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Convex conditions on decentralized control

for graph topology preservation

Mirko Fiacchini∗, Irinel-Constantin Mor̆arescu#

Abstract

The paper focuses on the preservation of a given graph topology which is usually chosen to ensure

its connectivity. This is an essential ingredient allowinginterconnected systems to accomplish tasks by

using decentralized control strategies. We consider a networked system with discrete-time dynamics in

which the subsystems are able to communicate if an algebraicrelation between their states is satisfied.

Each subsystem is called agent and the connected subsystemsare called neighbors. The agents update

their state in a decentralized manner by taking into accountthe neighbors’ states. The characterization

of the local control feedback gains ensuring topology preservation is provided. The results are based on

invariance and set-theory and yield to conditions in LinearMatrix Inequality (LMI) form. The conditions

for topology preservation are applied to an illustrative example concerning partial state consensus of

agents with double integrator dynamics.

Index Terms

Interconnected systems, set-theory, consensus, decentralized control.

I. INTRODUCTION

Multi-agent systems have been used in the last decade to model different dynamics occurring in

a large panel of applications going from biology and medicine to transportation, communication

and sociology. It has also been emphasized that controllinginterconnected systems in a decen-

tralized manner [8], [10], [11] has advantages related to the computation and communication
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cost reduction. On the other hand the changes of the network topology may hamper the global

coordination goal. To avoid this, recent works have been oriented towards the connectivity

preservation of the interconnection graph of mobile networks [5], [13]. In [9] the authors

compute a robust connected spanning subgraph which allows the highest degree of freedom

for the agents position and find the initial states (positionand velocities) assuring the graph

preservation. Starting from this idea, in this paper we present conditions for network topology

preservation. Note that the procedure may be designed for dynamic graph topologies with the

intersection given by the core graph to be preserved.

The main contribution of this paper is the characterizationof the control laws preserving

a given graph. As in [13], the primary aim of our method is not agiven global coordination

objective. However, the controllers that pursue secondaryglobal objectives, as flocking or rendez-

vous, can be selected among those ensuring the graph topology preservation.

We consider a networked system with discrete dynamics and a given interconnection topology.

The subsystems are able to communicate if an algebraic relation, defined in the next section,

between their states is satisfied. The connected subsystemsare called neighbors. The subsystems

update their state in a decentralized manner by taking into account their neighbors states. Each

connection is preserved as far as the algebraic relation is verified. Our aim is to characterize the

decentralized control laws that ensure the satisfaction ofthe algebraic constraint. The design of

the decentralized controllers satisfying the algebraic constraint can be done either by minimizing

a cost function [7], or by negociations through the network at each step [6]. Our approach use

invariance based techniques (see [1]–[3] for the use of invariance in control theory) to characterize

the conditions assuring that the algebraic constraint holds. The resulting topology preservation

conditions rewrites as a convex constraint that may be posedin LMI form. Thus, we not only

propose a new tool for decentralized control but also an easyimplementable one.

Notation

The set of positive integers smaller than or equal to the integer n ∈ N is denoted asNn,

i.e. Nn = {x ∈ N : 1 ≤ x ≤ n}. Given the finite setA ⊆ Nn, |A | is its cardinality. Given a

symmetric matrixP∈R
n×n, notationP> 0 (P≥ 0) means thatP is positive (semi-)definite. By

A† we denote the left pseudoinverse of the matrixA. Given the matrixT ∈ R
n×m and N ∈ N,

diagN(T) ∈ R
nN×mN is the block-diagonal matrix whoseN block-diagonal elements are given
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by T, while diag(A,B, ...,Z) is the block-diagonal matrix, of adequate dimension, whoseblock-

diagonal elements are the matricesA,B, ...,Z. Given a set ofN matricesAk with k∈NN, denote

by {Ak}k∈NN the matrix obtained concatenatingAk in column. Given a square matrixA, λmax(A)

denote the maximal eigenvalue ofA.

II. PROBLEM STATEMENT

Throughout the paper we consider a system consisting ofV ≥ 2 interconnected subsystems

assumed identical, whose states have dimensionn∈ N. Each subsystem is referred to as agent.

