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Abstract

We consider a clustered network where connections inside the cluster are dense and between clusters are sparse. This leads us to a classical
decoupling into fast (intra-cluster) and slow (inter-cluster) dynamics. Our objective is to provide a computationally efficient method to
design control strategies that guarantee a certain bound on the cost for each cluster. Basically, we design a composite synchronizing
controller with two terms: one responsible for the intra-cluster synchronization and the other achieving the synchronization between
clusters. The first one does not require much computational effort since an analytic expression describes it. The second term is designed
through a satisfaction equilibrium approach. In other words, the internal (fast) and external (slow) controllers are independently designed,
and they ensure a guaranteed satisfactory cost for each cluster. Moreover, we show that the internal control affects the cluster cost only
for a short time period. Finally, numerical simulations illustrate the theoretical results.
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1 Introduction

Due to its application in various domains such as power sys-
tems [11], wireless sensor networks [25], social networks
[32], and biology [4], analysis and control of network syn-
chronization have received significant attention in the lit-
erature. A particular case of the networked system is clus-
tered network, where the network is divided into distinct
groups (clusters) and the communication inside these groups
is dense while the communication between these groups is
sparse, see e.g. [22]. A typical example that falls into this
framework is power systems. The increase in the number of
interconnections and interchanges of energy in the electri-
cal networks cause these low-frequency oscillations where a
group of generators oscillates relative to each other known as
inter-area oscillation . A decentralized control can be used
to dampen these oscillations and stabilize the network. But
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decentralized control on the one hand can interact in adverse
ways and destabilize the overall system and on the other
hand, even if it provides stability it may result in poor per-
formance [16]. An alternative approach would be to design
control based on global information but this comes with a
large computational burden that increases with the size of the
network. In such scenarios, a control design approach that
classifies the system with coherent dynamics into a group
i.e., clusters and divides the design problem into smaller
sub-problems can be an effective approach. Motivated by
such scenarios, in this paper, we study the design of an ef-
ficient control scheme for the clustered network. In power
networks, the group of generators that oscillate against each
other can be classified into clusters and an efficient system
analysis can be performed. Networks with such properties
also appear in various disciplines, such as energy systems
[28], physics [2], [30], biological systems [13], social net-
works [7], [12] etc.

A majority of the publication on clustered networks propose
an analysis of networks in consensus framework, see e.g.
[9], [8], [24]; while the problem of control design is less
common in such a setting. A particular setup for synchro-
nizing clustered networks using two time-scales is consid-
ered in [5], [27]. In [5], the authors expressed the consen-
sus problem in terms of the synchronization problem and
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proposed a computationally efficient control design strategy
using time-scale separation. A distributed two-time-scales
consensus algorithm is presented in [27] with an explicit for-
mula for the convergence rate. However, none of the previ-
ously mentioned works consider the problem where the con-
trol objective has a cost optimization requirement in addition
to synchronization. On the one hand, these requirements are
timely, and on the other, induce a high computational load,
preventing the design of (sub-)optimal controllers in a cen-
tralized manner.

A major problem related to the synchronization of large-
scale networks is the computational load associated with the
design of effective controllers. The cost related to the syn-
chronization is either considered to be global or not con-
sidered at all in most of the existing literature, for example
in [17], [6]. In [17], the authors propose an energy-aware
controller to minimize a global cost consisting of communi-
cation and controller parts. The control design with optimal
global cost in the framework of multi-agent systems is pre-
sented in [6]. The computational effort required is very high,
and the problem is NP-hard due to the information structure
imposed by the graph.

A computationally efficient decentralized control design ap-
proach is presented with global cost guarantees in [3]; how-
ever, the assumption of the same gain for all the agents in
the network is quite restrictive. This obstacle in [3] was
removed in [31] with individual cost guarantees for each
agent. The proposed strategy works well with small-scale
networks; however, the computational effort required to ob-
tain the gain is huge for large-scale networks. In this paper,
we aim to address this problem and provide an effective
control design strategy for large-scale networks that reduces
the computational effort while satisfying the performance
guarantees.

One methodology to address the synchronization of the
large-scale networks is by model reduction, which is based
on Singular Perturbation Theory (SPT) that exploits the
time-scale properties of clustered networks. The objective is
to decrease the size of the system state while approximating
its overall dynamic behavior. To the best of our knowledge,
the first time-scale analysis of the networked system dates
back to the 1980s, see [9], [10]. In these publications, the
consensus problem for linear systems was analyzed using
a singular perturbation approach under the assumption that
graphs were undirected. Later on, these results were ex-
tended in [8] to nonlinear networks. Furthermore, the results
from [9], [10] for the case time-varying directed graphs are
extended in [24]. In the synchronization framework, sin-
gular perturbation analysis of heterogeneous network with
fixed topology is presented in [23] and for the time-varying
case in [1].

In this paper, we consider a problem of distributed con-
troller design for a homogeneous clustered network that en-
sures synchronization of the overall network while optimiz-
ing some cost functions. We provide an approach that signif-

icantly reduces the computational effort required to obtain
the controller by exploiting the clustered network structure.
The dense interconnections result in a fast convergence in-
side the cluster toward a local agreement, and then slowly
toward the global consensus. We use this property to divide
the control design problem into computationally tractable
sub-problems using Time-Scale Separation (TSS). The fast
variables represent the synchronization error inside the clus-
ters, whereas the slow variables represent the aggregate be-
havior of the agent states within each cluster.

Fig. 1. A network partitioned into 4 clusters.

The design of our controller is based on the two-time-scales
behavior of the clustered network. First, we perform the
Time-Scale Modeling (TSM) to represent the network dy-
namics in Standard Singular Perturbation From (SSPF). As
a result of TSM, internal control is associated with fast dy-
namics, while external control is associated with slow dy-
namics. Then, using time-scale separation, we decouple the
dynamics into slow and fast subsystems and this decoupling
allows us to design the internal and the external controller
independently. The internal controller, associated with the
fast dynamics, is designed to achieve a consensus inside the
cluster while minimizing an internal cost. Since the conver-
gence of agents inside the cluster towards the consensus is
fast; the cluster roughly merges into a single node after the
fast transient and external behavior is defined by the slow
dynamics. The long-term behavior of the network depends
on this slow dynamics. Finally, the external control is de-
signed to synchronize all the clusters based on the satisfac-
tion equilibrium approach [31], i.e., external control is de-
signed such that the external cost associated with each clus-
ter is bounded under a given threshold. In addition, we also
provide an approximation of the cluster cost as a sum of
the internal and external costs associated with internal and
external control, respectively.

The main contributions of this paper can be outlined as fol-
lows, (1) we formulate a singular perturbation model of the
clustered network using time-scale modeling in the synchro-
nization framework, where each agent has its individual dy-
namics, (2) based on the obtained model in (1), we pro-
pose a computationally efficient sub-optimal control design
scheme that synchronizes the network by splitting the con-
trollers into two parts corresponding to the slow and fast
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dynamics, and (3) finally, we provide an approximation of
the cluster cost bound that is induced by the time-scale de-
coupling approach.

The remainder of the paper is organized as follows. The
model and the control objectives are stated in Section II.
The time-scale modeling and decoupling into slow and fast
dynamics using time-scale separation are described in de-
tail in Section III. Then, the internal and external controller
design procedures are developed in Section IV. In Section
V, we provide an approximation of the cluster cost. Finally,
numerical results are presented in Section VI before con-
cluding in Section VII. To make the paper easily readable,
the proofs are presented in the Appendix.

1.1 Notation and Preliminaries

The symbol ⊗ represents the Kronecker product. Let
(x, y) ∈ Rn+m stand for [x⊤y⊤]⊤. The identity matrix
of size n is denoted by In and by 1n ∈ Rn, the col-
umn vector whose components are all 1. For a matrix
A ∈ Rm×n, A⊤ denotes the transpose of A. For a vec-
tor x ∈ Rn, we denote by ∥x∥2 :=

√
x⊤x its Euclidean

norm and, for a matrix A, ∥A∥2 :=
√
λmax(A⊤A). For

a square matrix M ∈ Rn×n, let λmin(M) and λmax(M)
be the minimum and the maximum eigenvalue, respec-
tively. The measure of the square matrix M is defined
as ν(M) = 1

2λmax(M + M⊤). We said that a matrix
M ∈ Rn×n is orthonormal if M⊤M = MM⊤ = In. We
denote by M−k ∈ R(n−1)×(n−1) the matrix M with its k-th
row and column removed. By B = diag(B1, ..., BN ), we
denote a block-diagonal matrix with the entries B1,...,BN on
the diagonal and B−k := diag(B1, ..., Bk−1, Bk+1, ..., BN )
the block-matrix with the k-th block removed. A vector
function f(t, ϵ) ∈ Rn is said to be O(ϵ) over an interval
[t1, t2] if there exists positive constant k and ϵ∗ such that
∥f(t, ϵ)∥ ≤ kϵ, for all ϵ ∈ [0, ϵ∗], ∀t ∈ [t1, t2], where ∥.∥
is the Euclidean norm [19]. A connected, undirected graph
is represented as G: = (V, E), where V: = {1, 2, . . . , n} is
the agent set and E ⊆ V ×V is the edge set. The adjacency
matrix A = (aij)n×n is defined as: aij ̸= 0 if (j, i) ∈ E and
aij = 0, otherwise. The Laplacian of the graph G is defined
as L, has −aij off-diagonal elements and

∑n
j=1 aij diag-

onal ones. Let G = (V, {Ki}i∈V , {ui}i∈V), be a strategic
form game, where V = {1, 2, . . . , n} is the set of players
(agents), Ki is the set of strategies of the player i , and ui

is a utility function of the player i and {f1, . . . , fn} be n
set-valued satisfaction functions. Then the strategy profile
K∗ = (K∗

1, . . . ,K∗
n) is a Satisfaction Equilibrium (SE) if

and only if, for all i ∈ V , we have, K∗
i ∈ fi(K∗

−i), where
K∗

−i := (K∗
1, . . . ,K∗

i−1,K∗
i+1, . . . ,K∗

n) denotes the reduced
profile with the component K∗

i removed.

