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Abstract

We consider a set of individuals, referred to as agents, whose opinions evolve according to nonlinear dynamics. Their opinions
impact their behavior or actions, which in turn affect their local environment (for example, via pollution, contamination of a virus,
etc.). Each agent can also perceive or observe a signal about the environment, and is influenced by this external signal. This yields
a coupled dynamics (opinion and external signal), which behaves in a similar manner to the prey-predator models. One of the
main features of our study is that the information provided by the external signal has a significant impact on the opinion dynamics.
When the coupling is strong, the external signal may induce either chaotic behavior or convergence towards a limit cycle. When the
coupling with the external signal is weak, the classical behavior characterized by local agreements in polarized clusters is observed.
In both cases, conditions under which clusters of individuals don’t change their actions are provided. Numerical examples are
provided to illustrate the derived analytical results.
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1. Introduction

Opinion dynamics (OD) over social networks is a topic that
has received increasing attention during the last few decades.
One effective way to model OD under social interactions is
through multi-agent systems formalism. Several OD models
exist, and they can be split in different ways. The first one
assumes that opinions evolve in a discrete set of values [1, 2]
while others consider that opinions lie in a continuous set of val-
ues [3, 4, 5, 6]. While some models naturally lead to consensus
[5, 7], others yield network clustering [3, 4, 6, 8]. A common
feature of all the models enumerated above is that each individ-
ual has access to the exact opinion values of its neighbors. This
assumption is not realistic, and to overcome it, a mix of con-
tinuous opinion with discrete actions (CODA) was proposed in
[9]. This model reflects the fact that even if we often face bi-
nary choices or actions that are visible to our neighbors, our
opinion evolves in a continuous space of values that are not ac-
cessible. A consensus-like dynamics reproducing this behavior
has been proposed and analyzed in [10] where the preservation
and propagation of actions are also characterized through the
notion of robust polarized clusters. While the model in [10]
led to a clustering of the network, a similar idea was employed
in [11] to study the emergence of consensus under quantized
all-to-all communication.

In this paper, we analyze the behavior of a slightly general-
ized CODA model coupled with the dynamics of an external
environmental state, which represents, in this work, the atmo-
spheric pollution levels. It is noteworthy that our results can
be adapted to other scenarios in which the external signal de-
scribes virus contamination or marketing instances. The usage

of the CODA model for opinion dynamics is justified by two
important social features: 1) individuals may have access to an
inexact/quantized perception of the opinion of their neighbors,
2) the extremists are more stubborn and their opinion is more
difficult to change. Many models have been developed to char-
acterize the atmospheric pollution dynamics[12]. One of the
popular modeling approaches is based on the half-life decom-
position of polluting compounds (see, for instance, [13, 14]).
Generally, the time constants of the processes depend on the
chemical compound considered [14, 15] and the dynamics may
be cumbersome. Since our focus is not on the precise modeling
of this process, we use a simple linear pollution model to de-
scribe the evolution of the environmental air pollution. In this
model, the state of the environment depends on the states (cap-
turing the environmental behavior) of the individuals, which in
turn are influenced both by the states of their neighbors and
the external signal (pollution level). The coupling of the two
dynamics leads to a complex asymptotic behavior that can be
summarized as follows: When the coupling between the dy-
namics is weak, one recovers the asymptotic behavior similar
to the CODA model in [10] or to [16]. A strong coupling be-
tween the two dynamics hampers the convergence towards a
steady state and yields either chaotic oscillation or convergence
towards a limit cycle. It is noteworthy that even in the simpli-
fied case, when all the agents have the same initial opinion, the
strong coupling with the external dynamics hampers the conver-
gence toward a steady state and may lead to chaotic oscillations.
As shown in the sequel, our model behaves as a prey-predator
model where the predators thrive when the prey thrive, but this
leads to the decline of the prey, which in turn yields the decline
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of the predators [17, 18].
We point out that the idea of coupling environment dynamics

and population behavior is not new, it has been mainly studied
in the framework of evolutionary games [19, 20, 21]. While
these studies also emphasize similar oscillatory asymptotic be-
havior, they employ different tools and the insights are different.
For example, in [19, 20, 21] the propagation of the informa-
tion is homogeneous (the entire population gets the same in-
formation) and the oscillations are induced by the time-varying
proportion of the population adopting one of the two possible
strategies. In our case, the information propagates through a
graph of individuals with different stubbornness and the oscil-
lations are induced by the pollution level that triggers different
social behaviors.

The main contributions of this paper are: i) the introduc-
tion of a mathematical model capturing the coupling between
a nonlinear opinion dynamics model and an external signal; ii)
the analysis of the asymptotic behavior of the aforementioned
model. Those contributions follow from the work initiated in
[22]. Note that both the opinion dynamics and the pollution dy-
namics models are inspired by existing works in the literature.

The paper is structured as follows: Section 2 introduces the
main notions and concepts necessary to describe the mathemat-
ical model that is analyzed in the sequel. Characteristics of
equilibrium and asymptotic behavior are analyzed in Section 3.
Section 5 numerically highlights various setups leading to dif-
ferent asymptotic behaviors. The manuscript ends with Section
6 which presents concluding remarks about the work.

In the following, R and R≥0 denote the set of real numbers
and non-negative real numbers, respectively. We will use the
notation for the identity matrix I ∈ RN×N when there is no am-
biguity. For the specific case of dimension n ∈ N, we denote
the identity matrix as In ∈ Rn×n. The scalar identity function
is denoted as Id : R → R, where Id(x) = x. Moreover, we
denote by 1 the all-ones vector and by 0 the null vector in RN

when there is no ambiguity, and for the n-dimensional cases,
1n and 0n respectively. In the sequel, for i ∈ V, ei denotes
the i-th element of the canonical basis of RN . For a function
f : X → X, we denote by Fix( f ) ⊂ X the set of fixed points of
f , i.e., Fix( f ) := {x ∈ X | f (x) = x}.

2. Problem formulation and preliminaries

We consider the classical multi-agent framework in which N
individuals/agents belonging to the set V = {1, . . . ,N} and in-
teracting according to a fixed directed graph G = (V,E) which
does not contains loop. We denote by A ∈ R+N×N its adja-
cency matrix, such that Ai j = 1 if (i, j) ∈ E and 0 otherwise, by
D ∈ RN×N its degree matrix and by L ∈ RN×N where L = D−A
the associated Laplacian. The neighborhood of the agent i is
denoted by Ni and represents the set of agents that influence i
according to the graph G (i.e j ∈ Ni ⇔ ( j, i) ∈ E). We de-
note by ni the cardinality of Ni. Let us also recall that a path in
G is a finite sequence of edges (i1, i2), (i2, i3), . . . , (ip, ip+1) such
that (ik, ik+1) ∈ E for all k ∈ {1, . . . , p}. Two vertices i, j ∈ V
are connected in G if there exists a path in G joining i and j

(i.e. i1 = i and jp = j). Finally, a directed graph G is strongly
connected if any two nodes inV are connected.

At each time instant k ∈ N we assign to each agent i ∈ V
an opinion θi(k) ∈ Θ := [−1, 1] that evolves according to the
discrete-time protocol defined further in (2). We also introduce
θ(k) = (θi(k))i∈V ∈ Θ := [−1, 1]N the vector collecting the opin-
ions of all the agents at time k. Note that θi(k) is an abstraction
which is closer to −1 when the individual i is more convinced
to have a pro-environmental behavior and closer to 1 when the
individual does not care about the environment and behaves ac-
cordingly. We assume that the only information from the neigh-
bors is the behavior/action captured by the monotonically in-
creasing function sθ : Θ → Θ as a proxy of θi and verifying
sθ (−1) = −1 and sθ (1) = 1. Let us denote sθ (θ) = (sθ (θi))i∈V.

Remark 1. Note that sθ can be the identity function meaning
that the agents can access the actual opinions of their neigh-
bors. The other extreme case is when sθ is when the sign func-
tion in which the agents can only detect if the neighbors are
above or below the average of the eco-responsibility. More-
over, the intermediate situation is also possible with sθ being a
smooth sigmoid function like sθ(θ) = 2 arctan(mθ/(1 − θ2))/π
with m ∈ N a parameter allowing to change the steepness of
the curve.

We assume that the opinion of agent i at time k induces a
behavior generating certain emissions, which are captured by
the increasing function E : Θ → [emin, emax] where 0 < emin <
emax are the minimum and maximum emissions, respectively.
For simplicity, we note the emission of agent i at time k with
E (θi(k)). Also, we denote by E (θ) = (E (θi))i∈V the vector of
emission of all the agents.

