),
and suppose with no loss of generality thiatis the first element of the diagonal @, for
everyk € Ny. Defining withhy € RY an eigenvector of norm one relatedXp we haveHh, =
[1,0,...,0]T, for all k € Ny.

Suppose thaty Ax>1 and choos& = r{hkfkeng € RIN. We have that
keNg

Z'DyZ =r?h) he=r?, (17)
for all k € N, thusZ fulfills (14). Moreover
Z'r'rz=z"H'GHz =

r> 5 [1,0,...,0/G([L,0,...,0]T =12 5 A>r2.
keNg keNyg

(18)

Notice that (17) and (18) do not depend on the sing_oThus, for allZ and A there exists an

adequate selection of the sign Bfsuch that
ZTATAZ4+2Z'T'AZ+Z'T'TZ>Z'T'TZ (19)
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Actually, the first term in (19) is always nonnegative and #ezond term in (19) becomes
nonnegative by appropriately choosing the sigrzofrom (18) and (19) we have (16). m
An alternative necessary condition for the Problem 2 to haweolution, inspired by the
comments of an anonymous reviewer, follows from the lemnaw €l his condition is employed
in the next section to provide sufficient conditions for Reob 2 to admit solutions.
Lemma 1: The matrixI” satisfies Assumption 1 if and only if there exiéts- diagA1lg, ..., Agla)

with A, >0 and 5 Ay < 1 such that
keNg

F'r<A. (20)
Proof: For the necessity, suppose that Assumption 1 holds. Denetd — 5 Amax(My)> 0
_ keNyg
and define/\ with Ax = AmaxMk) +0.5¢/N. Clearly (20) holds and

keNyg keNg keNg
For the sufficiency, suppose the existence/othat satifies (20) with y Ax < 1. From the
keNyg
particular structure of’, (20) impliesMy < Aklg which yields Amax(Mk) < Ak, for all k € Ng.

From this and 3 A¢ < 1, Assumption 1 follows. n
keNg
Remark 4:GivenA as in Lemma 1, the quantity= S Ax may be geometrically interpreted
keNg

as a bound on the uncertainty. In fact, from Definition 2, ¢bod (20) leads to
ITw,3=Z"TTZ<Z'AZ= 5 AZ'DZ< T A2,
keNy keNy

for all g, with ke .4, and ek With ke ;i such that (9) holds. Precisely, the effect of the
non-common neighbors can be modelled as a perturbation en trsystem bounded by an
ellipsoid determined by ' T and of radiusy/dr. Therefore the conditioR "I < A results in a
bound on the gains related to the non-common neighbors atti@nd j-th agents. It can be
interpreted as a joint limitation on the control efforts betagents and j aimed at regulating
and preserving their other connections.

Using the interpretation above, Proposition 1 may be refdated as an intuitive result saying
that: it is not possible to guarantee the "distance” constraint fas as the uncertainties are

too large, i.e.|Tw j|j2 >r.
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10

B. Sufficient condition for network preservation

This section provides conditions on the gainsand A for guaranteeing the existence of
solutions for Problem 2. In order to derive the sufficientdition we use the S-procedure (see
[4] for further details). This commonly used procedure gigifficient conditions in terms of
LMI. An important contribution of this paper, namely the fstiEnt condition for the constraint
(11) to hold, is stated in the following theorem.

Theorem 1 (Sufficient conditionProblem 2 admits solutions (i.e. condition (13) is satisfied
for everyZ € RIN fulfilling (14) ) if there existsA = diag(A1lg, - .., Agld) with Ax > 0, for all
k € Ny such that

r2—r25 0 z'AT
o A T |>0 (21)
AZ oy

with d = S Ax. Furthermore, anyA,I") satisfying (21) defines admissible controller gains for
the Problfglrwﬁ 2.
Proof: First notice that every solution of (21) satisfies also
A < 1, rr—A<o, (22)
kéNg
as the principal minors of a positive definite matrix are pesidefinite. Since (22) is a necessary
condition for the Problem 2 to admit a solution, see SectlbA | there is no loss of generality

in assuming it satisfied. Condition (13) is equivalent to
ATA ATT Z
z",z" _ | <r2 (23)
rar'r Z
This condition must be satisfied for evez_ysuch that (14) holds. Applying the S-procedure, a
sufficient condition for (13) to hold for everZ?e RAN satisfying (14) is the existence af > 0,
for all k € N, such that
ZTATAZ+2Z'TTAZ+ZT[FTT —NZ < r2—r25, (24)
for everyZ_e RIN. From (22) andZ being known, the left-hand side of (24) is a concave function