2 Problem Statement

2.1 Model Description

Consider a network of n agents partitioned into m non-
empty clusters C1, . . . , Cm ⊂ V . Clustered network refers
to a network that is divided into distinct groups of agents
having dense connection structures, whereas the connec-
tions between the clusters are sparse. Let us denote by
M: ={1, 2, . . . ,m} , the set of clusters while nk represents
the cardinality of the cluster Ck and n =

∑m
k=1 nk. Each

agent in the network is identified by a couple (k, i) ∈ Ck,
where, k refers to the cluster Ck and i the index of the agent
in the cluster Ck. The notation (k, j) ∈ Nk,i represents the
neighbors of the agent (k, i) in the same cluster Ck. To each
agent (k, i) ∈ Ck, k ∈ M, one assigns a state xk,i ∈ Rnx

whose dynamics is
ẋk,i = Axk,i +Buk,i, (1)

where uk,i ∈ Rnu , A ∈ Rnx×nx and B ∈ Rnx×nu . For
each cluster Ck, let xk: = (xk,1, . . . , xk,nk

) ∈ Rnk·nx be
the cluster state and uk: = (uk,1, . . . , uk,nk

) ∈ Rnk·nu the
cluster control. Thus, cluster dynamics takes the following
form

ẋk = (Ink
⊗A)xk + (Ink

⊗B)uk, ∀k ∈M. (2)

Finally, the overall network dynamics take the following
form,

ẋ = (In ⊗A)x+ (In ⊗B)u, (3)

where x: = (x1, . . . , xm) ∈ Rn·nx and u: = (u1, . . . , um) ∈
Rn·nu are the network state and the network control, re-
spectively.

The interactions between the agents in the network are en-
coded by the Laplacian matrix that can be written as L: =
Lint +Lext. The internal Laplacian of the network Lint: =
diag(Lint

1 , ...,Lint
m ) is a block-diagonal matrix, with each

block Lint
k referring to the Laplacian of the cluster Ck ex-

cluding the external connections. The external Laplacian
Lext represents the connections between agents from differ-
ent clusters.

Moreover, we define a cluster cost Jk associated with each
cluster Ck, k ∈M, as

Jk =

+∞∫
0

x⊤
k (t)(Lint

k ⊗ Inx
)xk(t) + x⊤(t)(Lext

k ⊗ Inx
)x(t)

+u⊤
k (t)(Ink

⊗Rk)uk(t) dt, (4)

where the internal Laplacian Lint
k ∈ Rnk×nk captures the

connections inside the cluster Ck, and the external Laplacian
Lext
k ∈ Rn×n expresses the external connections between
Ck and the neighboring clusters.
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In the sequel, we consider the problem of network synchro-
nization, and the network is said to be asymptotically syn-
chronized for all (k, i) ∈ Ck, (l, j) ∈ Cl and k, l ∈M, when
lim

t→+∞
∥xk,i(t)− xl,j(t)∥ = 0. The objective of the paper is

to design a controller u while optimizing the cluster costs
(4) for k ∈M,

Next, we state some assumptions on the network structure
and the connectivity which are vital for the control design
framework we are going to propose in this paper.

Assumption 1 The overall graph and the graph of the clus-
ter are undirected and connected.

The assumption on the connectivity of the network in As-
sumption 1 provides the necessary condition for network
synchronization. In addition, the graphs are also assumed to
be unweighted. The following assumption on the dense intra-
cluster communication, together with the adequate choice
of the control gains, ensures that the synchronization inside
the clusters is faster than between the clusters.

Assumption 2 The internal graphs are very dense for all
clusters, specifically, we assume that all non-zero eigen-
values for an internal Laplacian can be approximated by
nk i.e., for every cluster k ∈ M, λi(Lint

k ) ≈ nk, i =
{2, 3, . . . , nk}.

Remark 1 In Assumption 2, the dense graph implies a type
of graph in which the number of edges is close to the max-
imal number of edges. In real-world scenarios, the topol-
ogy of the network may not be fully known or dynamically
evolving to be able to determine the Laplacian eigenvalues.
Even for the known graphs, the numerical computation of
the eigenvalues may be impractical due to their shear size.
Thus, to address this difficulty and have the practical signif-
icance of our control design, we approximate the eigenval-
ues of the Laplacian matrices of the dense clusters by that
of complete ones. Following the result in [15], this is justi-
fied because for large dense networks, the Laplacian matrix
can be seen as a perturbation of the degree matrix of the
graph and the contribution of the adjacency matrix to the
Laplacian spectrum is small . This approach, on one hand,
simplifies the control design while on the other hand, this
simplification does not have a significant effect on the cost,
which is validated using numerical results.

2.2 Control Design Outline

For large networks, the control design problem under cer-
tain cost constraints becomes difficult as the computational
complexity increases with an increase in network dimen-
sion. To simplify the calculations and minimize the compu-
tational efforts, for each cluster Ck, k ∈ M, we propose a
composite control of the form:

uk: = uint
k + uext

k , ∀k ∈M, (5)

where uint
k : = (uint

k,1, ..., u
int
k,nk

), uext
k : = (uext

k,1 , ..., u
ext
k,nk

)
and {

uint
k,i : = −Kint

k

∑
(k,j)∈Nk,i

(xk,i − xk,j),

uext
k,i : = −Kext

k

∑
(l,p)∈Nk,i

(xk,i − xl,p),
(6)

where Kint
k ,Kext

k ∈ Rnu×nx . The notation (l, p) ∈ Nk,i

indicates the neighbors belonging to a different cluster, that
is l ̸= k. The internal control uint

k is the effort required to
achieve local agreement, whereas the external control uext

k
is the energy necessary to synchronize the agents between
the clusters.

Such a decomposition of the control allows us to decouple
the overall optimization in the following way. Substituting
the composite control (5), the cost function (4) can be written
as the sum of internal, external, and a cross term as follows:

Jk = J int
k + Jext

k + Jcross
k , (7)

where,

J int
k =

+∞∫
0

x⊤
k (t)(Lint

k ⊗Inx)xk(t)+uint
k

⊤
(t)(Ink⊗Rk)u

int
k (t) dt,

Jext
k =

+∞∫
0

x⊤(t)(Lext
k ⊗Inx)x(t) + uext

k
⊤
(t)(Ink⊗Rk)u

ext
k (t) dt,

Jcross
k = 2

+∞∫
0

uext
k

⊤
(t)(Ink ⊗Rk)u

int
k (t) dt .

(8)

In this way, we replace the original problem of optimizing
the cost function for the overall network given (4) with the
problem of optimization of the internal and external costs.
This way, the initial optimization problem is recast as a prob-
lem of finding the internal (Kint

k ) and external (Kext
k ) con-

trol gains. The internal and external gains are designed in-
dependently, and the obtained internal gain is optimal while
the external gain is sub-optimal because the internal cost is
minimized and the external cost is capped below a certain
threshold, respectively.

The next objective is to bound the total cluster cost with the
sum of internal (J int

k ) and external (Jext
k ) cost and a con-

stant term corresponding to the internal and external control.
The cross term in the equation (8) can be bounded by a con-
stant term multiplied by the norm of the initial conditions
(See Theorem 2).

To solve this problem, we propose an approach based on
time-scale separation that we describe in the following sec-
tion.

3 Time-scale Separation

This section provides a procedure to decouple the closed-
loop network dynamics into two subsystems, evolving on
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different time-scales. First, we perform a coordinate trans-
formation to exhibit the collective dynamics of the network:
the average and the synchronization error dynamics. Then,
we apply the TSS to decouple the collective dynamics into
slow and fast subsystems. In two time-scale, the slow vari-
able corresponds to the average of the agent’s state while
the fast variable corresponds to the synchronization error.

3.1 Coordinate Transformation

Let us consider the clusters without external connections.
Then based on the internal Laplacian Lint

k , following from
[26], we introduce the coordinate transformation for the clus-
ter Ck. For a connected graph, the Jordan decomposition of
the symmetric Laplacian matrix is,

Lint
k = Tk

[
0 0

0 Λint
k

]
T⊤
k , ∀k ∈M, (9)

where Tk ∈ Rnk×nk is an orthonormal matrix and Λint
k =

diag(λint
k,2, . . . , λ

int
k,nk

) ∈ R(nk−1)×(nk−1) collects the nk−1

positive eigenvalues of Lint
k . Moreover, the matrix Tk can

be expressed as

Tk =
[
vk,1 Vk

]
, ∀k ∈M, (10)

where v⊤k,1 = 1√
nk
1
⊤
nk

is the eigenvector associated with

the 0 eigenvalue and the matrix Vk ∈ Rnk×(nk−1) contains
the eigenvectors corresponding to the nonzero eigenvalues
of Lint

k . Furthermore, it can be verified that, v⊤k,1Vk = 0 and
V ⊤
k Vk = Ink−1.

Now, we define the coordinate transformation as

xk :=

[
yk

ξk

]
= (

1
√
nk

T⊤
k ⊗ Inx)xk, ∀k ∈M. (11)

Then, from (10) and (11), the change of variables yields, for
all k ∈M,

yk :=

(
1
⊤
nk

nk
⊗ Inx

)
xk =: Hkxk ∈ Rnx (12)

ξk :=

(
V ⊤
k√
nk
⊗ Inx

)
xk =: Zkxk ∈ R(nk−1).nx . (13)

The first component yk corresponds to the average of the
respective agents’ states in the cluster Ck. In network syn-
chronization, the synchronization error is defined as the dif-
ference between the individual state and the state of the av-
eraged unit, i.e.,

ek = xk − 1nk
yk, ∀k ∈M. (14)

The second component, ξk corresponds to the projection of
the synchronization error (14) as

ξk = Zkxk = Zk(ek + 1nk
yk) = Zkek. (15)

Since the matrix Tk is orthonormal i.e., T⊤
k = T−1

k , the
inverse of the transformation (11), for all k ∈M yields,

xk = (
√
nkTk ⊗ Inx

)x̄k

= (1nk
⊗ Inx)yk + (

√
nkVk ⊗ Inx)ξk

=: H̃kyk + Z̃kξk.

