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Abstract— The paper addresses the synchronization of
multi-agent systems with continuous-time dynamics inter-
acting through a very general class of monotonic continu-
ous signal functions that covers estimation biases, approxi-
mation of discrete quantization, or state-dependent estima-
tion. Our analysis reveals that, in the setup under consider-
ation, synchronization equilibria are exactly the fixed points
of the signal function. We also derive intuitive stability
conditions based on whether the signal underestimates or
overestimates the state of the agents around these fixed
points. Moreover, we show that network topology plays a
crucial role in asymptotic synchronization. These results
provide interesting insights into the interplay between com-
munication nonlinearity and network connectivity, paving
the way for advanced coordination strategies in complex
systems.

Index Terms— Consensus dynamics, Multi-agent sys-
tems, Nonlinear interactions, Synchronization

I. INTRODUCTION
Information exchange is a fundamental aspect of both

multi-agent systems (MAS) and networked control systems
(NCS), as the agents’ dynamics are shaped by the information
received from their neighbors. In many existing works on
MAS, the interaction is considered to be perfect, i.e., the
agents have access to the exact state of their neighbors [1].
This assumption simplifies the analysis but does not hold in
real-world scenarios where communication is constrained due
to bandwidth limitations, quantization effects, or noise. To
address this limitation, several works [2]–[7] have investigated
quantized communication models in which agents exchange
only discrete or coarse information about their states.

On the other hand, nonlinear consensus dynamics has
also gained significant attention, particularly in models where
agents interact through smooth and odd signals [8]–[10]. These
approaches aim to capture more realistic scenarios where inter-
actions are governed by nonlinear feedback mechanisms, often
inspired by biological [8] or social [10] systems. However,
these works primarily analyze behaviors around the neutral
synchronization equilibrium using bifurcation theory. While
this approach provides valuable theoretical insights, it does not
fully capture the global behavior of the system, particularly in
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scenarios where multiple stable synchronization equilibria or
complex nonlinear interactions arise. This limitation highlights
the need for an analysis that goes beyond local bifurcations
around the origin.

In this paper, we present a continuous-time framework
for nonlinear consensus dynamics in which the interaction
between agents over an undirected graph is modeled by a
general class of signals. By considering arbitrary monotonic,
potentially non-smooth, Lipschitz-continuous signal functions,
our analysis extends existing studies while preserving ana-
lytical tractability. This general setting encompasses classical
linear consensus as well as continuous and piecewise approxi-
mations of discontinuous quantization, providing new insights
on how communication nonlinearity influences the stability
and convergence properties of the synchronization manifold
in multi-agent systems. Although our primary analysis is
developed for the continuous-time case for analytical tractabil-
ity, the characterization of equilibria and the fundamental
principles governing their stability are expected to carry over
to equivalent discrete-time formulations.

The key contributions of this paper are as follows:

1) We analyze a nonlinear consensus model in which
agent interactions are described by monotonic Lipschitz-
continuous signal functions. This formulation not only
includes the traditional linear consensus model as a
particular case but also accommodates a wide range
of nonlinear continuous functions, as well as piecewise
approximations of discontinuous quantization functions.

2) We characterize the equilibria of the system and show
that synchronization equilibria correspond to the fixed
points of the signal function. For that, we introduce
intuitive notions of over- and under- estimation functions
to analyze whether the synchronization occurs. Based on
these concepts, we establish conditions for the stability
of synchronized equilibria. We also highlight how the
shape of the signal function influences the convergence
behavior. Moreover, we provide conditions under which
solutions converge to a locally stable synchronization
equilibrium and analyze the corresponding basins of
attraction.

3) We show that the network topology impacts synchro-
nization by demonstrating that agents with similar neigh-
borhood structures asymptotically synchronize indepen-
dently of the signal function.

The rest of the paper is organized as follows. In Section II,
we formally define the problem and introduce the proposed



nonlinear consensus model. Section III provides a detailed
equilibrium and stability analysis. In subsection III-A and
III-B, we analyze the invariance of the state space and the
synchronization manifold, respectively. In subsection III-C,
we analyze the synchronization equilibria of the dynamics
induced by the communication signal, and in subsection III-
D, we analyze the synchronization properties induced by the
graph structure. We conclude the paper with some remarks
and future work in Section IV.