The state of the environment is characterized by another ab-
straction, p ∈ R≥0, that captures the pollution state under the
emission of the overall network of individuals. To keep things
simple, we assume that the pollution evolves according to the
following discrete-time dynamics:

p(k + 1) = (1 − γ) p(k) +
N∑

i=1

E(θi(k))

= (1 − γ) p(k) + 1⊤E(θ(k)), (1)

where γ ∈ (0, 1) is an autonomous decay rate. This dynamics is
taken as a simplification of equation (2) of [14].

We also assume that individuals cannot observe p accurately,
instead, they can perceive an output of the environmental dy-
namics defined by the function sp : R → Θ. The output sp

of the air pollution is relative to a deviation from a threshold
denoted p̄ ∈ R≥0. Basically, the population will perceive a pol-
luted environment if p > p̄ and will have the feeling that air is
healthy otherwise. The function sp is increasing with respect to
the difference p̄− p and such that sp (q) = 0 if and only if q = 0.

We also state the following standing assumption:

Standing Assumption 1. For γ ∈ (0, 1) such as in (1), we have
Nemin/γ < p̄ < Nemax/γ.
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This assumption allows us to exclude the case when the ex-
ternal signal has no significant influence on the opinion dynam-
ics. When this assumption is not satisfied the analysis reduces
to the OD dynamics, as even when all the agents are polluting
(or not), the air pollution signal remains below (or above) the
threshold. Further details on this case can be found in [22].

We are now ready to describe the OD model that we consider
in this work. This dynamics adapts the CODA model in [10]
and [16] to include the external dynamics of p(k):

θi(k + 1)= θi(k) +
(
1 − θi(k)2

) [
β
(
sp(p̄ − p(k)) − θi(k)

)
+ (1 − β)

1
ni

∑
j∈Ni

(
sθ(θ j(k)) − θi(k)

)]
, (2)

where 0 < β < 1 encapsulates the trade-off between the external
signal and the neighbors’ behavior on the opinion evolution.

Noting the state as x(k) = (θ(k), p(k)), we can rewrite (1) and
(2) in the collective form as:

x(k + 1) = F (x(k)) =
(
u (θ(k), p(k))
v (θ(k), p(k))

)
, (3)

where the functions are,

u (θ, p) = θ +
(
I − diag (θ)2

)
( f (θ, p) − θ) ,

v (θ, p) = (1 − γ) p + 1⊤E (θ) ,

and

f (θ, p) = βsp(p̄ − p)1 + (1 − β) D−1 Asθ (θ) .

Having established the foundational dynamics model, we
now turn to a detailed analysis of its behavior.

3. Analysis of the general case

This section delves into an analysis of the model’s dynamics,
beginning with the characterization of equilibria in the general
case and incorporating results that exploit the graph structure.
Subsequently, we examine the stability of certain equilibrium
points located at the extremes of the state space. Additionally,
we explore scenarios involving fully synchronized opinions and
study the system’s equilibria under piece-wise linear signals.

But first, the following general invariance result can be
stated.

Lemma 1. The compact set X = Θ ×
[
Nemin/γ,Nemax/γ

]
is

forward invariant under the dynamics (3). i.e. ∀x ∈ X, F(x) ∈
X.

Proof. Note that f (θ, p) is the convex combination of two vec-
tors in Θ. Thus, for all (θ, p) ∈ Θ × R≥0 and for any i ∈ V one
obtains,

−1 ≤ e⊤i f (θ, p) ≤ 1⇔ −1 − θi ≤ e⊤i f (θ, p) − θi ≤ 1 − θi,

which implies:

−1 ≤ e⊤i u(θ, p) ≤ 1⇔ u (θ, p) ∈ Θ.

Furthermore, for any θ ∈ Θ, the inequality Nemin < E(θ) <
Nemax holds. Then, for any (θ, p) ∈ X, one has,

Nemin

γ
< p <

Nemax

γ

⇔ (1 − γ)
Nemin

γ
+ Nemin < v(θ, p) < (1 − γ)

Nemax

γ
+ Nemax

⇔
Nemin

γ
< v(θ, p) <

Nemax

γ
.

Therefore, for any x ∈ X, it follows that F(x) ∈ X.

This Lemma ensures the forward invariance of the compact
set X under the dynamics (3), meaning that for every trajectory
(x(k))k∈N such that there exists a k ∈ N with x(k) ∈ X, then
for all l ∈ N, it follows that x(k + l) ∈ X. Additionally, it can
be observed that X is attractive with respect to the environment
dimension, meaning that for any x(0) ∈ Θ × R≥0, there exists a
time k ∈ N such that x(k) ∈ X.

3.1. Characterization of equilibria
We start with the characterization of the equilibria of (3) i.e.,

the points x∗ such that x∗ = F (x∗) or x∗ ∈ Fix (F). Before
introducing the following result let us define the instrumental
function g : Θ→ Θ such that

g (θ) = βsp

(
p̄ −

1⊤E (θ)
γ

)
1 + (1 − β) D−1 Asθ (θ) . (4)

Proposition 1. Let x∗ = (θ∗, p∗) be an equilibrium point of the
dynamics (3). Then x∗ =

(
θ∗, 1⊤E (θ∗) /γ

)
such that θ∗ ∈ F

with

F =
{
(θi)i∈V ∈ Θ | ∀i ∈ V, θi ∈ {−1, 1} or θi = e⊤i g (θ)

}
. (5)

Proof. Assuming that x∗ is an equilibrium of (3) it is straight-
forward to see from (1) that

p∗ = v (θ∗, p∗)⇔ p∗ = (1 − γ) p∗+1⊤E (θ∗)⇔ p∗ =
1⊤E (θ∗)
γ

.

Injecting the expression of p∗ into the equation θ∗ = u (θ∗, p∗),
one obtains,

u
(
θ∗,

1⊤E (θ∗)
γ

)
− θ∗ = 0.

Which is equivalent to,(
I − diag(θ∗)

) (
I + diag(θ∗)

)
×(

βsp

(
p̄ −

1⊤E (θ∗)
γ

)
1 + (1 − β) D−1 Asθ (θ∗) − θ∗

)
︸                                                             ︷︷                                                             ︸

= g (θ∗) − θ∗

= 0.

Thus, the equilibria x∗ = (θ∗, p∗) are the point such that p∗ =
1⊤E (θ∗) /γ and θ∗ verify(

I − diag(θ∗)
) (

I + diag(θ∗)
)

(g (θ∗) − θ∗) = 0
⇔∀i ∈ V, e⊤i

(
I − diag(θ∗)

) (
I + diag(θ∗)

)
(g (θ∗) − θ∗) = 0

⇔∀i ∈ V, (1 − θi) (1 + θi) e⊤i (g (θ∗) − θ∗) = 0

⇔∀i ∈ V, (1 − θi) (1 + θi)
(
e⊤i g (θ) − θi

)
= 0,

which is equivalent to θ∗ ∈ F .

3



Proposition 1 provides a condition that must be satisfied by
equilibria of the system (3) and, by extension, the set of all
equilibria of the dynamics (3).

Remark 2. It is noteworthy that Fix(g) ⊂ F . Indeed, to ensure
the existence of a nontrivial equilibrium (neither −1 nor 1), it
is sufficient to ensure that Fix(g) , ∅.

The following lemma ensures the existence of fixed points
for g under signal continuity, thereby establishing the existence
of a nontrivial equilibrium for the dynamics (3).

Lemma 2. Let sp and sθ be continuous functions. Then, the
function g : Θ→ Θ from (4) has at least one fixed point on Θ.

Let us note that Θ is convex and compact (recall that Θ =
[−1, 1]N) and g : Θ → Θ is continuous. Then, this lemma is a
direct consequence of Brouwer’s fixed point theorem [23].

Keeping in mind that a classical solution that received a lot of
attention in opinion dynamics is the consensus or synchroniza-
tion of opinions, it is natural to consider this particular situation
in the sequel.

Let us note s̃p(θ) : Θ → Θ, the function such that s̃p(θ) =
sp ( p̄ − NE (θ) /γ).

Lemma 3. Let θ∗ ∈ Fix (sθ) ∩ Fix
(
s̃p

)
. Then, the vector x∗ =(

θ∗, 1⊤E(θ∗)/γ
)

where θ∗ = θ∗1 is a nontrivial equilibrium of
(3). Moreover, if sp is continuous, then

∣∣∣Fix (sθ) ∩ Fix
(
s̃p

) ∣∣∣ ≤ 1.