(16)

In vector form, let x: = (x1, . . . , xm) ∈ Rn.nx , y: =
(y1, . . . , ym) ∈ Rm.nx and ξ: = (ξ1, . . . , ξm) ∈ R(n−m).nx ,
respectively. Then for the overall network, we obtain

y = Hx, ξ = Zx and x = H̃y + Z̃ξ, (17)

where H = diag(H1, ...,Hm) and Z = diag(Z1, ..., Zm)

and H̃ = diag(H̃1, ..., H̃m) and Z̃ = diag(Z̃1, ..., Z̃m).
Now, we recast the overall network dynamics in terms of the
new coordinate variables. The overall network dynamics in
the presence of the control (5) is

ẋ = ((In ⊗A)− (In ⊗B)Kint(Lint ⊗ Inx
)

− (In ⊗B)Kext(Lext ⊗ Inx))x,
(18)

where Kint = diag((In1 ⊗Kint
1 ), . . . , (Inm ⊗Kint

m )) and
Kext = diag((In1⊗Kext

1 ), . . . , (Inm⊗Kext
m )). Then, using

(17), the overall dynamics (18) is recast in new coordinates
as follows, {

ẏ = Ā11y + Ā12ξ,

ξ̇ = Ā21y + (Ā1
22 + Ā2

22)ξ,
(19)

where,

Ā11 = ((Im ⊗A)−H(In ⊗B)Kext(Lext ⊗ Inx
)H̃),

Ā12 = −H(In ⊗B)Kext(Lext ⊗ Inx
)Z̃,

Ā21 = −Z(In ⊗B)Kext(Lext ⊗ Inx)H̃,

Ā1
22 = −Z(In ⊗B)Kext(Lext ⊗ Inx

)Z̃,

Ā2
22 = ((In−m ⊗A)− (In ⊗B)Kint

n−m(Λint ⊗ Inx
)),

(20)
and Kint

n−m = diag((In1−1 ⊗Kint
1 ), . . . , (Inm−1 ⊗Kint

m ))

and Λint = diag(Λint
1 , . . . ,Λint

m ). We recall that y and ξ
correspond to the average of the agents’ states and the syn-
chronization error, respectively.

3.2 Network Dynamics in Two Time-scales

In the absence of agents’ individual dynamics in [10], [24],
the consensus dynamics is expressed in Standard Singular
Perturbation From (SSPF) based only on the density of con-
nections inside and between the clusters. This was sufficient
because the convergence required in [10] is dictated only by
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the density of the connections in the consensus framework.
However, in our case, the convergence towards synchroniza-
tion manifold depends also on the control gains Kint and
Kext and we need to take them into account for the time-
scale analysis i.e. while defining the network parameter (ϵ).

Thus, to study the time-scale behavior and analyze the syn-
chronizing behavior, we define the network parameters as
follows,

µext: = ∥(In ⊗B)Kext(Lext ⊗ Inx
)∥,

µint: = min
k∈M

∥(Λint
k ⊗BKint

k )∥,

ϵ: = µext

µint .

(21)

The network parameter ϵ is the ratio of the strength of the
controls between and within the clusters. It is worth noting
that, in our case, the network parameter ϵ can be tuned by
the choice of the control gains Kext and Kint.

Remark 2 For the rest of this section, we assume that ϵ is
small enough such that time-scale separation occurs, and
the control design presented in the following section will
serve, among others to ensure this property.

In the following, we analyze the order of the matrices in
equation (20) with respect to the network parameters in equa-
tion (21).

Lemma 1 Let Kext be designed such that ∥A∥ ≤ c1µ
ext,

c1 > 0, then the matrices in (20) satisfy the following con-
ditions,
• ∥Ā11∥, ∥Ā12∥, ∥Ā21∥, ∥Ā1

22∥ ≤ c2ϵµ
int,

• ∥Ā2
22∥ ≥ µint,

where c2 := c1 +
√

n̄/n, n̄ = maxnk and n = minnk.
PROOF. See Appendix. ■

We here note that since µext depends on Kext, we can
always choose Kext sufficiently large such that the assump-
tion of the Lemma 1 are satisfied. As a consequence of the
Lemma 1 and by definition of the O(ϵ) (see Notations), the
ratio between the norm of the matrices Ā11, Ā12, Ā21, Ā

1
22

with the norm of Ā2
22 are of order O(ϵ). Since the dynamics

of the variables y and ξ are dominated by the matrix Ā11

and Ā2
22, the variables y and ξ behaves as a slow and fast

variables, respectively.

Now, to reveal the TSS, following the idea of [10], we re-
scale the time with µint to obtain a fast time-scale as tf =
µintt, and a slow time-scale ts = ϵtf . This allows us to
represent the overall dynamics (19) in SSPF as follows,

dy

dts
= A11y +A12ξ, (22a)

ϵ
dξ

dts
= ϵA21y + (ϵA1

22 +A2
22)ξ. (22b)

where,

A11 =
Ā11

ϵµint
, A12 =

Ā12

ϵµint
, A21 =

Ā21

ϵµint
,

A1
22 =

Ā1
22

ϵµint
, A2

22 =
Ā2

22

µint
. (23)

Next, we analyze the slow and fast dynamics of the singu-
larly perturbed system (22).

3.3 Slow Dynamics

To define the slow dynamics of the system (22), we fol-
low the standard approach of singular perturbation analysis
[19]. Setting ϵ = 0 in (22), we obtain that equation (22b)
degenerates into equation ξs(ts) = 0. Substituting this into
equation (22a), we obtain the slow dynamics as

dys
dts

= A11ys. (24)

where ys and ξs are the slow parts of the variables y and ξ,
respectively. Equivalently, since ts = ϵtf = ϵµintt, it yields,

ẏs(t) = (Im ⊗A)ys(t) + (Im ⊗B)us(t), (25)

where us(t) = −HKext(Lext⊗Inx)H̃ys(t). Notice that in
our setting the slow dynamics (25) represents the collective
behavior of the cluster and it may or may not be stable.

3.4 Fast Dynamics

Now, representing the dynamics (22) in fast time scale tf
and setting ϵ = 0, we have dyf/dtf = 0 and we obtain the
fast dynamics as follows,

dξf
dtf

= A2
22ξf . (26)

where yf and ξf are fast parts of the corresponding variable
in (22). The fast dynamics (26) in original time-scale t is

ξ̇f (t) = (In−m ⊗A)ξf (t) + (In−m ⊗B)uf (t), (27)

where uf (t) = −Kint
n−m(Λint ⊗ Inx

)ξf (t).

The fast dynamics (27) corresponds to the intra-cluster dy-
namics, and hence the dynamics are dominated by the inter-
nal gain and the eigenvalues of the intra-cluster Laplacian.
With the suitable choice of the internal gain Kint

k , the sys-
tem (27) is exponentially stable.

Remark 3 We note that the stabilization of the synchro-
nization error dynamics, i.e., the stabilization of dynamics
ξ implies the synchronization inside the cluster.

Note that we use slow (ts) and fast (tf ) time-scales for the
analysis while the original time-scale (t) for the control de-
sign. This is possible because the transformations are invert-
ible, and it can be verified by the definition of tf and ts.

6



3.5 Singular Perturbation Approximation

Now, we provide an approximation of the original system by
the reduced-order subsystems in the following theorem. The
proof follows from Theorem 5.1, [19]. But before stating the
result, we make the following assumption on the existence
of the control gains.

Assumption 3 There exists an internal gain Kint and an
external gain Kext such that the slow dynamics (25) is syn-
chronized and the fast dynamics (27) is stabilized.

Remark 4 Although we assume the existence of the syn-
chronizing internal and external gain, it will be ensured by
design in the next section that such gains exist.

Theorem 1 Let Kext be designed such that ∥A∥ ≤ c1µ
ext

with c1 > 0 and under Assumption 3, if Re λ(A2
22) < 0,

there exists a ϵ∗ > 0 such that, for all ϵ ∈ (0, ϵ∗], the original
system (22) starting from any bounded initial conditions y0
and ξ0, is approximated for all finite time t ≥ t0 by{

y = ys(ts) +O(ϵ)
ξ = ξf (tf ) +O(ϵ),

(28)

where ys ∈ Rm.nx and ξf ∈ R(n−m).nx are the respective
slow and the fast variables.
PROOF. See Appendix. ■

In the next section, we present the control design strat-
egy i.e., the design of gains Kint and Kext, to stabilize
the fast subsystems and synchronize the slow subsystems,
respectively.

4 Control Design Scheme

In this section, we present a controller design strategy for
system (19). Using the idea of timescale separation, we split
the design procedure into two parts corresponding to the
internal and the external control.

First, based on the fast dynamics (27) we design an internal
control using the local information that ensures the synchro-
nization inside the cluster. Then, we use the slow dynamics
(25) for the design of external control to achieve synchro-
nization between the clusters. While the internal controller
is optimal, the external control is designed to ensure the cost
is below a given threshold. Finally, Theorem 1 is used to
justify such a separation of the system analysis in two steps
and to approximate overall network behavior in terms of fast
and slow dynamics.

In what follows, we first address the internal control design
and give an analytical gain expression for the case of a com-
plete graph inside clusters. The fast dynamics obtained af-
ter the time-scale separation represent the synchronization
dynamics of an isolated cluster. Under assumption 2, this

dynamics can be further decoupled into subsystems corre-
sponding to each agent.

4.1 Internal (Fast) Control Design

As the fast variable ξf is an approximation of the synchro-
nization error ξ inside the clusters, it is still relevant to con-
sider the fast subsystems (27) for the internal control de-
sign. We denote by ξf,k ∈ R(nk−1).nx the component of
ξf : = (ξf,1, ..., ξf,m) corresponding to the k-th cluster. For
each cluster Ck, for k ∈M, we have the following dynamics{

ξ̇f,k(t) = (Ink−1 ⊗A)ξf,k(t) + (Ink−1 ⊗B)uf,k(t),

uf,k(t) = −(Λint
k ⊗Kint

k )ξf,k(t).