Notation In the following, we will denote by R and R≥0 the
set of real numbers and the set of non-negative real numbers,
respectively. For a vector x ∈ RN , we denote by xi the i-
th component of x. For a matrix A ∈ RN×N , we denote
by aij the element of A at the i-th row and j-th column.
We denote by ei the i-th vector of the canonical basis of
RN . We denote by 1 the vector of RN with all components
equal to 1. Moreover, we denote by diag(x) ∈ RN×N the
diagonal matrix with diagonal elements given by the vector
x ∈ RN . For a function f : X → X , we denote Fix(f) =
{x ∈ X | x = f(x)} the set of fixed points of f in X .

II. PROBLEM FORMULATION
We consider the classical multi-agent framework in which

N individuals/agents belonging to the set V = {1, . . . , N},
interact according to an undirected fixed graph G = (V, E).
We denote by A ∈ RN×N the symmetric adjacency matrix
associated with the graph, i.e., aij = 1 if (i, j) ∈ E and
aij = 0 otherwise. We denote, by D ∈ RN×N the degree
matrix, i.e., D is the diagonal matrix with diagonal elements
defined by di =

∑N
j=1 aij for all i ∈ V . We also introduce

L := D −A ∈ RN×N the associated Laplacian matrix. The
neighborhood of the agent i is denoted by Ni and represents
the set of agents that influence i according to the graph G (i.e.,
j ∈ Ni ⇔ (j, i) ∈ E). By definition, the cardinality of Ni is
di. Let us also recall that a path in G is a finite sequence of
edges (i1, i2), (i2, i3), . . . , (ip, ip+1) such that (ik, ik+1) ∈ E
for all k ∈ {1, . . . , p}. Two vertices i, j ∈ V are connected
in G if there exists a path in G joining i and j (i.e., i1 = i
and jp = j). The graph G is connected if any two vertices are
connected.

The state of agent i is denoted by xi ∈ [−1, 1] and evolve
according to the following dynamics

ẋi =
1

di

N∑
j=1

aijs(xj)− xi, (1)

where s : [−1, 1] → [−1, 1] is a common non-decreasing
Lipschitz-continuous function.

The nonlinear dynamics (1) captures the imperfect com-
munication between agents via a broad class of signal func-
tions. For example, common choices include the linear map
s(x) = x or the affine function s(x) = ax + b, which
respectively model unbiased or biased estimations. One can
also consider sigmoidal functions, such as s(x) = tanh(x),
that are inspired by biological phenomena [8] or neuroscience
[10]. Furthermore, (1) can describe the behavior of quantized
communication, where discontinuities are inherent. Specifi-
cally, discontinuous quantization schemes, as in [2], [4], [5],

can be approximated using a continuous piecewise affine
signal function wherein different linear segments connect at
discontinuities. The qualitative behavior of the agents’ states
remains unchanged since, as we will show later, synchroniza-
tion occurs only at specific fixed points of the signal function.
In practice, such a signal function s(x) can be interpreted
as the expectation of a discontinuous quantized signal, po-
tentially perturbed by a small noise term of small amplitude.
In any case, (1) provides a robust and analytically tractable
framework for analyzing a wide range of communication pro-
cesses. This approach bridges the gap between idealized linear
consensus and more realistic scenarios involving nonlinear or
even discontinuous interactions.

In the following, we will consider the collective form of the
dynamics (1) of the agents given by

ẋ = D−1As(x)− x := f(x), (2)

where the state is denoted by x = (x1, . . . , xN )⊤ ∈ [−1, 1]
N

and s(x) the vector (s(x1), . . . , s(xN ))⊤.
Remark 1: In the case where s(x) = x, the dynamics (2)

becomes the classical normalized linear consensus dynamics.
i.e., ẋ = D−1Ax− x = −D−1Lx.

Remark 2: The state space X = [−1, 1]
N is a common

choice for the state space of the agents’ dynamics in the liter-
ature. This choice mainly serves to fix a concrete domain for
the analysis, and the qualitative behavior would remain similar
for other bounded intervals by a simple linear transformation
(scaling and shifting).

This choice of the normalized adjacency matrix D−1A
rather than the standard adjacency matrix A ensures uni-
formity in the speed of the dynamics across the network.
Furthermore, since D−1A is a stochastic matrix, the Perron-
Frobenius theorem can be applied, leading to the following
lemma:

Lemma 1 (Perron-Frobenius): Let G be a connected graph.
Then, the normalized adjacency matrix D−1A has a simple
eigenvalue 1, and all other eigenvalues have modulus strictly
less than 1. Moreover, the vector 1 is the right eigenvector
associated with eigenvalue 1 of D−1A.