Let us suppose that the initial interconnection topology isgiven by the graphG= (V ,E ) where

the vertex set isV = NV and the connecting edge setE ⊆ V ×V represents the set of pairs

of agents that satisfy a distance-like condition. Precisely, for given r > 0, d ∈ N, d ≤ n and

T ∈ R
d×n with TT⊤ invertible, the initial edge set is given by

E = {(i, j) ∈ NV ×NV | ‖T(xi(0)−x j(0))‖2 < r},

wherexi andx j are the states of thei-th and j-th agents, respectively. SinceT is a matrix, i.e.

a linear application, the graphG is undirected, which means that(i, j) ∈ E ⇔ ( j, i) ∈ E .

In the sequel we denote byN ⊆ E the set of edges that must be preserved. Hence, it is

sufficient to suppose that every agenti knows the state of thej-th one if (i, j) ∈ N .

Definition 1: For all i ∈ V we define the set of connected neighbors of thei-th agent as

Ni = { j ∈ NV : (i, j) ∈ N }.
The dynamics of each agent is given by

x+i = Axi +Bui , (1)

for all i ∈ NV , with A ∈ R
n×n, B ∈ R

n×m and wherexi ∈ R
n is the state andui ∈ R

m is the

control input of thei-th agent. As usual in multi-agent systems, the interconnection appears in

the control inputui which is designed by taking into account not only the statexi but also the

statesx j , for all j ∈ Ni.

In order to clarify the concepts let us consider a network of mobile agents moving in a two

dimensional space which are able to select the variation of their velocity. Modelling the input

as a velocity variation or, equivalently, the variations along the two Cartesian axis, the dynamics

April 26, 2013 DRAFT



4

of the i-th agent, withi ∈ NV , along thex axis is given by






px
i (k+1) = px

i (k)+ tvx
i (k),

vx
i (k+1) = vx

i (k)+ux
i (k),

(2)

where px
i is the position,vx

i the velocity,ux
i the control input andt the sampling time. So, the

overall dynamics of thei-th agent along thex axis is given by a linear system with matrices

Ā=





1 t

0 1



 , B̄=





0

1



 .

The dynamics along they axis are clearly analogous. Then the full dynamics of thei-th agent

is given by (1) with

A=





Ā 0

0 Ā



 , B=





B̄ 0

0 B̄



 ,

where the state isxi(k) =[px
i (k), vx

i (k), py
i (k), vy

i (k)]
⊤ and the inputui = [ux

i , uy
i ]
⊤. Supposing that

the agents can communicate only if the euclidean distance between them is smaller thanr, is

equivalent to defineT as the projectionTxi(k) = [px
i (k), p

y
i (k)]

⊤.

Given the set of connectionsN , the objective is to design a decentralized control law ensuring

that none of these connections is lost. Thus, the objective can be posed in terms of the error

dynamics between connected neighbors:

e+i, j = x+i −x+j = A(xi −x j)+B(ui −u j), (3)

for all (i, j) ∈ N . In the sequel, thei-th input is defined by

ui = ∑
j∈Ni

Ki, j(xi −x j) = ∑
j∈Ni

Ki, jei, j , (4)

with the controller gainsKi, j depending on the current states and chosen such that the link

(i, j) is preserved. Thus, the design of eachui is reduced to the design of the controller gains

associated to eachi, j system:

e+i, j = (A+BKi, j +BKj ,i)ei, j +
k6= j

∑
k∈Ni

BKi,kei,k−
k6=i

∑
k∈N j

BKj ,kej ,k, (5)

for all (i, j) ∈ N .

Remark 1:Our objective is to characterize the feedback gains involved in (5) such that the

link (i, j) is preserved. Since such a characterization must be shared by the i and thej agents to
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be useful in the decentralized context, only the information common to both of them should be

involved. Such information consists in the states of thei and j agents and of those of the common

neighbors. The shared information on the non-common neighbors reduces to their number (and

implicitly a bound on their position). Such knowledge is used for determining a bound on the

effect of the non-common neighbors on thei, j system, as shown in the following.