Proof. By definition, E : Θ → R and sp : R → Θ

are non-decreasing in their argument, yielding that p(θ) =
sp ( p̄ − NE (θ) /γ) is a non-increasing function in θ. Since
s̃p : Θ→ Θ is decreasing, it has at most one fixed point. Indeed
by contradiction, assuming that x, y ∈ Fix

(
s̃p

)
such that x < y,

then one has x = s̃p(x) > s̃p(y) = y which is a contradiction.
Moreover, adding the assumption that s̃p is continuous and us-
ing Brouwer’s fixed-point theorem [23] yields the existence of a
fixed point. Thus, the fixed point of s̃p is unique under continu-
ity assumption and one has

∣∣∣∣Fix (sθ) ∩ Fix
(
s̃p

)∣∣∣∣ ≤ ∣∣∣∣Fix
(
s̃p

)∣∣∣∣ =
1.

Assuming Fix (sθ) ∩ Fix
(
s̃p

)
being non-empty, let θ ∈

Fix (sθ) ∩ Fix
(
s̃p

)
and let θ = θ1. From Proposition 1, for

θ to be an equilibrium, it needs to verify (5). If θ ∈ {−1, 1} this
condition is immediately met. But it is noteworthy that with the
Standing Assumption 1 such points cannot be fixed point of s̃p

and thus −1, 1 < Fix (sθ) ∩ Fix
(
s̃p

)
. If instead, θ ∈ (−1, 1), θ

has to be a fixed point of g and rewriting g(θ) − θ yields

g (θ) − θ = β
(
s̃p (θ) − θ

)
+ (1 − β)

(
D−1 Asθ (θ) − θ1

)
= β (θ − θ) 1 + (1 − β) θD−1 (A1 − D1)

= − (1 − β) θD−1L1.

But the all-ones vector 1 is an eigenvector of the Laplacian ma-
trix with eigenvalue 0, one has − (1 − β) θD−1L1 = 0.

Keeping in mind the particular case where the signals of
opinions between neighbors are the opinions themselves, we
can formulate the following remark.

Remark 3. If sθ = Id, lemma 3 states that θ∗ ∈ Fix
(
s̃p

)
is a suf-

ficient condition for x∗ = (θ∗1,NE (θ∗) /γ) to be an equilibrium
of dynamics (3).

It is then natural to ask if θ ∈ Fix (sθ) ∩ Fix
(
s̃p

)
is a necessary

condition for consensus to be an equilibrium of dynamics (3).
Let us note, the scalar version of g as g : Θ → Θ such that
g = βs̃p + (1 − β) sθ. The following proposition reply to this
question by proving that, indeed, the consensus is only attained
at a fixed point of g.

Proposition 2. Let x∗ =
(
θ∗, 1⊤E(θ∗)/γ

)
be an equilibrium of

(3) such that ∃θ∗ ∈ (−1, 1) and θ∗ = θ∗1. Then θ∗ ∈ Fix (g).

Proof. We have the following equivalences

g (θ∗) = θ∗

⇔ βsp

(
p̄ −

1⊤E(θ∗)
γ

)
1 + (1 − β) D−1 Asθ (θ∗) = θ∗

⇔ βsp

(
p̄ −

1⊤E(θ∗)
γ

)
1 + (1 − β) sθ (θ∗)+

(1 − β)
(
D−1 Asθ (θ∗) − sθ (θ∗)

)
= θ∗

⇔ βsp

(
p̄ −

NE(θ∗)
γ

)
1 + (1 − β) sθ (θ∗) 1

− (1 − β) sθ (θ∗) D−1L1 = θ∗1

⇔ βsp

(
p̄ −

NE(θ∗)
γ

)
+ (1 − β) sθ (θ∗) = θ∗

⇔ g (θ∗) = θ∗ ⇔ θ∗ ∈ Fix
(
βs̃p + (1 − β) sθ

)
.

Now, if sθ = Id, combining Remark 3 and Proposition 2
yields that consensus must be at fixed points of s̃p, i.e. the
vector x∗ = (θ∗1,NE (θ∗) /γ) is a equilibrium of dynamics (3)
if and only if θ∗ ∈ Fix

(
s̃p

)
. The next Proposition goes further

by stating that dynamics (3), in case of linear signaling dynam-
ics over a connected graph, has a unique equilibrium which is a
consensus.

Proposition 3. Let G be a strongly connected graph and
sθ = Id. Then dynamics (3) has a unique equilibrium with-
out extreme opinions given by x∗ = (θ∗1,NE (θ∗) /γ) such that
θ∗ ∈ Fix

(
s̃p

)
.

Proof. As stated above, combining Lemma 3 and Proposition
2, we know that x∗ is one equilibrium of (3). To prove it is
unique, let assume that θ∗ is a fixed point of g, then

g (θ∗) = θ∗ ⇔ βsp

(
p̄ −

1⊤E(θ∗)
γ

)
1 + (1 − β) D−1 Aθ∗ = θ∗

⇔ sp

(
p̄ −

1⊤E(θ∗)
γ

)
1 −

1 − β
β

D−1Lθ∗ = θ∗.

In [24], it is shown that for any strongly connected graph, the
associated Laplacian matrix L has eigenvalue 0 with multiplic-
ity 1. Taking v the left eigenvector of L associated with the
eigenvalue 0. Multiplying by v⊤D, on the left side the equation
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above yields,

v⊤D
(
sp

(
p̄ −

1⊤E(θ∗)
γ

)
1 −

1 − β
β

D−1Lθ∗
)
= v⊤Dθ∗

⇔ sp

(
p̄ −

1⊤E(θ∗)
γ

)
v⊤D1 −

1 − β
β

v⊤DD−1Lθ∗ = v⊤Dθ∗

⇔ sp

(
p̄ −

1⊤E(θ∗)
γ

)
=

v⊤Dθ∗

v⊤D1
.

This allows us to rewrite,

g (θ∗) = θ∗ ⇔ β
v⊤Dθ∗

v⊤D1
1 + (1 − β) D−1 Aθ∗ = θ∗

⇔ β
1v⊤D
v⊤D1

θ∗ + (1 − β) D−1 Aθ∗ = θ∗

⇔

[
I −

(
β

1v⊤D
v⊤D1

+ (1 − β) D−1 A
)]
θ∗ = 0.

This linear map can now be seen as the Laplacian matrix of a
new strongly connected, positively weighted graph. Indeed, the
matrix 1v⊤D/v⊤D1 can be interpreted as the adjacency matrix
of a uniformly positively weighted all-to-all graph, with self-
loops for each agent. Moreover, performing a convex combina-
tion of this new graph with the strongly connected, positively
weighted influence graph D−1 A results in a strongly connected
graph. Finally, the degree matrix of this new graph is the iden-
tity matrix I since, ∀i ∈ V, one has

e⊤i

(
β

1v⊤D
v⊤D1

+ (1 − β) D−1 A
)
= β + 1 − β = 1.

Since the resulting mapping is a Laplacian matrix of a
strongly connected graph, it is well known that its kernel is
reduced to {α1 | α ∈ R}. Therefore, the only fixed point of
g is θ∗ ∈ {α1 | α ∈ R} ∩ Fix(s̃p), i.e., θ∗ = θ∗1 such that
θ∗ ∈ Fix(s̃p).

We note that Proposition 3 highlights a situation in which all
the opinions reach a common value. It basically says that if each
individual has access to the exact opinions of its neighbors in a
strongly connected graph, they will reach a consensus. More-
over, the consensus value is determined by the external signal
coupled with the opinion dynamics.

From now on, we denote by gi(θ) := e⊤i g(θ) for any i ∈ V.
We note that equilibrium may depend not only on the signal
function but also on the topology of the graph. Particularly,
when symmetry of observation between neighbors arises, we
can formulate the following result.

Proposition 4. Let x∗ = (θ∗, p∗) be a nontrivial equilibrium
point of the dynamic (3) and let i, j ∈ V such that i , j. Then
if Ni ∩ N j = Ni \ { j} = N j \ {i}, then we have θ∗i = θ

∗
j .

Proof. If x∗ is a nontrivial equilibrium of (3), one has g(θ∗) =
θ∗ yielding, for i and j ∈ V,gi(θ∗) − θ∗i = 0

g j(θ∗) − θ∗j = 0
⇔

gi(θ∗) − θ∗i = 0
gi(θ∗) − θ∗i = g j(θ∗) − θ∗j

.