Consequently, as provided in Lemma 1, normalization en-
sures that the spectral radius of D−1A is at most 1 for
connected graphs. This property allows the dynamics to be
forward invariant for the synchronization manifold, as seen
in Section III-B. Moreover, the qualitative behavior of the
system remains consistent with the non-normalized case, as
in [9]. Although normalization affects the timescales of the
interactions by standardizing the influence of different nodes,
it does not alter the fundamental structure of synchronization
equilibria.

III. ANALYSIS

In this section, we analyze the proposed nonlinear consensus
dynamics. We first establish invariance properties, proving that
the state space and synchronization manifold remain forward
invariant. Next, we characterize synchronization equilibria as
the fixed points of the signal function and introduce un-
derestimation and overestimation, which determine stability



and convergence. We then derive stability conditions and
identify attraction basins. Finally, we examine how network
topology influences synchronization, showing that agents with
symmetric neighborhoods, as well as those in all-to-all and
bipartite graphs, asymptotically synchronize.

A. Invariance of the state space
First, we will present the first invariant set, namely the set

of admissible states for the dynamics to ensure that the state
of the system remains in a bounded domain.

Proposition 1: Let G be a connected graph. The set X =
[−1, 1]

N is forward invariant for the dynamics (2). i.e., if
x(0) ∈ X , then x(t) ∈ X for all t ≥ 0.

Proof: Let x ∈ X , then for all i ∈ V , −1 ≤ xi ≤ 1.
Then, for all i ∈ V , −1 ≤ s(xi) ≤ 1 by definition of s. Since
D−1A is row stochastic, each row sums to 1. Then, for all
i ∈ V , −1 ≤ e⊤i D

−1As(x) ≤ 1. Since the vector field, (2) is
Lipschitz-continuous, we can apply Nagumo’s theorem [11]
to ensure that the solution remains in X . Then, an analysis
at the set’s boundary ensures that the solution remains inside
of X . Then, for any i ∈ V such that xi = 1, one has ẋi =
e⊤i D

−1As(x) − 1 ≤ 0. Similarly, for any i ∈ V such that
xi = −1, one has ẋi = e⊤i D

−1As(x) + 1 ≥ 0. Thus, for all
i ∈ V , −1 ≤ xi(t) ≤ 1 for all t ≥ 0.

This proposition ensures that the dynamics (2) is well-
defined on X and that the state of the system will always
be in X justifying the choice of the set X as the state space
of the system.

B. Invariance of the synchronization manifold
Let us now define the set of synchronization. This set is the

set of states where all agents have the same state.
Definition 1: A state is a synchronization if xi = xj for all

i, j ∈ V . The synchronization manifold is defined as

S =
{
x ∈ [−1, 1]

N | ∀i, j ∈ V, xi = xj

}
.

For c ∈ [−1, 1], we denote by Sc = {x ∈ S | x = c1}
the synchronization at c and for M ⊂ [−1, 1], by SM =
{x ∈ S | ∃p ∈ M, x = p1} the synchronization manifold in-
tersecting MN .

We will now establish the forward invariance of S for the
dynamics (2).

Lemma 2: The synchronization manifold S is forward in-
variant for the dynamics (2). i.e., if x(0) ∈ S , then x(t) ∈ S
for all t ≥ 0.

Proof: Let x ∈ S, i.e., x = c1 for some c ∈ [−1, 1].
Then, for all i, j ∈ V , one has that

ẋi − ẋj = (ei − ej)
⊤(

D−1As(x)− x
)

= (ei − ej)
⊤(

D−1As(c1)− c1
)

= (s(c)− c) (ei − ej)
⊤
1 = 0.

Since 1 is the eigenvector associated with eigenvalue 1 of
D−1A, from Lemma 1. Thus, the synchronization manifold
is forward invariant.

The previous lemma shows that once the agents are synchro-
nized, they will remain synchronized for all times. This is a

direct consequence of the fact that the weight matrix D−1A
is a stochastic matrix. This property is not satisfied for the
classical adjacency matrix A as it is not row stochastic in
general.

C. Synchronization induced by the communication signal
In this section, we analyze the synchronization equilibria

of dynamics (2). Whereas classical linear consensus dynamics
admit any synchronization state as an equilibrium, we show
that this property does not hold in our case. Instead, we
prove that synchronization equilibria correspond precisely to
the fixed points of the communication function s. We will
present stability results for the synchronization equilibria in-
dependently of the graph topology.

1) Synchronization Equilibria and Fixed Points: We can for-
mulate the following proposition characterizing equilibria.

Proposition 2: Let G be a connected graph. Then, the only
synchronization equilibria of the dynamics (2) are the fixed
points of s. i.e., SFix(s) is the set of synchronization equilibria.