The dynamics of thei, j system is given by the matrixA+BKi, j +BKj ,i if no interaction with

the other agents is present. The perturbation on thei, j system induced by such an interaction can

be bounded within a set depending on the radiusr and on the knowledge of common neighbors

of the i-th and j-th agents. Consider the sets

Ni, j = Ni ∩N j , N̄i, j = Ni \ (Ni, j ∪{ j}),
N̄ j ,i = N j \ (Ni, j ∪{i}),

(6)

then,Ni, j denotes the common neighbors of thei-th and thej-th agents andN̄i, j the neighbors

of the i-th one which are neitherj nor one of its neighbors, analogously for̄N j ,i. The elements

of N̄i, j ∪N̄ j ,i are referred to as the non-common neighbors of thei, j system. The dynamics of

the i, j system, perturbed by the non-common neighbors, is

e+i, j =(A+BKi, j +BKj ,i)ei, j+ ∑
k∈Ni, j

(BKi,kei,k−BKj ,kej ,k)+wi, j , (7)

with the bounded perturbation described by

wi, j = ∑
k∈ ¯Ni, j

(BKi,kei,k)− ∑
l∈ ¯N j,i

(BKj ,lej ,l ). (8)

For all the neighbors of thej-th and thei-th agents, the following relations hold

‖Tei,k‖2 ≤ r, if k∈ ¯Ni, j , ‖Tej ,k‖2 ≤ r, if k∈ ¯N j ,i. (9)

The problem addressed in this paper can be stated as follows.

Problem 1: Design a procedure to find at each step a condition on the decentralized control

gainsKl ,k, with l ,k∈ NV in (7) and (8) such that the following algebraic relation is satisfied

‖Te+i, j‖2 < r, ∀(i, j) ∈ N . (10)
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III. CONVEX CONDITIONS FOR TOPOLOGY PRESERVATION

In the following, we restrict the study to the generici, j system with(i, j) ∈ N . In this way,

Problem 1 reduces to a set of simpler problems as explained below.

Problem 2: Given thei, j system (7) and (8) with(i, j) ∈ N , pose a condition on the gains

Ki,k, with k∈ Ni , andK j ,l , with l ∈ N j , such that the following algebraic relation is satisfied

‖Te+i, j‖2 < r, (11)

if ‖Tei,k‖2 ≤ r, ‖Tej ,l‖2 ≤ r for all ei,k, k∈ Ni andej ,l , l ∈ N j .

Let us consider the 2|N |-uples of gainsKi, j , (i, j)∈N ordered lexicographically. We suppose

that the Problem 2 is solved for the link(i, j) and the solution is given bySoli j , the set of all

tuples of gains satisfying its conditions. A solution of Problem 1 is then obtained by applying

the following decentralized algorithm:

Algorithm 1 Solving Problem 1
Input: value r, distance matrixT, the setN , the setV

1: initialize x

2: for i ∈ V do

3: for j ∈ Ni do

4: agenti solves Problem 2 and getsSoli j

5: end for

6: if
⋂

j∈Ni

Soli j = /0 then Problem 1 has no solutionStop

7: end if

8: end for

Remark 2: It is important to recall that in this paper we provide only necessary conditions

and sufficient ones for the existence of controllers preserving the graph topology. Due to local

knowledge it is clear that agenti can only find conditions to preserve its own links. The design

of the controllers preserving the whole topology can be doneby minimizing cost functions that

may be also related to a secondary agreement goal (see Section IV).
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Definition 2: Given (6), (7) and (8), define

N = 2|Ni, j |+1, N̄ = |N̄i, j |+ |N̄ j ,i|,
Ei, j = {ei,k}k∈Ni, j , E j ,i = {ej ,k}k∈Ni, j ,

E = [e⊤i, j , E⊤
i, j , E⊤

j ,i]
⊤ ∈ R

nN, Z = diagN(T)E ∈ R
dN,

Ǩi, j = [{K⊤
i,k}k∈Ni, j ]