(29)
The cluster cost associated with the cluster Ck takes the form

Jf,k=

+∞∫
0

ξ⊤f,k(Λ
int
k ⊗ Inx)ξf,k + u⊤

f,k(Ink−1 ⊗Rk)uf,k dt .

(30)
Instead of considering the internal cluster cost (8), we ap-
proximate the internal cost by the cost function (30) and the
validity of the approximation is justified in the Theorem 2.

Recall that under Assumption 2, the eigenvalues of the in-
ternal Laplacian of the dense clusters are approximated by
nk for each k ∈ M i.e., Λint

k = nkInk−1 for each k ∈ M.
Thus, the matrices in equations (29) and (30) have block-
diagonal form and they can decoupled into nk − 1 inde-
pendent subsystems. For each cluster Ck, similarly to ξk
defined in equation (13), let us denote the fast subsystems
and the associated control by ξf,k: = (ξf,k,1, ..., ξf,k,nk−1)
and uf,k: = (uf,k,1, ..., uf,k,nk−1), respectively. Then, for
i = 1, ..., nk − 1 and for all k ∈M, the dynamics are{

ξ̇f,k,i(t) = Aξf,k,i(t) + nkBuf,k,i(t),

uf,k,i(t) = −Kint
k ξf,k,i(t),

(31)

and the associated individual cost is

Jf,k,i =

∫ +∞

0

nkξ
⊤
f,k,iξf,k,i + n2

ku
⊤
f,k,iRkuf,k,i dt . (32)

Thus, the cost (30) can be expressed as the sum of individual
costs (32) as follows, Jf,k =

∑nk−1
i=1 Jf,k,i, ∀k ∈M.

Remark 5 The decoupling of dynamics (29) into nk − 1
subsystems (31) is not only limited to the condition in As-
sumption 2. In the case, where we know the eigenvalues of
the Laplacian or the Laplacian eigenvalues can be char-
acterized in terms of nk (for example, star graph), similar
decoupling can be achieved.

Remark 6 It is noteworthy that the gain Kint
k is the same

for all the agents belonging to the same cluster Ck. As a
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result, the rewriting of (30) as a sum of individual cost
(32) reduces the computational effort for the control design.
Indeed, one can solve only one optimization problem (31)-
(32) for each cluster and it is equivalent to optimizing the
cluster cost (30).

Next, we show that the system (31) is stabilizable with a
simple linear controller, while we recall that the system (31)
corresponds to fast dynamics of our original system. Finally,
we apply the LQ-control [18] to stabilize (31) while mini-
mizing the cost (32).

Lemma 2 Consider the system (31), under assumption 1,
if the pair (A,B) is stabilizable and (A, (Rk)

1/2) is de-
tectable, then for every k ∈ M, the system (31) is sta-
bilizable while minimizing the cost (32) by a controller
uf,k,i(t) = −Kint

k ξf,k,i(t) with the gain

Kint
k =

R−1
k

nk
B⊤P int

k , k ∈M, (33)

where P int
k is the solution of the Algebraic Riccati Equation

(ARE)

P int
k A+A⊤P int

k − P int
k BR−1

k B⊤P int
k + nkInx = 0.(34)

From Lemma 2, we observe that the fast dynamics (31)
is exponentially stable i.e., ξf (t) → 0 as t → ∞. And
this implies synchronization inside the clusters, since, from
equation (15) we have ek = Z⊤

k ξf +O(ϵ). Now, we pass to
the design of the external controller.

4.2 External (Slow) Control Design

In this sub-section, we present the external controller design
based on the slow dynamics (25). To achieve the synchro-
nization between the clusters, we propose a method based on
[31]. First, the synchronization problem is transformed into
a stabilization problem using a change of variable. Then,
we design the control to stabilize the system while upper-
bounding the associated cost.

Recall that if the clusters are synchronized, the agents in
each cluster behave like a single node, and the number of
nodes representing the external network equals the number
of clusters. Thus, the external graph of agents between clus-
ters is only connected, and hence the standard optimization
or the optimal control approaches cannot be applied directly.
In this context, inspired by the notion in game theory, we
use the satisfaction equilibrium approach, and satisfaction
games [29]. A set of actions are said to be in satisfaction
equilibrium when the individual cost for each agent is upper-
bounded by a given threshold.

4.2.1 Average Dynamics

The slow dynamics obtained after time-scale separation in
equation (25) defines the dynamics of the average of each

cluster. Following from equation (25), the average dynamics
can be written as

ẏs(t) =((Im ⊗A)− (Im ⊗B)K
ext

(Lext ⊗ Inx))ys(t),
(35)

where K
ext

= diag (Kext
1 , ...,Kext

m ) is the external gain and

(Lext ⊗ Inx
) = H(Lext ⊗ Inx

)H̃ with the following form

Lext
=


∑m

l=2
aext
1l

n1
−aext

12

n1
. . . −aext

1m

n1

...
...

. . .
...

−aext
m1

nm
−aext

m2

nm
. . .
∑m−1

l=1
aext
ml

nm

 ∈ Rm×m,

is the average Laplacian matrix related to (35). In average
Laplacian, Lext

the diagonal elements represent the total
number of external connections from a cluster k ∈ M to
the rest of the network and the non-diagonal entries aextkl
represents the total number of connections between cluster
Ck and Cl.

Let us denote by ys,k ∈ Rnx the k-th component of the
variable ys. Then, the average dynamics of each cluster Ck,
for k ∈M, based on equation (35) is

ẏs,k = Ays,k +Buext
s,k ,

uext
s,k = −Kext

k

∑
l∈NCk

aext
kl

nk
(ys,k − ys,l)

(36)

where, uext
s,k can be viewed as the control on the cluster

level, since it represents the sum of the individual controllers.
For system (36) we define the average cost for each cluster
Ck, k ∈M, as

J
ext

k =

+∞∫
0

∑
l∈NCk

aextkl

nk
(ys,k−ys,l)2+nk

nk∑
i=1

ûext⊤
k,i Rkû

ext
k,i dt

(37)

where

ûext
k,i : = −Kext

k

∑
l∈NCk

aext(k,i)↔Cl

nk
(ys,k − ys,l) ∀i ∈ Ck,

(38)
and aext(k,i)↔Cl

is the total number of connections between
the i-th agent belonging to Ck and the cluster Cl and clearly
aext(k,i)↔Cl

≤ nk. The control ûext
k,i is the external control (6)

expressed in the average variable ys. In addition, we have
the relation uext

s,k =
∑nk

i=1 û
ext
k,i and aextkl =

∑nk

i=1 a
ext
(k,i)↔Cl

.

Notice that the average cost (37) is different from the external
cost function that appears in equation (8) in several ways:

• the average variable ys,k is used instead of the original
state variables xk for each cluster, and
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• although the clusters have merged into a single node, the
agents still apply the individual control (6) rather than the
average control (36). Thus, we express the individual ex-
ternal control (6) in average variables ys in equation (38)
and define the average cost (37) in terms of the original
control. It is possible to define the cost function as a func-
tion of average control uext

s,k as follows,

J
ext

k =

+∞∫
0

∑
l∈NCk

aextkl

nk
(ys,k − ys,l)

2 + uext
s,k

⊤
Rku

ext
s,k dt,

(39)
however, we remark that optimization of the average cost
does not necessarily imply optimization of individual cost.

In the following, we perform the change of variables to de-
sign an external gain synchronizing the network of clusters.

4.2.2 Change of Variables

To study the consensus between the clusters, we define the
external error variable for each cluster Ck. Let us define
Yk,l = (ys,l − ys,k), l ̸= k. Then the external error variable
for each cluster Ck, k ∈M is defined as

Yk: =
(
Y ⊤
k,1, . . . Y

⊤
k,k−1Y

⊤
k,k+1 . . . Y

⊤
k,m

)⊤
∈ R(m−1).nx .

(40)
Then, based on equation (40), the corresponding external
error dynamics is

Ẏk = AkYk +Bku
ext
s,k , ∀k ∈M,

where,

Ak = (Im−1 ⊗A)− (Im−1 ⊗B)K
ext

−k (L
ext

−k ⊗ Inx),

Bk = −(1m−1 ⊗B).

(41)

Here, K
ext

−k = diag(Kext
1 , . . . ,Kk−1,Kk+1, . . . ,Km) is not

a control action, but it represents the behavior of the network.

To recast the average cost function (37) in terms of new
variables Yk, we introduce the following notations. First we
look into the structure of the external Laplacian which have
the block form as follows,

Lext =


Lext
1,1 Lext

1,2 . . . Lext
1,m

Lext
2,1 Lext

2,2 . . . Lext
2,m

...
...

...

Lext
m,1 Lext

m,2 . . . Lext
m,m

 ∈ Rn×n, (42)

whereLext
p,q ∈ Rnp×nq for p, q ∈M. We denote byLext

k,row ∈
Rnk×n the k-th row of the block-matrix (42) for all k ∈M.
It describes the connections of the cluster Ck with the rest of
the agents in the network. The matrix Lext

k,red ∈ Rnk×(n−nk)

is obtained by removing the Lext
k,k block from the Lext

k,row.

For example, Lext
2,row = [Lext

2,1 Lext
2,2 . . . Lext

2,m] and Lext
2,red =

[Lext
2,1 Lext

2,3 . . . Lext
2,m]. Then, we rewrite the external cost

(37) in terms of new variables as

J
ext

k =

∫ +∞

0

Y ⊤
k Qext

k,1Yk + Y ⊤
k

Qext
k,2

nk
Yk dt (43)

where

Qext
k,1=

(
diag

(
aextk,1

nk
, ...,

aextk,k−1

nk
,
aextk,k+1

nk
, ...,

aextk,m

nk

)
⊗ Inx

)
,

Qext
k,2 = U⊤

−k(Lext⊤
k,redLext

k,red ⊗Kext⊤
k RkK

ext
k )U−k, (44)

U = (diag(1n1
, . . . ,1nm

)⊗ Inx
),

Rk > 0.