The second equation in the system above is rewritten as:

(1 − β)
n

(
e⊤j A − e⊤i A

)
sθ (θ∗) = θ∗j − θ

∗
i ,

where n = ni = n j the numbers of neighbors of i and j.
Let us note that ∀k ∈ V, e⊤k A is the vector with the com-

ponent related to the neighbors of k equal 1 and all the others
equal 0. If Ni = N j, we have e⊤i A = e⊤j A and the result be-
came obvious. If i and j are neighbors, i.e. j ∈ Ni and i ∈ N j,
one has Ni , N j but Ni ∩ N j = Ni \ { j} = N j \ {i}. In this
case, e⊤i A − e⊤j = e⊤j A − e⊤i . We proceed by contradiction and
assume that θ∗i , θ

∗
j , without loss of generality, we can assume

that θi < θ j. Now, the equation becomes

(1 − β)
n

(
e⊤i − e⊤j

)
sθ (θ∗) = θ∗j − θ

∗
i

⇔
(1 − β)

n

(
sθ

(
θ∗i

)
− sθ

(
θ∗j

))
= θ∗j − θ

∗
i .

Since sθ is monotonically increasing we obtain a contradiction.
Indeed, the left-hand side is non-positive while the right-hand
side is strictly positive. This is a contradiction, which implies
that we must have θ∗i = θ

∗
j .

Proposition 4 says that, at equilibrium, and for any
monotonous increasing signaling function, two different agents
with identical observation will have the same opinions. A direct
consequence of this proposition is that if the graph is all-to-all,
then the nontrivial equilibrium point corresponds to consensus.

3.2. Stability analysis of equilibria

In the following, we will assume that sθ, sp, and E are dif-
ferentiable functions. From Proposition 1, the Jacobian of F is
given by

J(θ, p) =

∂u(θ, p)
∂θ

−βs′p (p̄ − p) (I − diag (θ)2)1
∇E(θ)⊤ 1 − γ

 , (6)

with

∂u(θ, p)
∂θ

= I − 2diag (θ) diag ( f (θ, p) − θ)+(
I − diag (θ)2

) [
(1 − β) D−1 A diag

(
s′θ (θ)

)
− I

]
.

We have seen earlier that some equilibria of the dynamics
can contain extreme values in opinion, i.e. for such equilibrium
it exists i ∈ V, θi ∈ {−1, 1}. The following proposition states
that such equilibria are unstable.

Theorem 1. Let x∗ = (θ∗, p∗) be an equilibrium point of the
dynamics (3), G be a strongly connected graph and sθ, E and sp

be differentiable functions in θ∗ and p̄ − p∗, respectively. Then,
if it exists i ∈ V such that θ∗i ∈ {−1, 1}, then x∗ is an unstable
equilibrium.
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Proof. Let x∗ = (θ∗, p∗) be an equilibrium of (3) such that
there exists i ∈ V with θi ∈ {−1, 1}. By permutation of the
index, we can assume without loss of generality that i = 1, i.e.
θ∗1 ∈ {−1, 1}. Isolating the opinion of agent 1 in the Jacobian
matrix given by (6), one can rewrite this Jacobian as the follow-
ing block matrix

J(θ, p) =
[
J11(θ, p) J12(θ, p)
J21(θ, p) J22(θ, p)

]
,

with J11 ∈ R being scalar, J12, J⊤21 ∈ RN being N-vector and
J22 ∈ RN×N being a N-square matrix. Noting that θ∗1 ∈ {−1, 1},
one obtains

J11(θ∗,
1⊤E (θ∗)
γ

) = 1 + 2θ∗1
2 − 2θ∗1g1(θ∗) = 3 − 2θ∗1g1(θ∗).

Moreover, non-diagonal elements of ∂u(θ, p)/∂θ are weighted
by I − diag (θ∗)2 and, since θ∗1 ∈ {−1, 1}, the first row of (6) is
null except on its first coordinate yielding,

J12(θ∗,
1⊤E (θ∗)
γ

) =
[
0 · · · 0

]
= 0N

⊤.

By the properties of the determinant of block-triangular matri-
ces, the characteristic polynomial PJ of J is given by

PJ(X) = det (IN+1X − J) = det (X − J11) det (IN X − J22) .

Then, λ = J11(θ∗, 1⊤E (θ∗) /γ) = 3 − 2θ∗1g1(θ∗) is one of the
eigenvalues of the Jacobian matrix (6). Now, either θ∗ = ±1 or
there exists j ∈ V such that θ∗1 , θ

∗
j . In the first case, one has

∣∣∣e⊤1 D−1 Asθ (θ∗)
∣∣∣ =

∣∣∣∣∣∣∣∣ 1
n1

∑
j∈N1

sθ
(
θ∗j

)∣∣∣∣∣∣∣∣ = 1.

Then, for θ∗ = −1,

λ = 3 + 2
(
βs̃p(−1) − (1 − β)

)
= 1 + 2β

(
1 + s̃p(−1)

)
.

From Standing Assumption 1, we have p̄ > Nemin/γ and since
sp(p) = 0 only if p = 0, one has s̃p(−1) > 0. Moreover, noting
that 0 < β, yields,

λ = 1 + 2β
(
1 + s̃p(−1)

)
> 1.

Then, if θ = −1, at least one eigenvalues of (6) evaluated at x∗
is strictly greater than 1. Then, by the linearisation principle, x∗
is unstable.

If θ∗ = 1, similar reasoning apply noting that, since p̄ <
Nemax/γ, one has s̃p(1) = sp ( p̄ − Nemax/γ) < 0 and then

λ = 3 − 2
(
βs̃p(1) + (1 − β)

)
= 1 + 2β

(
1 − s̃p(1)

)
> 1.

Again, the linearisation principle implies that, if θ∗ = 1 then x∗
is unstable.

If θ∗ is neither −1 nor 1, there exists j ∈ V such that θ j , θ1.
Without loss of generality let j ∈ N1. Indeed, since the graph
is connected and θ∗ , ±1, there exists at least one i ∈ V with
θ∗i ∈ {−1, 1} such that there ∃ j ∈ Ni verifying θ∗j , θ

∗
i . By

permutation of the labeling, one can assume there ∃ j ∈ N1
such that θ∗j , θ

∗
1. Now, one has,

∣∣∣e⊤1 D−1 Asθ (θ∗)
∣∣∣ =

∣∣∣∣∣∣∣∣ 1
n1

∑
j∈N1

sθ
(
θ∗j

)∣∣∣∣∣∣∣∣ < 1,

and since 0 < β < 1, we have

|g1 (θ∗)| =

∣∣∣∣∣∣βsp

(
p̄ −

1⊤E (θ∗)
γ

)
+ (1 − β) e⊤1 D−1 Asθ (θ∗)

∣∣∣∣∣∣
≤ β

∣∣∣∣∣∣sp

(
p̄ −

1⊤E (θ∗)
γ

)∣∣∣∣∣∣ + (1 − β)
∣∣∣e⊤1 D−1 Asθ (θ∗)

∣∣∣ < 1.

We have then,

λ = 3 − 2θ∗1g1 (θ∗) ≥ 3 − 2 |g1 (θ∗)| > 1.

To conclude, if ∃i ∈ V such that θ∗i ∈ {−1, 1}, the Jacobian
evaluated in this point J (θ∗, p∗) has at least one eigenvalue of
modulus strictly greater than 1 and thus this equilibrium is un-
stable.

The theorem states that, under Assumption 1, for a strongly
connected graph, every equilibrium where at least one agent
holds an extreme opinion is unstable. This implies that if opin-
ions are allowed to spread freely, perturbing agents with ex-
treme opinions will cause them to doubt and shift toward a less
extreme stance.

It is important to emphasize that this result requires the as-
sumption of strong connectivity in the graph. For example, if
the graph G has an isolated disconnected agent, an equilibrium
in which all the other (connected) agents reach consensus at
some non-extreme opinion with the single agent holding the
opposing extreme opinion can be locally asymptotically stable.

4. Analysis of the Fully Synchronized Opinions (FSO) case

In this section, we consider that the opinion dynamics
evolves much faster than the air pollution state. Consequently,
in the sequel the following condition holds true.

Assumption 1. There exists a time-scale separation between
the fast variation of θ and the slow variation of p.

Based on the Assumption 1 we can use the standard approach
in [25] to decouple the overall dynamics into the reduced order
model and the boundary layer one. We recall that the boundary
layer system evolves on the fast time scale and assumes that the
slow variable is constant. In this case, under some regularity
condition of signal sθ, the opinions will converge to a consensus
as proven in the next result.