⊤, Ǩ j ,i = [{−K⊤
j ,k}k∈Ni, j ]

⊤,

∆ = T [A+B(Ki, j +K j ,i), BǨi, j , BǨ j ,i]diagN(T)
† ∈ R

d×dN,

Ēi, j = {ei,k}k∈ ¯Ni, j
, Ē j ,i = {ej ,k}k∈ ¯N j,i

,

Ēi, j = [Ē⊤
i, j , Ē⊤

j ,i]
⊤ ∈ R

nN̄, Z̄ = diagN̄(T) Ēi, j ∈ R
dN̄,

K̂i, j = [{K⊤
i,k}k∈ ¯Ni, j

]⊤, K̂ j ,i = [{−K⊤
j ,k}k∈ ¯N j,i

]⊤,

Γ = T[BK̂i, j , BK̂ j ,i ]diagN̄(T)
† ∈ R

d×dN̄.

(12)

Notice thatE, Z and∆ are two vectors and a matrix which are functions of the statesand the

gains of thei, j system and its common neighbors;Ē, Z̄ andΓ concern the states and gains of the

non-common neighbors of thei, j system. The dependence ofN, N̄, E, Z, ∆, Ē, Z̄ andΓ on the

indicesi, j is omitted to simplify the notation. Using Definition 2, we have thatTe+i, j = ∆Z+ΓZ̄

and then the algebraic constraint (11) is equivalent to

[∆Z+ΓZ̄]⊤[∆Z+ΓZ̄]< r2, (13)

and the uncertainties bounds are given, in the terms ofZ̄, by

Z̄⊤DkZ̄ ≤ r2, ∀k∈ NN̄, (14)

from (9), for all k∈ NN̄, with

Dk = diag(0d, . . . , 0d, Id, 0d, . . . , 0d) ∈ R
dN̄×dN̄,

whereId ∈ R
d×d is the identity, 0d ∈ R

d×d is the zero matrix andk indicates thatId is thek-th

block of Dk.

Remark 3:We have shown that Problem 2 is equivalent to: (13) is satisfied for everyZ̄∈R
dN̄

fulfilling (14).

A. Necessary condition for network preservation

In this section we derive some bounds on the gains associatedto the non-common neighbors

that are necessary for the feasibility of Problem 2. In otherwords, we look for constraints on
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the matrixΓ that hampers the existence of admissible realizations of the uncertaintyZ̄ which

lead to the break of the(i, j) link.

Consider the matrixΓ⊤Γ which is real, symmetric, positive semidefinite and block diagonal,

i.e. there areMk ∈ R
d×d, with k ∈ NN̄, real, symmetric and positive semidefinite such that

Γ⊤Γ = diag(M1, . . . , MN̄). Then there existGk ∈ R
d×d diagonal andHk ∈ R

d×d unitary, for all

k∈ NN̄, such that

Γ⊤Γ = diag(M1, . . . ,MN̄)

= diag(H⊤
1 G1H1, . . . , H⊤

N̄ GN̄HN̄) = H⊤GH,
(15)

with G=diag(G1, . . . , GN̄) andH =diag(H1, . . . , HN̄) such thatHH⊤= IdN̄. The diagonal entries

of Gk (resp. ofG) are the eigenvalues ofMk (resp. ofΓ⊤Γ) and the columns ofH⊤
k (resp. of

H⊤) are the related eigenvectors, for allk∈ NN̄. All the eigenvalues are nonnegative.

Assumption 1:The matrixΓ is such that ∑
k∈NN̄

λmax(Mk)<1.

The necessity of Assumption 1 is proved below.

Proposition 1 (Necessary condition):If Assumption 1 does not hold, then there is̄Z ∈ R
dN̄

such that (14) holds and

[∆Z+ΓZ̄]⊤[∆Z+ΓZ̄]≥ r2, (16)

for all Z ∈ R
dN and∆.