Proof: Let x∗ ∈ S be a synchronization equilibrium. i.e.,
x∗ = c1 for some c ∈ [−1, 1]. Then, by Lemma 1, one has

x∗ = D−1As(x∗) = D−1As(c1) = s(c)D−1A1 = s(c)1.

Since x∗ = c1, one has s(c) = c. Thus, c ∈ Fix(s) and
x∗ ∈ SFix(s).

The previous proposition establishes a complete characteri-
zation of the synchronization equilibria: they are in one-to-one
correspondence with the fixed points of s. This is a funda-
mental difference from classical linear consensus dynamics,
where any synchronization state is an equilibrium. Indeed,
this property only holds in our case when s(x) = x, for
which SFix(s) = S. The synchronization equilibria form a
strict subset of the synchronization manifold for any other
communication function.

It is noteworthy that Proposition 2 identifies the set of
all possible synchronization equilibria SFix(s), which is de-
termined solely by the function s. However, when multiple
fixed points exist (as considered in Proposition 4), the specific
equilibrium within this set reached by the state trajectory of
the system depends on the initial condition x(0).

2) Signal Estimation Properties: Before analyzing the sta-
bility of synchronization equilibria, let us introduce the notion
of underestimation and overestimation for the communication
function s.

Definition 2: A signal function s is said to be:
• an underestimation at x ∈ [−1, 1] if x(s(x)− x) ≤ 0.
• an overestimation at x ∈ [−1, 1] if x(s(x)− x) ≥ 0.
• a perfect estimation in interval I if for all x ∈ I , s(x) =

x. i.e., s is an underestimation and overestimation in I .
• a consistent estimation around c ∈ Fix(s) if there exists

a neighborhood I of c where for all x ∈ I , (x−c)(s(x)−
x) ≤ 0.

In other words, a function is an underestimation (resp.
overestimation) at a point if the signal it sends is closer (resp.
further) to 0 than the point itself. It is a local consistent
estimation if it sends the signal closer to c than the point itself
in a neighborhood of c (e.g., s is a consistent estimation around



0 if s is an underestimation around 0). All those properties can
be extended to an interval I if the property holds for all x ∈ I .
When I is the whole interval [−1, 1], we say that the property
is global.

These definitions allow us to classify the communication
functions based on their practical characteristics and resulting
system behavior. For example, the classical linear consensus
s(x) = x is a perfect estimation everywhere. Functions like
s(x) = tanh(x) (as illustrated in Figure 1) or s(x) = ax for
0 ≤ a < 1 represent global underestimations, modeling attenu-
ation or saturation that can drive states towards a central value
like zero. Conversely, functions that amplify state magnitude
or transition sharply, such as approximations of quantization
like s(x) = max(−1,min(1, x/ε)) for 0 < ε < 1 which are
locally overestimating around zero, fall under the category of
overestimation. The crucial property of consistent estimation
around a fixed point c signifies that the signal locally pulls the
state back towards c, a condition essential for local stability
as shown in Theorem 1.

Building upon these concepts, let us first analyze the agents’
behavior under global underestimation.

Proposition 3: Let G be a connected graph and s be a
globally underestimating signal function. Then, every solution
of (2) starting in X approaches a synchronization equilibrium
at a fixed point of s. i.e., limt→∞ x(t) = x∗ ∈ SFix(s) for all
x(0) ∈ X .

Proof: Consider the Lyapunov candidate function V :
X → R≥0 defined by V (x) = x⊤Dx/2 where the degree
matrix D is symmetric positive definite (D = D⊤ ≻ 0) since
the graph G is connected.

Calculating the time derivative of V along the trajectories
of system (2), yields

V̇ (x) = x⊤Dẋ = x⊤D(D−1As(x)− x)

= x⊤As(x)− x⊤Ds(x) + x⊤D(s(x)− x)

= −x⊤Ls(x) + x⊤D(s(x)− x),

where L = D −A is the Laplacian matrix.
Let us demonstrate that both terms in V̇ (x) are non-

positive. For the first term, since s is non-decreasing, we have
(xi − xj)(s(xi)− s(xj)) ≥ 0 for all i, j ∈ V . This implies:

x⊤Ls(x) =
1

2

∑
1≤i,j≤N

aij (xi − xj) (s(xi)− s(xj)) ,

where the second equality follows from the symmetry of the
adjacency matrix (aij = aji ≥ 0) due to G being undirected.
Therefore, we have that −x⊤Ls(x) ≤ 0.

For the second term, the global underestimation property of
s ensures that xi(s(xi)−xi) ≤ 0 for all i ∈ V and xi ∈ [−1, 1].
Consequently:

x⊤D (s(x)− x) =
∑

1≤i≤N

dixi(s(xi)− xi) ≤ 0,

where the non-negativity of the degrees di preserves the
inequality.