Proposition 5. Under Assumption 1, let sθ be a k-Lipschitz
function with k < 1/ (1 − β). Then, for any p ∈ R≥0 the func-
tion θ 7→ f (θ, p) has a unique fixed point in Θ given by θ∗1
with θ∗ = Fix

(
θ 7→ βsp ( p̄ − p) + (1 − β) sθ (θ)

)
.
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Proof. Let sθ be a k-Lipschitz function, then for any θ, θ′ ∈ Θ
and any p ∈ R≥0, one has∥∥∥ f (θ, p) − f

(
θ′, p

)∥∥∥
2 ≤ k (1 − β)

∥∥∥θ − θ′∥∥∥2 . (7)

Indeed, by expanding the formulation of f in this specific case,
one obtains∥∥∥ f (θ, p) − f

(
θ′, p

)∥∥∥
2

=
∥∥∥∥β (sp( p̄−p) − sp( p̄−p)

)
1 + (1 − β) D−1 A

(
sθ (θ) − sθ

(
θ′

))∥∥∥∥
2

=
∥∥∥(1 − β) D−1 A

(
sθ (θ) − sθ

(
θ′

))∥∥∥
2

≤ (1 − β)
∥∥∥D−1 A

∥∥∥
2,2

∥∥∥sθ (θ) − sθ
(
θ′

)∥∥∥
2 ≤ (1 − β) k

∥∥∥θ − θ′∥∥∥2 .

Then, for a constant p ∈ R≥0, f is a contraction with respect
to its first variable θ. Therefore, by Banach fixed-point theorem
[23], θ 7→ f (θ, p) has a unique fixed point. Let θ∗ be this fixed
point, it must verify

f (θ∗, p) = θ∗ ⇔ βsp ( p̄ − p) 1 + (1 − β) D−1 Asθ (θ∗) = θ∗

⇔ βsp ( p̄ − p) 1 + (1 − β) sθ (θ∗) − θ∗

+ (1 − β)
(
D−1 Asθ (θ∗) − sθ (θ∗)

)
= 0

⇔ βsp ( p̄−p) 1 + (1 − β) sθ (θ∗) − θ∗− (1 − β) D−1Lsθ (θ∗) = 0.

But now, notice that f̃ : θ 7→ βsp ( p̄ − p)+(1 − β) sθ (θ) is also a
continuous contraction of Θ. Then, as before, by Banach fixed-
point theorem, it has a unique fixed point, say θ∗. Moreover,
taking θ = θ∗1 verify the above equation since L1 = 0.

Remark 4. The condition k < 1/ (1 − β) imposes a sufficiently
high influence of the pollution dynamics on the opinion dynam-
ics compared with the variation speed of the signaling function
sθ.

The time-scale separation and the emergence of consensus
shown in Proposition 5 motivate us to focus on the analysis of
the reduced order system under the assumption that all opinions
in the network are synchronized. From now on, sθ, sp and E
are differentiable functions and all the agents share the same
opinion.

Definition 1. We say that an opinion state θ is in the FSO
regime if and only if ∀i, j ∈ V, θi = θ j. i.e. θ = θ1 for θ ∈ Θ.

The following proposition studies the effect of the dynamics
once FSO has been reached.

Proposition 6. The FSO manifold

M = {x = (θ, p) | θ = θ1, for θ ∈ [−1, 1] , p ∈ R≥0} ⊂ RN+1,

is forward invariant for the dynamics (3). i.e. ∀x ∈ M, F (x) ∈
M.

Proof. Let x ∈ M, by applying the dynamics (3) to x = (θ1, p)
with θ ∈ [−1, 1] and p ∈ R≥0, one can write

F (x) =
(
u (θ1, p)
v (θ1, p)

)
=

(
θ1 +

(
I − diag (θ1)2

)
( f (θ1, p) − θ1)

(1 − γ) p + 1⊤E (θ1)

)
.

For any, θ ∈ [−1, 1], 1⊤E (θ1) = NE (θ), and then (1 − γ) p +
NE (θ) ∈ R≥0 since γ < 1 and E(θ) ≥ 0. Moreover, developing

θ1 +
(
I − diag (θ1)2

)
( f (θ1, p) − θ1)

= θ1 + (1 − θ2)I
(
βsp( p̄ − p)1 + (1 − β) D−1 Asθ (θ1) − θ1

)
= θ1 + (1 − θ2)I

(
βsp( p̄ − p)1 + (1 − β) sθ (θ) D−1 A1 − θ1

)
= θ1 + (1 − θ2)

(
βsp( p̄ − p)1 + (1 − β) sθ (θ) 1 − θ1

)
=

(
θ + (1 − θ2)

(
βsp( p̄ − p) + (1 − β) sθ (θ) − θ

))
1 := θ′1.

And since θ′ ∈ [−1, 1], one obtains x ∈ M.

To simplify the presentation, in the FSO regime, we will de-
note θ(k) and the common opinion. In other words, we omit the
agent index when referring to its opinion or emission.

Under the assumption that θ is in FSO regime, the opinion
dynamics of any agent coupled with the environment in (3)
rewrites as

x(k + 1) = F (x(k)) =
(
u (θ(k), p(k))
v (θ(k), p(k))

)
, (8)

with the scalar function

u (θ, p) = θ +
(
1 − θ2

)
( f (θ, p) − θ) ,

where
f (θ, p) = βsp (p̄ − p) + (1 − β) sθ (θ) .

Now, the Jacobian of the dynamics becomes:

J (θ, p) =

∂u∂θ (θ, p) −β
(
1 − θ2

)
s′p ( p̄ − p)

E′ (θ) 1 − γ


with

∂u
∂θ

(θ, p) = 1 − 2θ ( f (θ, p) − θ) +
(
1 − θ2

) (
(1 − β) s′θ (θ) − 1

)
.

The dynamics preserves the properties established in the
general case. For instance, the equilibrium x∗ = (θ∗, p∗)
with θ∗ ∈ {−1, 1} is unstable by Proposition 1. This justi-
fies our focus on the stability analysis of equilibrium of the
form x∗ = (θ∗,NE (θ∗) /γ), with θ∗ ∈ Fix (g), (recall that
g = βs̃p + (1 − β) sθ). In FSO, the Jacobian slightly changes
due to the term ∂u/∂θ that becomes:

∂u
∂θ

(θ, p) = 1 +
(
1 − θ2

) (
(1 − β) s′θ (θ) − 1

)
.

Now, the characteristic polynomial of J is given by:

P(X) = X2 −
(
2 +

(
1 − θ2

) (
(1 − β) s′θ(θ) − 1

)
− γ

)
X

+
(
1 +

(
1 − θ2

) (
(1 − β) s′θ(θ) − 1

))
(1 − γ) (9)

+ β
(
1 − θ2

)
E′(θ)s′p

(
p̄ −

NE (θ)
γ

)
.
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And its discriminant is given by:

∆P =
((

1 − θ2
) (

(1 − β) s′θ(θ) − 1
)
+ γ

)2

− 4β
(
1 − θ2

)
E′(θ)s′p

(
p̄ −

NE (θ)
γ

)
.

To simplify the stability analysis of equilibria, let us state
the following intermediate lemma that provides conditions to
ensure that roots of a polynomial are of modulus less than 1.

Lemma 4. Let P(X) = X2 + bX + c be a second-order
polynomial with b, c ∈ R such that its discriminant ∆P =

b2 − 4c ≥ 0 and denote its roots λ1 =
(
−b −

√
∆P

)
/2 and

λ2 =
(
−b +

√
∆P

)
/2. Then, |λ1| < 1 and |λ2| < 1 if and only if

|b| < 1 + c with b ∈ (−2, 2).

Proof. Note that |λ1| < 1 and |λ2| < 1 is equivalent with

− 1 < λ1 ≤ λ2 < 1⇔− 2 + b < −
√
∆P ≤

√
∆P < 2 + b

yielding 0 ≤
√
∆P < 2 − |b| which requires that b ∈ (−2, 2).

Moreover √
∆P < 2 − |b| ⇔ b2 − 4c < 4 − 4 |b| + b2

⇔ |b| < 1 + c

which concludes the proof.

The following proposition characterizes the stability of the
equilibrium point θ∗ ∈ Fix (g) ∩ (−1, 1) with respect to the pa-
rameters β, γ and the function sθ and sp.

Theorem 2. Let x∗ = (θ∗, p∗) be an equilibrium of the dynam-
ics (8) with θ∗ ∈ Fix (g) ∩ (−1, 1). Let P be the characteristic
polynomial of J and note ∆P its discriminant. Then, x∗ is lo-
cally exponentially stable if and only if one of the following is
verified:

• ∆P ≥ 0 and

max

1 − γ +
(
1 − θ∗2

)
(
1 − θ∗2

)
s′θ(θ

∗)
,

γ
(
s′θ(θ

∗) − 1
)

γs′θ(θ
∗) + E′(θ∗)s′p

(
p̄ − NE(θ∗)

γ

)  < β.
• ∆P < 0 and

β

(
E′(θ∗)s′p

(
p̄ −

NE (θ∗)
γ

)
− (1 − γ) s′θ(θ

∗)
)

<
γ(

1 − θ∗2
) − (

s′θ(θ
∗) − 1

)
(1 − γ) .