in Z whose maximum is attained at

Z=—(T"T=N"Tr"az (25)
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11

Hence condition (24) holds for eve® e RN if and only if it is satisfied for the maximum of

the function at left-hand side, that is if and only if
ZTATAZ-ZTATT(ITT —NA)"IrTAZ < r2 128, (26)

which is given by (24) at (25). Hence evety A andl” satisfying conditions (22) and (26) ensure

the satisfaction oﬂTquj |2 < r for all Z such that (14) holds. The condition (26) is equivalent to

ZTATAZ —r24¢25 ZTA'T -0
r'az rr—A
Z'ATAZ ZTATT r2—r2d 0
& <
r'az rr 0 A
ZTAT r2—r2d 0
= [ AZ T } <
rr 0 A
r2—r25 0 Z'AT
& 0 A TT >0
AZ T g
Thus (21) is equivalent to (24), sufficient condition for Y18 hold. [ |

C. Guaranteed network preservation: common feedback gains

The condition presented in the previous subsection ensluaeshe algebraic constraint related
to thei, j system is satisfied at the successive time instant. No inearan its satisfaction along
the evolution of the overall system can be guaranteed, sifesper choices o j are done.
In case the feedback gains are assumed to be the same forageny and every, j system,

a sufficient condition for guaranteeing the network topglggeservation at every future time
instant can be posed.

Assumption 2:Given the system (1) with control (4), assume tKat = K for all (i,j) e .4 .

The objective is to characterize the set of common feedbatksgsuch that, if applied to
control the multi-agent system, they ensure the non-isimgaof the valueg|Teq j||2 for all
(i,j) € A . If the connection condition is satisfied by the initial cdiuh, i.e. ||[Tg ;(0)|><r

for all (i, j) € .4, the network topology preservation is iteratively guaesuat at every successive
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12

instant. Given the sets as in (6), define

Nv = max {| 4]+ |47 —2).
w = max {|4] + |4 - 2}

Then, for all(i, j) € 4", Nv € N is an upper bound of the number of agents different fiom
and j affecting thei, j system.
Proposition 2: Let Assumption 2 hold. If there exists € [0,1] such that

T(A+2BK) Alg
_ (27)
(1-2)T'T NuK'B'TT -0
NuTBK  (1-Mlg |

ATTT A+2BK)TTT
(A+ 28K) ]>O’

then the systems given by (7) and (8) are such ffiat; |2 <r for all (i,j) € A if || Taxl2<r
for all (1,k) € 4.

Proof: Define the setdr = {ec R": ||Te|2 <r}, thenec Hr if and only if e’ T Te< r2
The first condition in (27) is equivalent @+ 2BK) T T(A+2BK) < A2T ' T, which implies
that (A+ 2BK)%r C A%r. From Assumption 2 one have thf; = Kji = K, which means
that A+ 2BK is the dynamics of any,j system in the absence of the perturbation of the
neighbors. Then the se#r is mapped iM %7 if no perturbation is present, that {8+ BK; j +
BKji)a,j € A%, for all g j € 1. Analogously, the second condition in (27) is equivalent to
NZKTB'TTTBK < (1—A)2T T, which leads toy BK%r = NyBK%r C (1—A)%r. This
means that ifg x € %7 for all ke A\ {j} and kqiimg St for all ke A4;\ {i}, as implicitly
assumed, then

;(BK_qK— BKejx)+ 3 (BKex)— 5 (BKejy) € (1-A)%r,
ke A | ke j e
for all (i,j) € 4. From properties of the Minkowski set addition, see [12], have e,fj €
ABT+(1-A) Bt = %7, if e Hr forall (I,k) € 47, which ends the proof. [ ]
Proposition 2 characterizes the common gains that ensaradtwork topology preservation

along the whole trajectories. An analogous sufficient ctoowlifor convergence follows.
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Corollary 1: Let Assumption 2 hold. If there exigt € [0,1] andA > 0 such that

T(A+2BK) (A —A)lg
[(1A)TTT RMKTBTTT] -0

_A\TT ATTT
A=MTTT (A+2BK)TT }>o

NuTBK  (1—A)lg

then the systems given by (7) and (8) are such that
ITgll2 < (1-2)[Ta,jl2,

for all (i,]) € A if g € R" satisfies||Tq k|[2 <r for all (I,k) € 4.