The matrices Qext
k,1 and Qext

k,2 simplify the expressions in

(37) such that Y ⊤
k Qext

k,1Yk =
∑

l∈NCk

aextkl

nk
(ys,k − ys,l)

2 and

Y ⊤
k

Qext
k,2

nk
Yk = nk

nk∑
i=1

ûext⊤
k,i Rkû

ext
k,i .

4.2.3 Control Design

We will use the error dynamics (41) to design the exter-
nal gain profile using the satisfaction equilibrium approach.
It characterizes the external gain profile synchronizing the
network in such a way that each cost (37) is bounded, i.e.,

J
ext

k ≤ γext∥Yk(0)∥2, for k ∈M. (45)

The term ∥Yk(0)∥ represents the initial condition of the clus-
ter Ck while γext is a given threshold. In particular, the fol-
lowing proposition is valid.

Proposition 1 (Prop 1, [31]) Let a gain profile K
ext

=
diag

(
Kext

1 , ...,Kext
m

)
be given. The following statements

are equivalent,

(1) The gain profile K
ext

is an SE of the satisfaction game
(41) for all k ∈M.

(2) For all k ∈ M, there exists a positive-definite matrix
P ext
k > 0 such that{

P ext
k Ak,cl(K

ext
k )+A⊤

k,cl(K
ext
k )P ext

k +Qext
k (Kext

k ) < 0,

P ext
k − γextI(m−1).nx

< 0,

(46)
where

Ak,cl(K
ext
k ) = Ak +BkK

ext
k (Fk ⊗ Inx),

Fk =
(

aext
k,1

nk
, ...,

aext
k,k−1

nk
,
aext
k,k+1

nk
, ...,

aext
k,m

nk

)
,

Qext
k =

(
Qext

k,1 +
Qext

k,2

nk

)
.

(47)
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Next, we present the algorithm that allows us to obtain
the gain (Kext) in satisfaction equilibrium. This algorithm
greatly reduces the computational effort of obtaining the
synchronizing gain for large-scale networks.

4.3 Algorithm

Consider a network of m clusters (the number of clusters
in our case) with their respective dynamics. We aim to de-
sign a synchronizing gain profile Kext = (Kext

1 , ...,Kext
m )

satisfying the cost constraints.

In the following algorithm, we first calculate the internal gain
by solving the algebraic Riccati equation (34). To design the
external gain (Kext), we start with the initial gain profile
that satisfies the LMI (46). Then we multiply the gain from
the previous iteration with a scalar αext ∈ R+ \ {0} and
check if it satisfies the LMI (46), to obtain the sub-optimal
gain. One approach could be to start with a high gain and
decrease αext until the condition (46) is not satisfied and
use the smallest gain that satisfied the condition.

Furthermore, we should also make sure the network param-
eter ϵ is small so that the control design using time-scale
separation holds. Thus, to ensure this, we multiply the in-
ternal gain Kint

k with ϵ/ϵ∗ to obtain the new internal gain
such that ϵ ≤ ϵ∗.

Algorithm 1 Sequential Satisfaction Algorithm
Data: A,B and nk, k ∈M;
Set: iterations itr = 1, maximum number of it-
erations itrmax, 0 < ϵ∗ ≪ 1 and Kext(0) =
(Kext

1 (0), ...,Kext
m (0)) initial gain profile synchronizing

the system ;
Calculate: P int

k and Kint
k using equation (34) and (33)

for all k ∈M, respectively;
while LMIs (46) not satisfied OR itr ≤ itrmax do

Kext(itr + 1)← αextKext(itr), αext ∈ R+ \ {0};
Calculate: ϵ;
if ϵ > ϵ∗ then
Kint

k (itr + 1)← ϵ
ϵ∗K

int
k (itr);

else
Kint

k (itr + 1)← Kint
k (itr);

end if
end while

Remark 7 Notice that with such an approach, we only scale
the whole matrix Kint

k and Kext
k on each step while keeping

the structure of the matrix intact.

In the algorithm 1, to obtain the initial gain profile Kext(0)
we use the algorithm in [3] which has the computational
complexity ofO(m) for m clusters. Then, the computational
complexity to obtain the internal gain is of order O(m).
Notice that the dimension of the matrix P int

k in equation
(34) does not depend on the number of agents (nk) in the
cluster, thus the problem of finding the internal control Kint

k

is independent of the number of agents in the cluster. To
obtain the external gain, Kext we use the SeDuMi [20]. The
computational complexity of verifying, if the gain profile
satisfies the LMI condition (50) using SeDuMi is O(m5.5).
Thus, the overall computational complexity of the Algorithm
1 is O(m) + O(m) + O(m5.5). Moreover, from Lemma
2 we obtain the stabilizing internal gain Kint and if the
algorithm successfully converges to synchronizing external
gain (Kext) that satisfies LMI conditions (46), then they will
satisfy the Assumption 3.

5 Global System Analysis

In this section, we analyze the overall networked system with
the controller gains Kint and Kext defined by the Algo-
rithm 1 and designed for reduced slow and fast subsystems.
First, we present the proposition which ensures that the slow
and fast controllers, designed independently of each other,
synchronize the overall network. And finally, we prove that
the cluster cost Jk(T,+∞) is approximated only by the ex-
ternal cost Jext

k (T,+∞), where T > 0 is a finite time at
which each cluster has reached internal synchronization.

5.1 Overall Network Behavior

Based on the controller design procedure presented in the
section 4, we ensure that the Assumption 3 is satisfied i.e.,
the internal gain stabilizing the fast dynamics and the exter-
nal gain synchronizing the slow dynamics exist. Note that the
presented design strategy optimizes the cost function (30)
associated with the internal controller and upper bound the
cost function (37) corresponding to the external controller.
Hence, the obtained internal control gain is optimal while
the external control gain is sub-optimal. Now, we apply these
gains to achieve synchronization in the overall network, and
the following proposition ensures synchronization.

Proposition 2 Consider the closed-loop network dynamics
(18) and let the internal and external control gains be cho-
sen based on Lemma 2 and Proposition 1, then the overall
network synchronizes and satisfies the following bounds,

y(t) = ys(t) +O(ϵ)
ξ(t) = ξf (µ

intt) +O(ϵ).
(48)

PROOF. The proof follows from Theorem 2. ■

5.2 Cost Approximation

In this subsection, we prove that the cluster cost can be
approximated by the average cost after finite time T . The
motivation is derived from the fact that the internal dynamics
converge rapidly to the consensus, and external dynamics
exhibit the dominating network behavior. We prove that for
the time t ∈ [T,+∞), the cluster cost Jk is approximated
by nk times the average external cost, i.e., nkJ

ext

k .
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To provide this approximation result, we first define the inter-
nal error bound, which helps us characterize the time T > 0.
And secondly, we ensure that the exponential stability of the
fast dynamics (27) implies the exponential stability of the
error dynamics (19).

The necessity of the internal error bound arises in the ap-
proximation of the cluster cost. During the control design,
we recall that the internal consensus is considered to be
achieved before designing the external control. Thus, we
need to characterize an error bound for the internal cost in
finite time T , at which the cluster is very close to the inter-
nal consensus. More precisely, the bound at the time T > 0
such that |ξf,k(T )| ≤ ϵ for all k ∈M.

The closed-loop fast dynamics is

ξ̇f,k(t) =
(
(Ink−1 ⊗A)− (Λint

k ⊗BKint
k )

)
ξf,k(t),

and
ξf,k(t) = eClf,ktξf,k(0),

where Clf,k :=
(
(Ink−1 ⊗ A) − (Λint

k ⊗ BKint
k )

)
and

Clf,k < 0 due to Lemma 2. Now, taking norm on both sides
and from the definition of the measure of the matrix (see
notations and preliminaries for definition), we obtain,

∥ξf,k(t)∥ = eν(Clf,k)t∥ξf,k(0)∥ ≤ eν(Clf )t∥ξf,k(0)∥

where ν(Clf ) = max
k∈M

ν(Clf,k). Then, as an internal error

bound, we choose smallest T ≥ 0 such that

∥ξf,k(T )∥ ≤ eν(Clf )Tmax
k∈M

∥ξf,k(0)∥ ≤ ϵ.

This bound characterizes the local consensus inside each
cluster in the finite time T . And hence, it yields

∥ξf,k(t)∥ ≤ ϵeν(Clf )(t−T ) ∀k ∈M,

and
∥ξf (t)∥ ≤ ϵ

√
n−m.eν(Clf )(t−T ). (49)

Next, in equation (28), we notice that the approximation of
ξ defined in equation (19) depends on the fast variable ξf
and the slow variable ys, but the slow variable may or may
not be stable. For the network to achieve synchronization,
ξ should be stable. Thus, we prove the following lemma,
which ensures the exponential stability of ξ provided that ξf
is exponentially stable.

Lemma 3 The exponential stability of the fast dynamics
(27) and the external error dynamics (41) implies the expo-
nential stability of the error dynamics in (19).

PROOF. See Appendix. ■

Next, with error bound for a finite time, T we present the
cluster cost approximation for t ∈ [T,+∞). The proposi-
tion is stated as follows:

Proposition 3 During the time interval [T,+∞), the fol-
lowing approximation holds,

Jk(T,+∞) = nkJ
ext

k (T,+∞) +O(ϵ), ∀k ∈M. (50)

PROOF. See Appendix. ■

Finally, we present the following theorem that bounds the
total cluster cost with the sum of internal, external and the
constant term.

Theorem 2 The total cluster cost for all clusters Ck, k ∈M
satisfy the following bound:

Jk ≤ (∥P int
k ∥+ nkγk + Ck)∥x(0)∥2 +O(ϵ) (51)

where P int
k is the solution of the Riccati equation (34) and

Ck is a constant.

PROOF. See Appendix. ■

6 Simulation

This section provides numerical results to illustrate the ef-
fectiveness of the control procedure and the cost approxima-
tion using three scenarios. The agent’s dynamics are given
by (1), where

A =

(
0.15 0.98

−0.98 0.15

)
, B =

(
1

1

)
. (52)

The external graph between the agents in different clusters
is generated using Erdos-Renyi [14] random graph genera-
tor. Then the internal graph with all-to-all connections for
each cluster is generated and added to the external graph to
obtain the network graph. For the numerical illustration, we
consider the multiple scenarios.