Proof: GivenΓ⊤Γ as in (15), denote withλk the maximal eigenvalue ofMk, i.e.λk = λmax(Mk),

and suppose with no loss of generality thatλk is the first element of the diagonal ofGk, for

everyk∈ NN̄. Defining withhk ∈ R
d an eigenvector of norm one related toλk we haveHkhk =

[1, 0, . . . ,0]⊤, for all k∈ NN̄.

Suppose that∑
k∈NN̄

λk ≥ 1 and choosēZ = r{hk}k∈NN̄
∈ R

dN̄. We have that

Z̄⊤DkZ̄ = r2h⊤k hk = r2, (17)

for all k∈ NN̄, thus Z̄ fulfills (14). Moreover

Z̄⊤Γ⊤ΓZ̄ = Z̄⊤H⊤GHZ̄ =

r2 ∑
k∈NN̄

[1, 0, . . . ,0]Gk[1, 0, . . . ,0]⊤ = r2 ∑
k∈NN̄

λk ≥ r2.
(18)

Notice that (17) and (18) do not depend on the sign ofZ̄. Thus, for allZ and∆ there exists an

adequate selection of the sign ofZ̄ such that

Z⊤∆⊤∆Z+2Z̄⊤Γ⊤∆Z+ Z̄⊤Γ⊤ΓZ̄ ≥ Z̄⊤Γ⊤ΓZ̄. (19)
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Actually, the first term in (19) is always nonnegative and thesecond term in (19) becomes

nonnegative by appropriately choosing the sign ofZ̄. From (18) and (19) we have (16).

An alternative necessary condition for the Problem 2 to havea solution, inspired by the

comments of an anonymous reviewer, follows from the lemma below. This condition is employed

in the next section to provide sufficient conditions for Problem 2 to admit solutions.

Lemma 1:The matrixΓ satisfies Assumption 1 if and only if there existsΛ=diag(λ1Id, . . . , λN̄Id)

with λk ≥ 0 and ∑
k∈NN̄

λk < 1 such that

Γ⊤Γ < Λ. (20)

Proof: For the necessity, suppose that Assumption 1 holds. Denoteε = 1− ∑
k∈NN̄

λmax(Mk)> 0

and defineΛ with λk = λmax(Mk)+0.5ε/N̄. Clearly (20) holds and

∑
k∈NN̄

λk = ∑
k∈NN̄

λmax(Mk)+0.5ε < ∑
k∈NN̄

λmax(Mk)+ ε = 1.

For the sufficiency, suppose the existence ofΛ that satifies (20) with ∑
k∈NN̄

λk < 1. From the

particular structure ofΓ, (20) impliesMk < λkId which yieldsλmax(Mk) < λk, for all k ∈ NN̄.

From this and ∑
k∈NN̄

λk < 1, Assumption 1 follows.

Remark 4:GivenΛ as in Lemma 1, the quantityδ = ∑
k∈NN̄

λk may be geometrically interpreted

as a bound on the uncertainty. In fact, from Definition 2, condition (20) leads to

‖Twi, j‖2
2 = Z̄⊤Γ⊤ΓZ̄ < Z̄⊤ΛZ̄ = ∑

k∈NN̄

λkZ̄
⊤DkZ̄ ≤ ∑

k∈NN̄

λkr
2,

for all ei,k, with k∈ ¯Ni, j , andej ,k with k∈ ¯N j ,i such that (9) holds. Precisely, the effect of the

non-common neighbors can be modelled as a perturbation on the i, j system bounded by an

ellipsoid determined byT⊤T and of radius
√

δ r. Therefore the conditionΓ⊤Γ < Λ results in a

bound on the gains related to the non-common neighbors of thei-th and j-th agents. It can be

interpreted as a joint limitation on the control efforts of the agentsi and j aimed at regulating

and preserving their other connections.

Using the interpretation above, Proposition 1 may be reformulated as an intuitive result saying

that: it is not possible to guarantee the ”distance” constraint asfar as the uncertainties are

too large, i.e.‖Twi, j‖2 ≥ r.
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B. Sufficient condition for network preservation

This section provides conditions on the gainsΓ and Λ for guaranteeing the existence of

solutions for Problem 2. In order to derive the sufficient condition we use the S-procedure (see

[4] for further details). This commonly used procedure gives sufficient conditions in terms of

LMI. An important contribution of this paper, namely the sufficient condition for the constraint

(11) to hold, is stated in the following theorem.