Hence the corollary provides a sufficient condition for tkkpanential convergence of thej
system to the sefTe|> =0, for all (i, j) € A7, if ||Tg(0)||2 <r for every(l,k) € .#". Notice
that this would impIy||Tq+7j |2 <r, strictly, as required in Problem 2.

Proposition 2 and Corollary 1 provide sufficient conditiamsthe local feedback gains for the
recursive satisfaction of the algebraic constraints and¢dovergence, respectively. On the other
hand, the price to pay for the recursive guarantee of canstraatisfaction (or of convergence)

is a certain degree of conservativeness of the results irpaoson with those of Theorem 1.

IV. APPLICATION TO DECENTRALIZED CONTROL OF MULT+AGENT SYSTEMS

Let us consider the problem of flocking for a set of agents ligh dynamics along thg
axis given by (2) and similar one alongaxis. We consider an interaction graph in which the
euclidean distance between two neighbors is smaller thagoal tor. The matrixT defining

the algebraic constraint to be preserved is

lltOO]
T= . (28)
001t

1
Thus, denotind\pi = ((p(k) — pf(K)?+ () (k) — p(k))?) 2 we supposép; j(k+1) <r and we
determine the controllers ensuring; j(k+2) <r. Among all these controllers we chose the one
that minimize the difference between neighbors speedshieevaluenv; j = ((v¥(k) —v’j‘(k))z-l—

1
(W (k) —VI(k))?)2. Let us consider the six interconnected agents with théainitonditions
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given in [9] and connected by the minimal robust graph comgub the same work. That is:
A =1(1,2),(2,3),(3,4), (4,5), (5,6)}, r = 3.2 and initial conditions:

x1(0)=[-4 —v 3 0", x(0)=[4 v 30",

%0)=[-2 —vo 2 0", x(0)=[2 v 2 O,

x30)=[-1 —v 0 0", x(0)=[1v 0Q",
wherevg is used as a parameter to analyze the maximal initial spesiccim be dealt with by
different control strategies. It is noteworthy that, asvehan [9], for the classical consensus
algorithm the preservation of the minimal robust graph iargateed for a critical speed value
Ve ~ 0.23. Nevertheless, it is numerically shown that the sufficcamdition is conservative since
for vo = 1.5v¢ (generating approximately a 4 times higher global velodisagreement) the robust
graph is not broken. We also note that the classical consealgorithm is not able to preserve
the connectivity when the global disagreement is 5 timessopto the one guaranteeing the
consensus (i.eq > 2.1vc).

In the sequel, we use Theorem 1 to compute the sets of gaingrmshe topology preserva-
tion. The choice of the controllers gain within these setddee heuristically by minimizing a
cost function that expresses the velocity disagreemenpandlizes the links break. This strategy
has admissible solutions fap = 19v; (see Figures 1, 2) and the connection between the third
and the fourth agent is lost fofy = 20vc. It is worth noting that the control acts like springs
between agents’ velocities (compare the Figures 1 and Z;imgtthat the system,2 has the
same evolution as the & and the 23 the same as,8, by symmetry). First, the control cancels
the speed difference between neighbors with opposite Mieecreating a speed disagreement
in both symmetric branches of the graph. Next, it cancel tisagiteement between 2-nd and
the 3-rd agent and between the 4-th and 5-th one, mimickingsaiging procedure where the
choice of active communication link is given by the errorviben neighbors speeds. Doing so,
either the flocking is reached before the connectivity i$,los the graph splits into two groups

that will independently agree to two different velocity wes.

V. CONCLUSION AND FURTHER WORKS

In this paper we have provided necessary conditions andigmifiones in terms of controller
gains for the preservation of a given graph topology. Thes®litions are written as a convex

constraint that may be posed in LMI form allowing an easy enpéntation of the controller
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Fig. 2. Errors of the systems 2 and 45 (left) and the 34 one (right).

design. An illustrative example shows how the procedure lwarapplied to achieve both the
topology preservation and an additional global objectin@clv is in this case the partial state
consensus. In this example our controller allows to soleedbordination problem for a set of

initial conditions that is larger than the one existing ie titerature.
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