• Scenario 1: Graph G1 with 4 clusters with 630 agents.
The clusters are labeled C1, . . . , C1 and number of agents
in each cluster are given in Table 2. Each cluster has all-
to-all internal connections and 299 external connections
between the clusters in total. The threshold for the external
cost is γext = 0.8.

• Scenario 2: Same as Scenario 1 with dense internal con-
nections instead of all-to-all internal connections.

• Scenario 3: Comparison of control design presented in
this paper with the satisfactory control approach in [31]
and guaranteed cost approach proposed in [3].

The details of the simulations are present in Tables 2 - 5. In
the tables, nk represent the number of agents in cluster Ck,

Ek =
|Jk−nkJ

ext

k |
Jk

× 100, is the error percentage between
the total cost and the external cost after time T , and Kext

and Kint are the respective external and internal gains.
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6.1 Scenario 1: All-to-all connections in Clusters

In this scenario, we consider complete clusters and the val-
ues of the internal & external gains and the parameter ϵ cal-
culated using the Algorithm 1, are presented in Table 1. The
network G1 synchronizes upon applying these gains and it
is shown in Figure 2. We can observe the four branches ap-
pearing and merging into one and each branch represents
the local agreement within the clusters. Next, Figure 3 il-
lustrates the cost approximation for the cluster C4 by com-
paring the total cluster cost J4 and the external cost n4J̄

ext
4 ,

after finite time T = 2s.

Fig. 2. Evolution of the error between the agents’ state in graph
G1 with all-to-all connections inside clusters.

2 4 6 8 10 12 14

0

1

2
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4

5

6

7
10

4

Fig. 3. Evolution of the costs J4 and n4J̄
ext
4 with all-to-all con-

nections inside clusters.

6.2 Scenario 2: Connected Clusters

In this scenario, we consider the graph (G2) where the clus-
ters have dense interconnections. The graph for each cluster
in the graph (G2) is generated using ErdosRenyi [14] ran-
dom graph generator with the average number of connec-
tions for each agent in the respective cluster denoted by Cavg

Clusters Kint Kext

C1 [1.5352,−0.1102] [0.85, 0.16]

C2 [1.5349,−0.1114] [1.17, 0.22]

C3 [1.5346,−0.1128] [0.59, 0.11]

C4 [1.5344,−0.1137] [1.05, 0.2]

Table 1
Internal and External gains due to Algorithm 1.

ϵ = 0.06, γext = 0.8

nk Jk(×105) Ek

C1 120 0.8966 0.45%

C2 140 0.5768 0.86%

C3 170 1.8950 0.24%

C4 200 0.6405 0.65%

Table 2
Simulation results for the network with complete (all-to-all) con-
nections inside each cluster.

in Table 3. However, the number of agents and the number
of external connections remain the same as in the graph G1.
The same gains from Scenario 1 (Table 1) are applied to the
network system with the graph G2. The cost associated with
the gain in Table 1 is presented in Table 3. We can see that
due to the change in the network structure (Scenario 2), the
synchronization cost has changed as shown in Table 3.

nk Cavg Jk(×105) Ek

C1 120 96 0.8983 0.64%

C2 140 115 0.5780 1.07%

C3 170 145 1.8975 0.37%

C4 200 174 0.6415 0.81%

Table 3
Simulation results for the network with connected clusters.

6.3 Scenario 3

In the last scenario, we consider a network of m = 4 clusters
with nk = 10 agents in each. We recall that γext = 0.8 is
chosen for both controls. A comparison is made between the
composite control proposed in this paper and the satisfactory
control approach proposed in [31]. The design procedure
in [31] needs 13752 seconds (3.8 hours) to compute the
gains for n = 40 agents, while the composite design in
this paper requires 13 seconds. However, we can observe an
incontestable difference in performance on the cluster costs
due to satisfactory control, as shown in table 4.

Next, we present a comparison with the algorithm in [3] that
designs an identical control gain for all the agents, indepen-
dently of the graph and aims to bound a global cost. Conse-
quently the computational burden of the composite control
is O(m) times the computational burden of the algorithm
in [3]. Although the comparison of the the algorithm in [3]
with the composite control is not fair since they apply in

12



C1 C2 C3 C4

nk 10 10 10 10

Jk 17204 5452 6943 16949

J∗
k 10164 3303 3080 9714

Table 4
Comparison of cost with the satisfactory control algorithm in [31].

different setups we give here a few elements. For a network
of 630 nodes and 4 clusters the computational time due to
the algorithm in [3] and the composite control in this paper
are 0.3 and 33 seconds, respectively and the cost associated
are present in Table 5. It shows that increased computational
effort results in much better costs. On the other hand, the
algorithm in [31] proposes the design of different control
gains for every single agent, but the computational burden
is much higher than the one required for our composite con-
trol. Basically, the computational effort is multiplied with
n/m in [31] with respect to the composite control ones. We
conclude that taking advantage of the clustered structure of
the network leads to a good trade-off between the computa-
tional complexity and the closed-loop performances.

C1 C2 C3 C4

nk 120 140 170 200

Jk(×106) 0.385 0.269 0.689 0.262

J†
k(×106) 6.7 8.1 16.7 20.5

Table 5
Comparison of the cost with the same gain algorithm in [3].

7 Conclusion

In this paper, we propose a distributed composite control de-
sign strategy for the clustered network. Using a coordinate
transformation, the network dynamics is transformed into
standard singular perturbation form and decoupled into slow
and fast dynamics using time-scale separation. This decou-
pling of the network dynamics also decouples the control
into fast (internal) and slow (external). The internal con-
trol is responsible for intra-cluster synchronization, while
the external synchronizes the network while satisfying the
imposed cost criterion. This independent design greatly re-
duces the computational effort required to obtain the con-
trol. Finally, we show that the cluster cost is approximated
only by the external cost after a short time period.
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[3] J. Ben Rejeb, I-C. Morărescu, and J. Daafouz. Guar-
anteed cost control design for synchronization in net-
works of linear singularly perturbed systems. In 2017
IEEE 56th Annual Conference on Decision and Con-
trol (CDC), pages 1602–1607, 2017.

[4] J. Bleibel, M. Habiger, M. Lütje, F. Hirschmann,
F. Roosen-Runge, T. Seydel, F. Zhang, F. Schreiber,
and M. Oettel. Two time scales for self and collec-
tive diffusion near the critical point in a simple patchy
model for proteins with floating bonds. Soft Matter,
14:8006–8016, 2018.

[5] A. M. Boker, T. R. Nudell, and A. Chakrabortty. On
aggregate control of clustered consensus networks.
In 2015 American Control Conference (ACC), pages
5527–5532, 2015.

[6] F. Borrelli and T. Keviczky. Distributed lqr design
for identical dynamically decoupled systems. IEEE
Transactions on Automatic Control, 53(8):1901–1912,
2008.

[7] R. L. Breiger, S. A. Boorman, and P. Arabie. An algo-
rithm for clustering relational data with applications to
social network analysis and comparison with multidi-
mensional scaling. Journal of Mathematical Psychol-
ogy, 12(3):328–383, 1975.

[8] E. Bıyık and M. Arcak. Area aggregation and time-
scale modeling for sparse nonlinear networks. Systems
& Control Letters, 57(2):142–149, 2008.

[9] J. Chow and P. Kokotovic. A decomposition of near-
optimum regulators for systems with slow and fast
modes. IEEE Transactions on Automatic Control,
21(5):701–705, 1976.

[10] J. Chow and P. Kokotovic. Time scale modeling of
sparse dynamic networks. IEEE Transactions on Au-
tomatic Control, 30(8):714–722, Aug 1985.

[11] J. H. Chow, Ed. Time-scale modeling of dynamic net-
works with applications to power systems. Lecture
Notes in Control and Information Sciences, 1982.

[12] G. De Pasquale and M. E. Valcher. Consensus for
clusters of agents with cooperative and antagonistic
relationships. Automatica, 135:110002, 2022.

[13] A. S. Dolby and T. C. Grubb Jr. Benefits to satellite
members in mixed-species foraging groups: an exper-
imental analysis. Animal behaviour, 56(2):501–509,
1998.
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A Proofs

Proof of Lemma 1
We know from [21] ∥(A⊗ B)∥ = ∥A∥∥B∥ for any matrix A ∈
Rn×n, B ∈ Rm×m. In addition, ∥H∥ = 1√

n
, ∥H̃∥ =

√
n̄ and

∥Z∥ = 1√
n

, ∥Z̃∥ =
√
n̄. It follows that,

∥Ā11∥ = ∥(Im ⊗A)−H(In ⊗B)Kext(Lext ⊗ Inx)H̃∥
≤ ∥A∥+ ∥H∥.∥(In ⊗B)Kext(Lext ⊗ Inx)∥.∥H̃∥
= (c1 +

√
n̄
n
)µext = c2µ

ext = c2ϵµ
int.

(A.1)
The bounds of Ā12, Ā21 and Ā1

22 are derived similarly, that’s why
we only prove for Ā12,

∥Ā12∥ = ∥H(In ⊗B)Kext(Lext ⊗ Inx)Z̃∥
≤

√
n̄
n
µext ≤ c2µ

ext ≤ c2ϵµ
int.

(A.2)

Then, we lower-bound the matrix Ā2
22 such that

∥Ā2
22∥ = ∥(In−m ⊗A)− (In−m ⊗B)Kint

n−m(Λint ⊗ Inx)∥

≥
∣∣∣∥A∥ − ∥(In−m ⊗B)Kint

n−m(Λint ⊗ Inx)∥
∣∣∣. (A.3)

From (21), we understand that the second term in (A.3) is much
larger than the first one. Thus, by taking the difference between
the largest value of the first term and the smallest value of the
second term, it yields a lower-bound as

∥Ā2
22∥ ≥ |c1ϵµint − µint| = |1− c1ϵ|µint ≈ µint (A.4)

since ϵ ≪ 1.