Theorem 1 (Sufficient condition):Problem 2 admits solutions (i.e. condition (13) is satisfied

for every Z̄ ∈ R
dN̄ fulfilling (14) ) if there existsΛ = diag(λ1Id, . . . , λN̄Id) with λk ≥ 0, for all

k∈ NN̄ such that










r2− r2δ 0 Z⊤∆⊤

0 Λ Γ⊤

∆Z Γ Id











> 0, (21)

with δ = ∑
k∈NN̄

λk. Furthermore, any(∆,Γ) satisfying (21) defines admissible controller gains for

the Problem 2.

Proof: First notice that every solution of (21) satisfies also

∑
k∈NN̄

λk < 1, Γ⊤Γ−Λ < 0, (22)

as the principal minors of a positive definite matrix are positive definite. Since (22) is a necessary

condition for the Problem 2 to admit a solution, see Section III-A, there is no loss of generality

in assuming it satisfied. Condition (13) is equivalent to

[Z⊤, Z̄⊤]





∆⊤∆ ∆⊤Γ

Γ⊤∆ Γ⊤Γ









Z

Z̄



< r2. (23)

This condition must be satisfied for everȳZ such that (14) holds. Applying the S-procedure, a

sufficient condition for (13) to hold for everȳZ ∈R
dN̄ satisfying (14) is the existence ofλk ≥ 0,

for all k∈ NN̄, such that

Z⊤∆⊤∆Z+2Z̄⊤Γ⊤∆Z+ Z̄⊤[Γ⊤Γ−Λ]Z̄ < r2− r2δ , (24)

for everyZ̄∈R
dN̄. From (22) andZ being known, the left-hand side of (24) is a concave function

in Z̄ whose maximum is attained at

Z̄ =−(Γ⊤Γ−Λ)−1Γ⊤∆Z. (25)
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Hence condition (24) holds for everȳZ ∈ R
dN̄ if and only if it is satisfied for the maximum of

the function at left-hand side, that is if and only if

Z⊤∆⊤∆Z−Z⊤∆⊤Γ(Γ⊤Γ−Λ)−1Γ⊤∆Z < r2− r2δ , (26)

which is given by (24) at (25). Hence everyΛ, ∆ andΓ satisfying conditions (22) and (26) ensure

the satisfaction of‖Te+i, j‖2 < r for all Z̄ such that (14) holds. The condition (26) is equivalent to




Z⊤∆⊤∆Z− r2+ r2δ Z⊤∆⊤Γ

Γ⊤∆Z Γ⊤Γ−Λ



< 0

⇔





Z⊤∆⊤∆Z Z⊤∆⊤Γ

Γ⊤∆Z Γ⊤Γ



<





r2− r2δ 0

0 Λ





⇔





Z⊤∆⊤

Γ⊤





[

∆Z Γ
]

<





r2− r2δ 0

0 Λ





⇔











r2− r2δ 0 Z⊤∆⊤

0 Λ Γ⊤

∆Z Γ Id











> 0.

Thus (21) is equivalent to (24), sufficient condition for (13) to hold.

C. Guaranteed network preservation: common feedback gains

The condition presented in the previous subsection ensuresthat the algebraic constraint related

to thei, j system is satisfied at the successive time instant. No insurance on its satisfaction along

the evolution of the overall system can be guaranteed, unless proper choices ofKi, j are done.

In case the feedback gains are assumed to be the same for everyagent and everyi, j system,

a sufficient condition for guaranteeing the network topology preservation at every future time

instant can be posed.

Assumption 2:Given the system (1) with control (4), assume thatKi, j = K̄ for all (i, j)∈N .