Proof. Notice that in the FSO setup, dynamics (3) reduces to
a two-dimensional nonlinear dynamical system for which the
study of its Jacobian’s eigenvalues is sufficient to characterize
the local stability of an equilibrium. Those eigenvalues are the
roots of the polynomial (9) i.e., the roots of P(x) = X2 + bX + c
with

b = −
(
2 +

(
1 − θ2

) (
(1 − β) s′θ(θ) − 1

)
− γ

)

and

c = 1 − γ +
(
1 − θ2

) (
(1 − β) s′θ(θ) − 1

)
(1 − γ)

+ β
(
1 − θ2

)
E′(θ)s′p

(
p̄ −

NE (θ)
γ

)
.

In the case where, ∆P ≥ 0, we can use Lemma 4. Therefore,
|λ1| < 1 and |λ2| < 1 is equivalent with b ∈ (−2, 2) and |b| <
1 + c. First, b ∈ (−2, 2) yields

− 2 < b < 2

⇔ − 2 < −
(
2 +

(
1 − θ2

) (
(1 − β) s′θ(θ) − 1

)
− γ

)
< 2

⇔ − 4 + γ <
(
1 − θ2

) (
(1 − β) s′θ(θ) − 1

)
< γ

⇔ 1 +
γ − 4(
1 − θ2

) < (1 − β) s′θ(θ) < 1 +
γ(

1 − θ2
)

⇔
1

s′θ(θ)
+

γ − 4(
1 − θ2

)
s′θ(θ)

< (1 − β) <
1

s′θ(θ)
+

γ(
1 − θ2

)
s′θ(θ)

⇔ 1 −
γ +

(
1 − θ2

)
(
1 − θ2

)
s′θ(θ)

< β < 1 +
4 − γ −

(
1 − θ2

)
(
1 − θ2

)
s′θ(θ)

. (10)

Let’s observe that 0 < 4 − γ −
(
1 − θ2

)
,∀ γ ∈ (0, 1) , θ ∈ Θ.

This implies that 1 +
4 − γ −

(
1 − θ2

)
(
1 − θ2

)
s′θ(θ)

> 1. On the other hand,

β ∈ (0, 1) which simplifies (10) as 1 −
γ +

(
1 − θ2

)
(
1 − θ2

)
s′θ(θ)

< β ≤ 1.

It is noteworthy that 2 − γ −
(
1 − θ2

)
> 0, ∀ γ ∈ (0, 1) , θ ∈ Θ.

Thus, β < 1 +
2 − γ −

(
1 − θ2

)
(
1 − θ2

)
s′θ(θ)

⇔

β
(
1 − θ2

)
s′θ(θ) < 2 +

(
1 − θ2

) (
s′θ(θ) − 1

)
− γ ⇔ b < 0.

Consequently,

|b| < 1 + c⇔ −b < 1 + c

⇔ 2 − γ +
(
1 − θ2

) (
(1 − β) s′θ(θ) − 1

)
< 2 − γ+(

1 − θ2
) [(

(1 − β) s′θ(θ) − 1
)

(1 − γ) + βE′(θ)s′p

(
p̄ −

NE (θ)
γ

)]
⇔ γ

(
(1 − β) s′θ(θ) − 1

)
< βE′(θ)s′p

(
p̄ −

NE (θ)
γ

)
⇔ γ

(
s′θ(θ) − 1

)
< β

(
γs′θ(θ) + E′(θ)s′p

(
p̄ −

NE (θ)
γ

))

⇔
γ
(
s′θ(θ) − 1

)
γs′θ(θ) + E′(θ)s′p

(
p̄ − NE(θ)

γ

) < β.
Combining the inequality above with the first inequality in (10)
one gets that if ∆P ≥ 0 then |λ1| < 1 and |λ2| < 1 is equivalent
with

max

1 − γ +
(
1 − θ2

)
(
1 − θ2

)
s′θ(θ)
,

γ
(
s′θ(θ) − 1

)
γs′θ(θ) + E′(θ)s′p

(
p̄ − NE(θ)

γ

)  < β.
8



Let us assume now that ∆P < 0. The complex roots of P
have the same modulus. Let λC be the eigenvalue defined by

λC =
−b + i

√
−∆P

2
. Then |λC | =

b2 − b2 + 4c
4

= c and the
following equivalences hold

c < 1⇔
(
1 − θ2

) (
(1 − β) s′θ(θ) − 1

)
(1 − γ)

+ β
(
1 − θ2

)
E′(θ)s′p

(
p̄ −

NE (θ)
γ

)
< γ

⇔
(
(1 − β) s′θ(θ) − 1

)
(1 − γ)

+ βE′(θ) + s′p

(
p̄ −

NE (θ)
γ

)
<

γ(
1 − θ2

)
⇔

(
s′θ(θ) − 1

)
(1 − γ)

+ β

(
E′(θ)s′p

(
p̄ −

NE (θ)
γ

)
− (1 − γ) s′θ(θ)

)
<

γ(
1 − θ2

)
⇔ β

(
E′(θ)s′p

(
p̄ −

NE (θ)
γ

)
− (1 − γ) s′θ(θ)

)
<

γ(
1 − θ2

) − (
s′θ(θ) − 1

)
(1 − γ) .

This concludes the proof.

It is noteworthy that Lemma 1 states that the set X = Θ ×[
Nemin/γ,Nemax/γ

]
is forward invariant for (3) and then for (8).

Thus, when the local stability conditions from Theorem 2 are
not satisfied, the trajectory will exhibit either convergence to a
limit cycle or a strange attractor.

Let us notice that β characterizes the weight of the air pol-
lution signal in the update of the opinions. When β → 1, the
opinions will mostly be influenced by the environment, and the
peers’ influence is negligible. Therefore, when the pollution
disappears at high speed (γ small), the dynamics will reach a
stable equilibrium. If γ is high enough one obtains a discrete-
time prey-predator-like behavior with permanent oscillations.

Let us consider the next two particular cases of the signal sθ.

4.1. Linear signals

Simpler conditions can be exhibited in the linear signaling
OD case and are given in the following corollary.

Corollary 1. Let sθ(θ) = θ, for all θ ∈ Θ and let x∗ = (θ∗, p∗) be
an equilibrium of the dynamics (8) with θ∗ ∈ Fix (g) ∩ (−1, 1).
Let P be the characteristic polynomial of J and note ∆P its dis-
criminant. Then, x∗ is stable if and only if either ∆P ≥ 0 or
∆P < 0 and

β

(
E′(θ∗)s′p

(
p̄ −

NE (θ∗)
γ

)
− (1 − γ)

)
<

γ(
1 − θ∗2

) . (11)

The proof is immediate from Proposition 2 by replacing
s′θ(θ) = 1, for all θ ∈ Θ.

These conditions allow us to exhibit the particular point
where the topological nature of the equilibrium change and bi-
furcation may occur. Numerical illustrations of this behavior
will be provided in the next section.

Figure 1: Topological classification of equilibrium x∗ = (θ,NE(θ)/γ) for the
dynamics (8), where θ ∈ Fix (g) with sθ(θ) = θ, sp = s, as in (12) with δ = 0.05,
E(θ) = θ + 1 for 0 < β, γ < 1, N = 1 and p̄ = 2.5.

4.2. Piece-wise linear signals

In this section, we will look at the particular case where the
signal function sθ and sp are given by the function

s(x) =


−1 if x ≤ −δ
x
δ

if − δ ≤ x ≤ δ

1 if x ≥ δ.

(12)

parameterized by δ > 0. This function is piece-wise linear and
approximates the sgn function for values of δ close to 0. We
will also make the assumption that E(θ) = θ + 1.

In the particular case of linear OD coupled with the piece-
wise linear air pollution signal, i.e. sθ(θ) = θ, ∀θ ∈ Θ and sp

as in (12), we know from Proposition 3 and Lemma 3 that there
exists an unique fixed point of the function g. The fixed point of
the function g in this case is given by the following expression

l(γ, p̄, δ) =


γ p̄ − 1
γδ + 1

if γ ≤
2

p̄ − δ
1 otherwise.

(13)

The topological nature of the equilibrium associated is illus-
trated on the β, γ-plane on Figure 1 for some p̄ fixed. We can
observe that the nature of the equilibrium changes with respect
to the parameters β and γ and is unstable for most of the pa-
rameter values. The complex condition black line is given by
equation (11) and the yellow one from the condition of (13).

In the more general case when both sθ, sp are piece-wise lin-
ear as in (12), the number of equilibrium points varies with
respect to the parameters and accordingly one has different
expressions. The following lemma provides conditions un-
der which certain points belong Fix(g). We recall here that
g (θ) = βs ( p̄ − (θ + 1)/γ) + (1 − β) s (θ).
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Lemma 5. Let sθ and sp be piece-wise linear as in (12). The
following statements hold true:

• if max{θ, p̄ − E(θ)/γ} ≤ −δ, then −1 ∈ Fix(g).