Proof of Theorem 1
The proof follows the reasoning in Theorem 5.1, Chapter 2, [19].
In [19], via similarity transformation, the authors express and
decouple the original slow and fast variables into the approxi-
mated variables. The singularly perturbed system dynamics (22)
is slightly different from the one in the [19]. Thus, we adapt the
result from [19] to our system model to obtain the approximation
results. The similarity transformations [19] for the decoupling of
the dynamics (19) arey
ξ

 =

Im.nx ϵΨ(ϵ)

−Ω(ϵ) Inx(n−m) − ϵΩ(ϵ)Ψ(ϵ)

ys
ξf


ys
ξf

 =

Im.nx − ϵΨ(ϵ)Ω(ϵ) −ϵΨ(ϵ)

Ω(ϵ) Inx(n−m)

y
ξ

 , (A.5)

where the functions Ω and Ψ should satisfy the following,

R(Ω(ϵ), ϵ) = ϵA21 − ϵA1
22Ω(ϵ)−A2

22Ω(ϵ)

+ϵΩ(ϵ)A11 − ϵΩ(ϵ)A12Ω(ϵ) = 0,

S(Ψ(ϵ), ϵ) = ϵA11Ψ(ϵ) +A12 − ϵA12Ω(ϵ)Ψ(ϵ)

−ϵΨ(ϵ)A1
22 −Ψ(ϵ)A2

22 − ϵΨ(ϵ)Ω(ϵ)A12 = 0.
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The approximation of Ω and Ψ, obtained with the Taylor devel-
opment w.r.t. ϵ, are

Ω(ϵ) = ϵ(A2
22)

−1A21 +O(ϵ2),

Ψ(ϵ) = A12(A
2
22)

−1+ ϵ((A2
22)

−1A11A12(A
2
22)

−1 −A12)

+O(ϵ2).

(A.6)
From Lemma (3), we know that ξ(t) and ξf (tf ) converge to zero
exponentially as t and tf tend to +∞, respectively. Thus, we can
claim that Ω(ϵ)ys(t) has an exponential decrease to zero w.r.t. t.
Finally, from the above transformation (A.5), we have,

y = ys(ts) + ϵΨ(ϵ)ξf (A.7)
ξ = ξf (tf )− Ω(ϵ)ys(ts)− ϵΩ(ϵ)Ψ(ϵ)ξf . (A.8)

Then from (A.6), we have that Ω(ϵ) = O(ϵ) and we obtain the
approximations (28).

Proof of Lemma 3
Integrating the error dynamics in (19), we obtain

ξ(t) = eĀ22tξ(0) +
∫ t

0
eĀ22(t−τ)Ā21y(τ) dτ

= eĀ22tξ(0) +
∫ t

0
eĀ22(t−τ)Ā21(ys(τ) + ϵΨ(ϵ)ξf (τ)) dτ

= eĀ22tξ(0) +
∫ t

0
eĀ22(t−τ)ZTMY (τ) dτ

+ϵ
∫ t

0
eĀ22(t−τ)Ā21Ψ(ϵ)ξf (τ) dτ

where M = diag(M1, ...,Mm) and Mk = (Lext
k,red ⊗

BKext
k )U−k. By taking norms on both sides, we have

∥ξ(t)∥ ≤ ∥eĀ22t∥∥ξ(0)∥+ ∥ZTM∥
∫ t

0
∥eĀ22(t−τ)∥∥Y (τ)∥dτ

+ϵ∥Ā21Ψ(ϵ)∥
∫ t

0
∥eĀ22(t−τ)∥∥ξf (τ)∥ dτ

(A.9)
Also, from the design of internal and external control, we know
that, for all t ≥ 0, Y (t) = eAcltY (0)

ξf (t) = eĀ
2
22tξf (0)

⇒

 ∥Y (t)∥ ≤ eν(Acl)t∥Y (0)∥
∥ξf (t)∥ ≤ eν(Ā

2
22)t∥ξf (0)∥

(A.10)
Acl = diag(A1,cl, ...,Am,cl) is the closed-loop dynamics of the
external error (41). Then, it follows that

∥ξ(t)∥ ≤ eν(Ā22)t∥ξ(0)∥
+∥ZTM∥∥Y (0)∥

∫ t

0
eν(Ā22)(t−τ)eν(Acl)τ dτ

+ϵ∥Ā21Ψ(ϵ)∥∥ξf (0)∥
∫ t

0
eν(Ā22)(t−τ)eν(Ā

2
22)τ dτ .

By integrating the second term in (A.9), we have

∥ZTM∥∥Y (0)∥
∫ t

0
eν(Ā22)(t−τ)eν(Acl)τ dτ

= ∥ZTM∥∥Y (0)∥eν(Ā22)t
∫ t

0
e(ν(Acl)−ν(Ā22))τ dτ

= ∥ZTM∥∥Y (0)∥
ν(Acl)−ν(Ā22)

[
eν(Acl)t − eν(Ā22)t

]
.

In the same manner, the third term is

ϵ∥Ā21Ψ(ϵ)∥∥ξf (0)∥
∫ t

0

eν(Ā22)(t−τ)eν(Ā
2
22)τ dτ

=
ϵ∥Ā21Ψ(ϵ)∥∥ξf (0)∥
ν(Ā2

22)− ν(Ā22)

[
eν(Ā

2
22)t − eν(Ā22)t

]
. (A.11)

Finally, we have

∥ξ(t)∥ ≤ C1e
ν(Acl)t + ϵC2e

ν(Ā2
22)t

+ (∥ξ(0)∥ − C1 − ϵC2) e
ν(Ā22)t,

(A.12)

where C1 = ∥ZTM∥∥Y (0)∥
ν(Acl)−ν(Ā22)

and C2 =
∥Ā21Ψ(ϵ)∥∥ξf (0)∥
ν(Ā2

22)−ν(Ā22)
. More-

over, we know that ν(Ā2
22) < ν(Ā22) < ν(Acl) < 0. Thus, we

conclude that ξ converges exponentially to zero and the rate of
convergence can be bounded as

∥ξ(t)∥ ≤ ∥ξ(0)∥eν(Acl)t. (A.13)

Proof of Proposition 3
The cost Jk is split into the sum of the internal and external costs
and composite term, as shown in equation (8). Then, we bound
the internal and external costs from time T to infinity. We proceed
similarly with the composite term.
Internal Cost: Substituting xk = H̃kyk + Z̃kξk from equation
(16) into J int

k in equation (8) and with H̃⊤
k (Lint

k ⊗ Inx) = 0, it
yields

J int
k (T,+∞) =

∫ +∞
T

ξ⊤k Z̃k((Lint
k ⊗ Inx)

+(Lint⊤
k Lint

k ⊗Kint⊤
k RkK

int
k ))Z̃kξk dt,

=
∫ +∞
T

nkξ
⊤
k

(
(Λint

k ⊗ Inx)

+

(
Λint

k
2 ⊗ P int⊤

k B
R−1

k

n2
k
B⊤P int

k

))
ξk dt,

=

∫ +∞

T

nkξ
⊤
k

(
(Λint

k ⊗ Inx)

+
(
Ink−1 ⊗ P int⊤

k BR−1
k B⊤P int

k

) )
ξk dt,

≤ C3,k

∫ +∞
T

∥ξk∥2 dt ≤ C3,k

∫ +∞
T

∥ξ(t)∥2 dt .
where
C3,k =∥nk

(
(Λint

k ⊗ Inx) +
(
Ink−1 ⊗ P int⊤

k BR−1
k B⊤P int

k

))
∥.

From Lemma 3 and equation (A.13), we have ∥ξ(t)∥ ≤
∥ξ(T )∥eν(Acl)(t−T ), for all t ∈ [T,+∞). Thus, with ν(Acl) < 0,
we have,∫ +∞

T

∥ξ(t)∥2 dt ≤ −∥ξ(T )∥2

2ν(Acl)
= C4∥ξ(T )∥2 (A.14)

where C4 :=
(
− 1

2ν(Acl)

)
. Thus, from (A.14)-(A.14) and the

approximation of ξ in equation (28),

J int
k (T,+∞) ≤ C3,kC4∥ξf (T ) +O(ϵ)∥2

≤ C3,kC4

(
∥ξf (T )∥2 + 2O(ϵ)∥ξf (T )∥+O(ϵ2)

)
.

Finally, replacing ∥ξf (T )∥ ≤ ϵ
√
n−m from (49) we have

J int
k (T,+∞) ≤ O(ϵ2). (A.15)

External cost: First, we recast the collective external control (6)
in the external error variable Yk, as follows

uext
k (t) = −(Ink ⊗Kext

k )(Lext
k,row ⊗ Inx)x(t)

= −(Lext
k,row ⊗Kext

k )(H̃y(t) + Z̃ξ(t))

= −(Lext
k,row ⊗Kext

k )(H̃ys(t) + ϵH̃Ψ(ϵ)ξf (tf ) + Z̃ξ(t))

= (Lext
k,red ⊗Kext

k )U−kYk(t)

− (Lext
k,row ⊗Kext

k )(ϵH̃Ψ(ϵ)ξf (tf ) + Z̃ξ(t)),
(A.16)
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where Lext
k,row is the k-th block-row of Lext and Lext

k,red is obtained
by removing the Lext

k,k block from Lext
k,row. Then, it yields

uext
k

⊤
(t)(Ink ⊗Rk)u

ext
k (t) (A.17)

= Y ⊤
k (t)Qext

k,2Yk(t) + ϵ2ξ⊤f (tf )D1,kξf (tf ) + ξ⊤(t)D2,kξ(t)

−ϵY ⊤
k (t)D3,kξf (tf )− Y ⊤

k (t)D4,kξ(t) + ϵξ⊤(t)D5,kξf (tf ),

where

Qext
k,2 = U⊤

−k(Lext⊤
k,redLext

k,red ⊗Kext⊤
k RkK

ext
k )U−k,

D1,k = Ψ(ϵ)⊤H̃⊤(Lext⊤
k,rowLext

k,row ⊗Kext⊤
k RkK

ext
k )H̃Ψ(ϵ),

D2,k = Z̃⊤(Lext⊤
k,rowLext

k,row ⊗Kext⊤
k RkK

ext
k )Z̃,

D3,k = 2U⊤
−k(Lext⊤

k,redLext
k,row ⊗Kext⊤

k RkK
ext
k )H̃Ψ(ϵ),

D4,k = 2U⊤
−k(Lext⊤

k,redLext
k,row ⊗Kext

k
⊤
RkK

ext
k )Z̃,

D5,k = 2Z̃⊤(Lext⊤
k,rowLext

k,row ⊗Kext
k

⊤
RkK

ext
k )H̃Ψ(ϵ).