The objective is to characterize the set of common feedback gains such that, if applied to

control the multi-agent system, they ensure the non-increasing of the values‖Tei, j‖2 for all

(i, j) ∈ N . If the connection condition is satisfied by the initial condition, i.e. ‖Tei, j(0)‖2 ≤ r

for all (i, j)∈N , the network topology preservation is iteratively guaranteed at every successive
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instant. Given the sets as in (6), define

NM = max
(i, j)∈N

{|Ni|+ |N j |−2}.

Then, for all(i, j) ∈ N , NM ∈ N is an upper bound of the number of agents different fromi

and j affecting thei, j system.

Proposition 2: Let Assumption 2 hold. If there existsλ ∈ [0,1] such that




λT⊤T (A+2BK̄)⊤T⊤

T(A+2BK̄) λ Id



≥ 0,





(1−λ )T⊤T NMK̄⊤B⊤T⊤

NMTBK̄ (1−λ )Id



≥ 0,

(27)

then the systems given by (7) and (8) are such that‖Te+i, j‖2 ≤ r for all (i, j)∈N if ‖Tel ,k‖2 ≤ r

for all (l ,k) ∈ N .

Proof: Define the setBT = {e∈ R
n : ‖Te‖2 ≤ r}, thene∈ BT if and only if e⊤T⊤Te≤ r2.

The first condition in (27) is equivalent to(A+2BK̄)⊤T⊤T(A+2BK̄)≤ λ 2T⊤T, which implies

that (A+ 2BK̄)BT ⊆ λBT . From Assumption 2 one have thatKi, j = K j ,i = K̄, which means

that A+ 2BK̄ is the dynamics of anyi, j system in the absence of the perturbation of the

neighbors. Then the setBT is mapped inλBT if no perturbation is present, that is(A+BKi, j +

BKj ,i)ei, j ∈ λBT , for all ei, j ∈ BT . Analogously, the second condition in (27) is equivalent to

N2
MK̄⊤B⊤T⊤TBK̄ ≤ (1− λ )2T⊤T, which leads to ∑

k∈NNM

BK̄BT = NMBK̄BT ⊆ (1− λ )BT . This

means that ifei,k ∈ BT for all k ∈ Ni \ { j} and ek, j ∈ BT for all k ∈ N j \ {i}, as implicitly

assumed, then

∑
k∈Ni, j

(BK̄ei,k−BK̄ej ,k)+ ∑
k∈ ¯Ni, j

(BK̄ei,k)−∑
l∈ ¯N j,i

(BK̄ej ,l )∈(1−λ )BT ,

for all (i, j) ∈ N . From properties of the Minkowski set addition, see [12], wehave e+i, j ∈
λBT +(1−λ )BT = BT , if el ,k ∈ BT for all (l ,k) ∈ N , which ends the proof.

Proposition 2 characterizes the common gains that ensure the network topology preservation

along the whole trajectories. An analogous sufficient condition for convergence follows.
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Corollary 1: Let Assumption 2 hold. If there existλ ∈ [0,1] and λ̄ > 0 such that




(λ − λ̄ )T⊤T (A+2BK̄)⊤T⊤

T(A+2BK̄) (λ − λ̄ )Id



≥ 0,





(1−λ )T⊤T NMK̄⊤B⊤T⊤

NMTBK̄ (1−λ )Id



≥ 0,

then the systems given by (7) and (8) are such that

‖Te+i, j‖2 ≤ (1− λ̄ )‖Tei, j‖2,

for all (i, j) ∈ N if el ,k ∈ R
n satisfies‖Tel ,k‖2 ≤ r for all (l ,k) ∈ N .

Hence the corollary provides a sufficient condition for the exponential convergence of thei, j

system to the set‖Te‖2 = 0, for all (i, j) ∈ N , if ‖Tel ,k(0)‖2 ≤ r for every (l ,k) ∈ N . Notice

that this would imply‖Te+i, j‖2 < r, strictly, as required in Problem 2.

Proposition 2 and Corollary 1 provide sufficient conditionson the local feedback gains for the

recursive satisfaction of the algebraic constraints and for convergence, respectively. On the other

hand, the price to pay for the recursive guarantee of constraints satisfaction (or of convergence)

is a certain degree of conservativeness of the results in comparison with those of Theorem 1.