• if min{θ, p̄ − E(θ)/γ} ≥ δ, then 1 ∈ Fix(g).

• if θ ≥ δ and p̄ − E(θ)/γ ≤ −δ, then −1 + 2β ∈ Fix(g).

• if θ ≤ −δ and p̄ − E(θ)/γ ≥ δ, then 1 − 2β ∈ Fix(g).

• if |θ| ≥ δ and |p̄ − E(θ)/γ| ≤ δ, then

sgn (θ) δ (1 − β) + β ( p̄ − 1/γ)
δ + β/γ

∈ Fix(g). (14)

• if max{|θ| , | p̄ − E(θ)/γ|} ≤ δ, then

β ( p̄ − 1/γ)
δ + β/γ − (1 − β)

∈ Fix(g). (15)

• if |θ| ≤ δ and | p̄ − E(θ)/γ| ≥ δ, then

sgn ( p̄ − E(θ)/γ) β
1 − (1 − β) /δ

∈ Fix(g). (16)

The proof of this Lemma is straightforward, every item corre-
sponds to a specific combination between the different possible
linear behaviors of the signals sθ and sp in (12).

The topological classification of these fixed points can be nu-
merically addressed as in the case of OD with a linear signaling.
The numerical analysis is longer and we skip it here since one
has to consider all the possible values in Fix(g).

5. Numerical Results

This section provides numerical illustrations of the coupled
system’s behavior. Note that we are numerically analyzing the
behavior in the FSO scenario by illustrating the convergence to
equilibrium, to a limit cycle, or chaotic trajectories. Addition-
ally, we examine the non-synchronized case, highlighting the
formation of clusters and emphasizing again the chaotic behav-
ior. For the sake of simplicity, in the sequel, we take E(θ) = θ+1
and denote by s the piece-wise linear approximation of the sign
function defined in (12) with δ = 0.05. Moreover, for the rest
of the paper, we will also take sp piece-wise linear, i.e., sp = s.

5.1. Fully Synchronized Opinion
Let us notice that, synchronization occurs not only when the

system reaches a fixed equilibrium as shown in Figure 2 for two
types of signals. The rate of synchronization is influenced by
the signal function and the parameter β: lower values of β re-
sult in faster synchronization, similar to linear opinion dynam-
ics with exogenous input. Conversely, as β approaches 1, syn-
chronization takes more iterations due to the greater influence
of the environment over neighboring interactions, potentially
preventing the synchronization.

In the FSO regime, all agents in the system share the
same opinion, simplifying the model’s dynamics to a two-
dimensional system encompassing the common opinion θ and
the air pollution state p.

We first examine scenarios with sθ = Id and later, we will
illustrate similar behaviors with different interaction signals.
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(a) sθ = Id. Synchronization reached in 9 iterations.
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(b) sθ = s, i.e. piece-wise linear. Synchronization reached in 16 iterations.

Figure 2: Evolution of θwith two signal functions sθ interacting over a common
(randomly generated) strongly connected graph. Parameters: β = 0.3, γ = 0.5,
N = 50, p(0) = p̄ = 25 and θ(0) taken as i.i.d. random uniform variables on
[−1, 1].

Equilibrium and Limit cycle
Under the FSO assumption, the dynamics (8) can exhibit var-

ious behaviors depending on the signal and parameters. No-
tably, the dynamics can converge to an equilibrium or reach a
limit cycle.
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Equilibrium Point

Figure 3: Phase portrait of dynamics (8) for several trajectories with random
initial conditions. Trajectories converge to the unique nontrivial equilibrium.
Parameters: β = 0.04, γ = 0.375 and p̄ = 0.6.

As illustrated in Figure 3, consistent with Proposition 3, tra-
jectories converge to a unique, attractive in this case, equilib-
rium x∗ = (θ∗, E (θ∗) /γ), where θ∗ ∈ Fix

(
s̃p

)
.

Additionally, the dynamics can reach a limit cycle, as shown
in Figure 4, where a 11-period limit cycle appears to stabilize.
The length and stability of the limit cycle depend on the param-
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eters β and γ as will be explained in the next section.
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Figure 4: Phase portrait of dynamics (8) for several trajectories with random
initial conditions. Trajectories converge to a 11-period limit cycle. Parameters:
β = 0.345, γ = 0.375 and p̄ = 0.6.

The presence of limit cycles indicates a repeating pattern
generated by short-term social memory. Population tends to
take action when there is a peak of pollution but once the pol-
lution decreases the population considers the problem is solved
and returns to standard behavior. This suggests that without in-
terventions to reward the ecologic behavior, the high pollution
episodes will persist in time.

Chaos

Figure 5: Bifurcation diagram for 0 < β < 1 of the FSO regime opinion and
Lyapunov exponents of the system. The system undergoes different behaviors:
convergence to equilibrium, limit cycle, and chaos. The blue line represents the
situation of Figure 3 and the red is the one of Figure 4. Parameters γ = 0.375
and p̄ = 0.6 and initial condition θ(0) = −0.5 and p(0) = 1.6.

As evidenced in Figure 5, the FSO regime can also manifest
chaotic behaviors. This figure presents the bifurcation diagram
and the associated Lyapunov exponents.

We recall that a dynamical system with Lyapunov exponents
that are less than 0 has trajectories that converge to each other.
They synchronously reach a stable attractor like a fixed point or
a limit cycle. On the other hand, positive Lyapunov exponents
indicate chaos or instability, where trajectories diverge expo-
nentially from each other. Under fixed values of γ and p̄, a
wide range of β values can lead to chaotic dynamics in (8).

Moreover, we can observe that the equilibrium presented in
Figure 3 and the limit cycle of Figure 4 are both attractive since
their associated Lyapunov exponents are negative. It is note-
worthy that in Figure 5, limit cycles present on the bifurcation
diagram are always associated with a negative Lyapunov expo-
nent and thus stabilizing.

From an environmental perspective, chaotic behavior is sim-
ilar to limit cycles. Indeed, although there is no periodic pattern
in the evolution of opinions and air pollution, there are perma-
nent oscillations between ecologic actions and high emissions.
The main difference lies in the unpredictability of the public
response and consequently of the environmental state.

Other signals
We have noticed through extensive numerical simulations

that similar qualitative behaviors are preserved across various
signaling functions. This robustness suggests that the funda-
mental characteristics of the model are independent of the sig-
naling functions. Indeed, we can see in Figure 6 that trajectories
can reach equilibrium for some parameter β like in Figure 6a or
strange attractor in Figure 6b. Here we can observe the first bi-
furcation occurring at β = 0.095 for the associated parameters.
This bifurcation, illustrated in Figure 6c, presents a transition
from convergence toward a stable equilibrium to a strange at-
tractor, which seems to be a Hopf bifurcation.

The presence of a strange attractor, as evidenced by the suc-
cessive zooms on the phase portrait in Figure 7, suggests that
the system’s trajectories are governed by an invariant yet non-
periodic underlying structure. During simulations, it has been
observed that this attractor folds onto itself as the parameters β
and γ change. At lower values of β and γ, as depicted in Figure
6, the attractor does not exhibit significant folding. However,
as β approaches 1 and for γ = 0.5, the folding phenomenon
becomes more pronounced, especially as γ approaches 0.25, as
shown in Figure 7.

While the behavior in the FSO case can be mathematically
analyzed, the complexity of the system with multiple inter-
acting agents that are not synchronized hampers a theoretical
study.

5.2. Out of sync case

In the following, we numerically analyze the case when the
agents do not synchronize. This phenomenon is illustrated in
Figure 8, where agents do not synchronize for a value of β close
to 1, even after a large number of iterations. The lack of syn-
chronization and the chaotic behavior are interdependent, and
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(a) β = 0.095
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(b) β = 0.0951

(c) Bifurcation diagram of the opinion of the agent and Lyapunov exponents of the system.

Figure 6: Top: The first 5000 steps of trajectories of (8) before (a) and just after
(b) the bifurcation point highlighted (in red) in the bifurcation diagram (c), i.e.
β = 0.095 and β = 0.0951. A behavioral transition is observed, moving from
an equilibrium to a strange attractor. We use sθ = s and parameters p̄ = 1 and
γ = 0.2, with initial condition θ(0) = −0.85 and p(0) = 1.6. (c) provides the
Bifurcation diagram and Lyaponuv exponents for 0 < β < 1.

we call this phenomenon chaotic de-synchronization as syn-
chronization occurs in all other regimes.