Secondly, let’s consider the state part of the external cost. To
simplify the expression, we use (Lext

k ⊗Inx)H̃ys(t) = −(Lext
k,col⊗

Inx)U−kYk(t) where Lext
k,col is the matrix Lext

k with its k-th block-
column removed. Then, we obtain

x⊤(t)(Lext
k ⊗ Inx)x(t)

= ⋆⊤(Lext
k ⊗ Inx)(H̃ys(t) + ϵH̃Ψ(ϵ)ξf (tf ) + Z̃ξ(t))

= nkY
⊤
k (t)Qext

k,1Yk(t) + ϵ2ξf (tf )
⊤M1,kξf (tf )

+ξ⊤(t)M2,kξ(t)− ϵY ⊤
k (t)M3,kξf (tf )− Y ⊤

k (t)M4,kξ(t)

+ϵξ⊤(t)M5,kξf (tf )

(A.18)
where 

M1,k = Ψ(ϵ)⊤H̃⊤(Lext
k ⊗ Inx)H̃Ψ(ϵ)

M2,k = Z̃⊤(Lext
k ⊗ Inx)Z̃

M3,k = 2U⊤
−k(Lext⊤

k,col ⊗ Inx)H̃Ψ(ϵ)

M4,k = 2U⊤
−k(Lext⊤

k,col ⊗ Inx)Z̃

M5,k = 2Z̃⊤(Lext
k ⊗ Inx)H̃Ψ(ϵ).

Then, replacing (A.17) and (A.18) into the external cost (Jext
k ) in

equation (8), we get

Jext
k (T,+∞)

= nk

∫ +∞

T

Y ⊤
k (t)Qext

k,1Yk(t) + Y ⊤
k (t)

Qext
k,2

nk
Yk(t) dt+∆1

= nkJ
ext
k (T,+∞) + ∆1, (A.19)

where ∆1 = ∆1
1 +∆2

1 +∆3
1 +∆4

1 +∆5
1 and

∆1
1 = ϵ2

∫ +∞
T

ξf (tf )
⊤ (M1,k +D1,k) ξf (tf ) dt,

∆2
1 =

∫ +∞
T

ξ⊤(t) (M2,k +D2,k) ξ(t) dt,

∆3
1 = −ϵ

∫ +∞
T

Y ⊤
k (t) (M3,k +D3,k) ξf (tf ) dt,

∆4
1 = −

∫ +∞
T

Y ⊤
k (t) (M4,k +D4,k) ξ(t) dt,

∆5
1 = ϵ

∫ +∞
T

ξ⊤(t) (M5,k +D5,k) ξf (tf ) dt .

(A.20)

∆1
1 ≤ ϵ2∥M1,k +D1,k∥

∫ +∞
T

∥ξf (tf )∥2 dt

≤ −ϵ2
∥M1,k+D1,k∥∥ξf (0)∥2

2ν(Ā2
22)

e2ν(Ā
2
22)T = O(ϵ2).

∆2
1 ≤ C3,k∥M2,k+D2,k∥

∫ +∞
T

∥ξ(t)∥2∥ξ(T )∥2 dt
≤ C3,k∥M2,k+D2,k∥

(
∥ξf (T )∥2+2O(ϵ)∥ξf (T )∥+O(ϵ2)

)
≤ O(ϵ2).

∆3
1 ≤ ϵ∥M3,k+D3,k∥∥Y (0)∥∥ξf (0)∥

∫ +∞
T

eν(Acl)teν(Ā
2
22)t dt

= −ϵ
∥M3,k+D3,k∥∥Y (0)∥∥ξf (0)∥

ν(Acl)+ν(Ā2
22)

e(ν(Acl)+ν(Ā2
22))T = O(ϵ).

Similarly, ∆4
1 and ∆5

1 are of order O(ϵ). Finally, from (A.19) and
bounds in (A.20) for ∆1, we obtain

Jext
k (T,+∞) = nkJ̄

ext
k (T,+∞) +O(ϵ). (A.21)

Composite term: We rewrite the external control (A.16) and the
internal control (6) as

uext
k (t) = −C5,kYk(t)− ϵC6,kξf (tf )− C7,kξ(t)

uint
k (t) = (Lint

k ⊗Kint
k )Z̃kξk(t) =: C8,kξk(t). (A.22)

where C5,k = (Lext
k,red ⊗ Kext

k )U−k, C6,k = (Lext
k,row ⊗

Kext
k )H̃Ψ(ϵ) and C7,k = (Lext

k,row ⊗ Kext
k )Z̃. Then, taking the

norm and substituting from equations (A.22) into the Jcross
k term

in equation (8), we get,

Jcross
k (T,+∞) ≤ 2∥Rk∥

∫ +∞
T

∥uext
k

⊤
(t)∥∥uint

k (t)∥ dt

≤ 2∥Rk∥
+∞∫
T

∥C5,kYk(t) + ϵC6,kξf (tf ) +C7,kξ(t)∥.

∥C8,kξk(t)∥dt
(A.23)

With a simple calculation, it can be shown that the first integral in
the above equation is of order O(ϵ) and the second and the third
integrals are of order O(ϵ2). Thus, we have,

Jcross
k (T,+∞) ≤ O(ϵ). (A.24)

Finally, from (8), (A.15), (A.21) and (A.24), we conclude the
proof.

Proof of Theorem 2
Internal Cost: Following the similar approximation as the ap-
proximation of the internal cost in Proposition 3, we obtain the
following approximation for the internal cost for

J int
k = nkJf,k +O(ϵ) (A.25)

Moreover, due to LQ-control design, the optimal fast cost Jf,k =
ξf,k(0)

⊤(Ink−1 ⊗ P int
k )ξf,k(0). The substituting the approxi-

mation ξk = ξf,k + O(ϵ), we get, Jf,k = ξk(0)
⊤(Ink−1 ⊗

P int
k )ξk(0)+O(ϵ). Then, from the transformation (13), it yields,

J int
k = nk.xk(0)

⊤Z⊤
k (Ink−1 ⊗ P int

k )Zkxk(0) +O(ϵ)

= xk(0)
⊤(Ink ⊗ P int

k )xk(0) +O(ϵ)

≤ ∥P int
k ∥∥xk(0)∥2 +O(ϵ). (A.26)

External Cost: Substituting xk = H̃y + Z̃ξ in the external cost
Jext
k in equation (8), and performing the similar operation as in

the approximation of the external cost in Proposition 3, we obtain,

Jext
k ≤ nkJ

ext
k +Π1 +O(ϵ) (A.27)
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with

Π1 = 2
+∞∫
0

ξ⊤Z̃⊤((Lext
k ⊗ Inx)+

(Lext
k,row

⊤Lext
k,row ⊗Kext

k
⊤
RkK

ext
k )

)
H̃y dt

+
+∞∫
0

ξ⊤
(
Z̃⊤(Lext

k ⊗ Inx)

+(Lext
k,row

⊤Lext
k,row ⊗Kext

k
⊤
RkK

ext
k )Z̃

)
ξ dt .

(A.28)

Furthermore, substituting (Lext
k ⊗ Inx)H̃ys = −(Lext

k,col ⊗
Inx)U−kYk and (Lext

k,row ⊗ Inx)H̃ys = −(Lext
k,red ⊗ Inx)U−kYk

in equation (A.28) and taking the norm we have,

Π1 ≤ C9,k∥x(0)∥2 +O(ϵ) (A.29)

where C9,k := C4∥Z∥
(
∥Yk(0)∥∥2Z̃⊤((Lext

k,col ⊗ Inx) +

(Lext
k,row

⊤Lext
k,red⊗Kext

k
⊤
RkK

ext
k )

)
U−k∥+∥

(
Z̃⊤(Lext

k ⊗Inx)+

(Lext
k,row

⊤Lext
k,row ⊗Kext

k
⊤
RkK

ext
k )Z̃

)
C4

)
.

Cross Term: Substituting from equation (A.22) and from The-
orem 1 into the cross term in equation (8) and after further
calculation, we get,

Jcross
k ≤ 2∥Rk∥∥C5,k∥∥C8,k∥∥C4∥∥Yk(0)∥∥Z∥∥x(0)∥

+2∥Rk∥∥C7,k∥∥C8,k∥∥C4∥∥Z∥2∥x(0)∥2 +O(ϵ)

By definition of the variable Yk in equation (40), it satisfies ∥Yk∥ ≤√
nk∥H∥∥x(0)∥+O(ϵ) and substituting it in the above equation

leads to
Jcross
k ≤ C10,k∥x(0)∥2 +O(ϵ), (A.30)

where C10,k := 2∥Rk∥∥C8,k∥∥C4∥
(√

nk∥H∥∥C5,k∥ +

∥C7,k∥∥Z∥
)
∥Z∥. Then from equation (8), (A.26), (A.27), (A.29)

and (A.30), we have,

Jk ≤ ∥P int
k ∥∥xk(0)∥2 + nkJ

ext
k + Ck∥x(0)∥2 +O(ϵ)

where Ck := (C9,k + C10,k). Moreover, we have ∥Yk(0)∥ ≤
∥x(0)∥2 +O(ϵ) and substituting from equation (45),

Jk ≤ ∥P int
k ∥∥xk(0)∥2 + nkγk∥x(0)∥2 + Ck∥x(0)∥2 +O(ϵ)

≤ (∥P int
k ∥+ nkγk + Ck)∥x(0)∥2 +O(ϵ). (A.31)
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