IV. A PPLICATION TO DECENTRALIZED CONTROL OF MULTI-AGENT SYSTEMS

Let us consider the problem of flocking for a set of agents withthe dynamics along thex

axis given by (2) and similar one alongy axis. We consider an interaction graph in which the

euclidean distance between two neighbors is smaller than orequal tor. The matrixT defining

the algebraic constraint to be preserved is

T =





1 t 0 0

0 0 1 t



 . (28)

Thus, denoting∆pi, j =
(

(px
i (k)−px

j(k))
2+(py

i (k)−py
j(k))

2
)

1
2 we suppose∆pi, j(k+1)≤ r and we

determine the controllers ensuring∆pi, j(k+2)≤ r. Among all these controllers we chose the one

that minimize the difference between neighbors speeds, i.e. the value∆vi, j =
(

(vx
i (k)−vx

j(k))
2+

(vy
i (k)− vy

j(k))
2
)

1
2 . Let us consider the six interconnected agents with the initial conditions
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given in [9] and connected by the minimal robust graph computed in the same work. That is:

N = {(1,2), (2,3), (3,4), (4,5), (5,6)}, r = 3.2 and initial conditions:

x1(0) = [−4 −v0 3 0]⊤ , x6(0) = [4 v0 3 0]⊤ ,

x2(0) = [−2 −v0 2 0]⊤ , x5(0) = [2 v0 2 0]⊤ ,

x3(0) = [−1 −v0 0 0]⊤ , x4(0) = [1 v0 0 0]⊤ ,

wherev0 is used as a parameter to analyze the maximal initial speed that can be dealt with by

different control strategies. It is noteworthy that, as shown in [9], for the classical consensus

algorithm the preservation of the minimal robust graph is guaranteed for a critical speed value

vc ≃ 0.23. Nevertheless, it is numerically shown that the sufficient condition is conservative since

for v0= 1.5vc (generating approximately a 4 times higher global velocitydisagreement) the robust

graph is not broken. We also note that the classical consensus algorithm is not able to preserve

the connectivity when the global disagreement is 5 times superior to the one guaranteeing the

consensus (i.e.v0 > 2.1vc).

In the sequel, we use Theorem 1 to compute the sets of gains ensuring the topology preserva-

tion. The choice of the controllers gain within these sets isdone heuristically by minimizing a

cost function that expresses the velocity disagreement andpenalizes the links break. This strategy

has admissible solutions forv0 = 19vc (see Figures 1, 2) and the connection between the third

and the fourth agent is lost forv0 = 20vc. It is worth noting that the control acts like springs

between agents’ velocities (compare the Figures 1 and 2, noticing that the system 1,2 has the

same evolution as the 5,6 and the 2,3 the same as 4,5, by symmetry). First, the control cancels

the speed difference between neighbors with opposite velocities creating a speed disagreement

in both symmetric branches of the graph. Next, it cancel the disagreement between 2-nd and

the 3-rd agent and between the 4-th and 5-th one, mimicking a gossiping procedure where the

choice of active communication link is given by the error between neighbors speeds. Doing so,

either the flocking is reached before the connectivity is lost, or the graph splits into two groups

that will independently agree to two different velocity values.

V. CONCLUSION AND FURTHER WORKS

In this paper we have provided necessary conditions and sufficient ones in terms of controller

gains for the preservation of a given graph topology. These conditions are written as a convex

constraint that may be posed in LMI form allowing an easy implementation of the controller
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Fig. 1. Trajectories (left) and errors of the systems 1,2 and 5,6, (right).
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Fig. 2. Errors of the systems 2,3 and 4,5 (left) and the 3,4 one (right).

design. An illustrative example shows how the procedure canbe applied to achieve both the

topology preservation and an additional global objective which is in this case the partial state

consensus. In this example our controller allows to solve the coordination problem for a set of

initial conditions that is larger than the one existing in the literature.
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