An examination of the bifurcation diagrams for all agents,
as shown in Figure 9, reveals varying degrees of synchroniza-
tion. For β < 0.95, agents tend to synchronize towards FSO;
however, for β > 0.95, agents diverge onto different trajecto-
ries. This divergence is further emphasized by the behavior
of the associated Lyapunov exponents, which initially evolve
in a similar manner but begin to diverge significantly beyond
β = 0.95. This suggests that for values of β close to one, the
chaotic behavior intensifies, potentially becoming too strong to
permit synchronization.

While the absence of synchronization in chaotic linear sig-
nal dynamics is significant, it is not the only scenario in which
agents fail to synchronize. Indeed, under certain conditions and
signal configurations, clusters of aligned opinions can form, re-
flecting the graph topology’s influence.

Polarized cluster formation
Let us now examine the formation of clusters of opinions

under two scenarios, leveraging Proposition 4 to highlight the
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Figure 7: The trajectory from k = 0 to k = 10, 000, 000 with successive zoom
for sθ = s with parameters: β = 0.916, γ = 0.5, and initial condition p(0) =
p̄ = 1 and θ(0) = −0.5. We observe that this trajectory exhibits a fractal pattern.
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Figure 8: Chaotic de-synchronization highlighted by θ⊤Lθ plotted over 50 steps
over a randomly generated connected undirected graph for sθ = Id. For β =
0.35, opinions reach FSO over a limit cycle in a few iterations, whereas, for
β = 0.97 consensus is never reached (verified up to 106 steps). Parameters:
γ = 0.5, N = 50, p(0) = p̄ = 25 and θ(0) taken as i.i.d. random uniform
variables on [−1, 1].

impact of graph topology, particularly its symmetry, on equi-
librium states. We focus on two distinct graph topologies: a
block stochastic graph (blocks represented by complete graphs
that are connected through few edges) and a sparser 2D-lattice
graph. These structures reveal that the formation and behav-
ior of opinion of clusters (stability, polarization, periodicity)
significantly depend on the initial conditions and the graph’s
structure. Specifically, we observe stable polarized clusters in
block stochastic graphs as shown in Figure 10 for the former
scenario.

On the other hand, Figure 11 provides insights into the dy-
namics on a 50 × 50 square lattice, where initial opinions are
randomly distributed and evolve through communication with
adjacent nodes. This simulation underscores the formation of
resilient clusters that maintain their integrity over numerous it-
erations, converging to clusters on limit cycles, as can be seen
from the opinion trajectory of the nodes in Figure 11.

The primary distinction between the two cases is that in the
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Figure 9: Bifurcation diagram and Lyapunov exponents for agents 5 over a fully
connected graph and the system for 0.9 < β < 1 for sθ = Id. For β < 0.95,
agents synchronize whereas for β close to 1, synchronization does not occur
anymore. Parameters: γ = 0.2, p̄ = 4.5, p(0) = 30 and θ(0) taken as i.i.d.
random uniform variables on [−1, 1].
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(a) Clustered graph. Left: initial conditions. Right: after 50 iterations.
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(b) Evolution of θ and environment over 50 iterations. Initial conditions: p(0) = 175 and
θ(0) taken as i.i.d. random uniform variables on [−1, 1].

Figure 10: Evolution of the opinion on a randomly generated clustered graph
for sθ = s. We observe that a polarized opinion cluster forms over the graph
cluster. Parameters β = 0.2, γ = 0.44, N = 300 and p̄ = 350.

first, the environment reaches an equilibrium and then emits
a constant signal, allowing the OD to converge to the stable
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Figure 11: Visualization of Opinion Dynamics on a 50 × 50 square Lattice for
sθ = s. The resultant opinions after 500 iterations are represented by each
colored square cell. Agents engage in communication with their adjacent cells
(above, below, left, and right). The first sub-figure represents opinions over the
last 50 iterations of the nodes in the white square. We observe a periodic evo-
lution that maintains the structure of the cluster. The sub-figure below presents
the air pollution evolution over the last 50 iterations. Parameters: β = 0.49,
γ = 0.6, p(0) = p̄ = 3500, θ(0) taken as i.i.d. random uniform variables on
[−1, 1]

equilibrium shown in Figure 10. Conversely, in the second case,
the structure of the clusters is preserved but is driven by the
air pollution oscillating around p̄. The formation of clusters
typically occurs in a short amount of time, as depicted in Figure
10.

Small-world
This section focuses on numerical simulations conducted on

small-world networks, which are analogous to social networks
due to their high clustering and short path lengths relative to
random networks. Small-world properties are quantified using
two metrics: the small-world coefficient σ and the small-world
measure ω. A network is considered a small-world if σ > 1,
and its classification between lattice-like (ω ≈ 1) and random-
like (ω ≈ −1) structures is indicated by ω values around zero.
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Additionally, the diameter of the graph, the longest of all the
shortest paths between pairs of nodes, can provide further in-
sight into network topology.

We analyze two graphs from the NetworkX Python library to
demonstrate these concepts. The first graph represents the net-
work of American football games between Division IA colleges
during the regular season of Fall 2000 [26], and the second de-
picts a portion of a Facebook social network [27]. Our goal here
is to demonstrate that the behaviors of dynamics (3) observed
in the previous section are scalable and the numerical analysis
can be extended to various types of graphs.
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(a) Graph of American football clubs, where edges represent games between clubs. The
graph contains 115 nodes and is a small-world network with σ = 4.13 and ω = −0.1. Left:
initial conditions. Right: after 100 iterations.
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(b) Evolution of θ and environment over 100 iterations. Initial conditions: p(0) = 175 and
θ(0) taken as i.i.d. random uniform variables on [−1, 1].

Figure 12: Evolution of the opinion on the football club graph for sθ = s. We
observe that polarized opinion clusters form even if the graph does not exhibit
obvious clusters. Parameters β = 0.2, γ = 0.2, and p̄ = 1000.

Figure 12 highlights the polarization of opinions in two main
clusters despite the absence of clear separation in the initial
graph (see Figure 12a). This behavior mirrors that observed
in regular grid graphs (see Figure 11), suggesting that graph
regularity is not necessary for cluster formation; rather, it is in-
fluenced by parameters β and γ. We remark that the cluster
formation is relatively fast and is achieved before the signal p
reaches the threshold p̄ as shown in Figure 12b.

In Figure 13 we consider a portion of a Facebook social net-
work [27] and we plot the equilibrium reached in opinions. The
behavior of the network heavily depends on the initial state
of opinions. With the same parameters but a different initial

Figure 13: Facebook Network graph, representing anonymized users within ten
friend lists. Edges correspond to friendships. The graph contains 4039 nodes
and has a diameter of 8. For more details, see [? ]. The displayed opinions are
at equilibrium for sθ = sp = s with δ = 0.05. Parameters: β = 0.1, γ = 0.2,
and p̄ = 25, 000. Initial conditions: p(0) = 23, 750 and θ(0) as i.i.d. random
uniform variables on [−1, 1], except for biased clusters at top-left and bottom-
right around θ = −0.95.

condition, the coupled system can reach a limit cycle or ex-
hibit chaotic behavior (please check video limit cycle and video
chaos). Notably, FSO is rarely observed in simulations, likely
due to the topological clustering inherent to community-based
friend networks.

These observations confirm that the behaviors noted previ-
ously can occur in diverse small-world network structures, not
limited by the regularity or specific topology of the graphs.

Remark 5. While not explicitly demonstrated in this section, it
is important to note that these dynamical behaviors (FSO, con-
vergence to one equilibrium, limit cycles, and chaotic patterns)
are not unique to the specific signals used in the presented ex-
amples. Similar behaviors can be replicated with a variety of
other signaling functions for both opinions and atmospheric
pollution. This indicates that the underlying dynamics of the
system are robust to changes in the way agents interact and re-
spond to the air pollution dynamics, suggesting a broad appli-
cability of our findings across different types of network-driven
processes.

6. Conclusion

In this paper, we have introduced and analyzed a nonlin-
ear opinion dynamics model coupled with an external signal.
Specifically, we consider that the external dynamics represent
a very simple pollution model in which the emission level de-
pends on the emissions of the individuals in the social network.
Conversely, opinions are influenced by both the signal from
their neighbors and the pollution level. We have shown that
different behaviors are possible, ranging from convergence to a
steady state to a chaotic behavior of the coupled dynamics. The
chaotic regime is usually characterized by a strange attractor
and numerical simulations demonstrate fractal patterns. An-
other interesting phenomenon observed is that of chaotic de-
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synchronization, where agents that synchronize in limit cycles
or equilibria get de-synchronized due to the chaotic behavior.
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