Let us now characterize the largest invariant set where
V̇ (x) = 0. The condition V̇ (x) = 0 is satisfied if and only
if both terms in the derivative vanish simultaneously. The first
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Fig. 1: State evolution for agents with global underestimation
signal over a connected graph (Erdős-Rényi with N = 100 and
p = 0.1) with random uniform initial conditions and s(x) =
tanh(x).

term −x⊤Ls(x) = 0 implies that xi = xj for all i, j ∈ V ,
while the second term x⊤D (s(x)− x) = 0 implies that
xi = s(xi) for all i ∈ V . The first condition establishes that
x ∈ S, which by Lemma 2 is forward invariant. Therefore, the
largest invariant set satisfying V̇ (x) = 0 can be characterized
as S ∩ Fix(s)N which is precisely the set SFix(s).

The convergence of solutions follows from LaSalle’s invari-
ance principle [12, Theorem 3.4]. Given that X is compact
and forward invariant, V (x) is bounded from below on X .
Moreover, since V̇ (x) ≤ 0, and SFix(s) is the largest invariant
set where V̇ (x) = 0, we can conclude that every solution with
initial condition in X converges to SFix(s) as t → ∞.

Then, in case of global underestimation, the convergence to
a fixed point of s is guaranteed. This behavior is illustrated in
Figure 1.

3) Stability of Synchronization Equilibria: Having estab-
lished the existence and convergence properties of synchro-
nization equilibria, a fundamental question concerns their sta-
bility characteristics. The local behavior of the signal function
s around these equilibria plays a crucial role in determining
their stability properties. The following theorem provides a
complete characterization of the stability of synchronization
equilibria based on the local estimation properties of s.

Theorem 1: Let G be a connected graph and Sc = c1 be a
synchronization equilibrium. Then the following holds true:

1) Sc is locally stable if and only if s is a consistent
estimation around c.

2) Sc is locally asymptotically stable if and only if Sc is
locally stable and c is an isolated fixed point of s.

Proof: 1) Let us start by showing that if Sc is locally
stable, then s must be a consistent estimation around c.
Indeed, if Sc is locally stable, there exists a forward invariant
neighborhood Ω of Sc for the dynamics (2). Let us note
I = Ω ∩ S ⊂ [−1, 1]. By Proposition 2, SI is also forward
invariant for (2). Then, by considering the dynamics along the
synchronization manifold, one has for all x ∈ I ,

sgn (ẋ) = −sgn (s(x)− x) or ẋ = s(x)− x = 0.

where sgn (x) is the sign of x. This yields that for all x ∈ I ,
one has x < c implies s(x) ≤ x and x > c implies s(x) ≥ x.
Combining the two gives (x−c)(s(x)−x) ≤ 0, which proves
that s must be a consistent estimation around c.

Conversely, let us show that if s is a consistent estimation
around c, then Sc is locally stable. Let s be a consistent
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Fig. 2: Illustration of the local stability conditions for syn-
chronization equilibria as described in Theorem 1.

estimation around c. Then, by definition, there exists a neigh-
borhood I of c such that s is an overestimation for x < c
and an underestimation for x > c. Using a similar Lyapunov
function as in the proof of Proposition 3, we can show that Sc

is locally stable. Indeed, the Lyapunov function is now given
by V (x) = (x− c1)

⊤
D (x− c1) /2. The time derivative of

V along the trajectories of system (2) is given by

V̇ (x) = − (x− c1)
⊤
Ls(x) + (x− c1)

⊤
D(s(x)− x),

which is non-positive since s is a consistent estimation around
c. Then, Sc is locally stable by [12, Theorem 3.1].

2) If in addition, c is an isolated fixed point, then c1 is
locally attractive, since in a neighborhood Ω of Sc one has
for all x ∈ Ω, V̇ (x) ≤ 0 and V̇ (x) = 0 if and only if
x = c1. Thus, S is locally asymptotically stable.

Conversely, if Sc is locally attractive, it must be attractive
also along the synchronization manifold. Then, for the one
dimensional dynamics on S, there exists a neighborhood I ⊂
[−1, 1] of c such that for all x ∈ I , sgn (ẋ) = −sgn (s(x)− x)
and ẋ = 0 if and only if x = c. This yields that c is the only
fixed point of s contained in I , meaning it is isolated.

The theorem characterizes the stability conditions for syn-
chronization equilibria in terms of the behavior of the function
s near fixed points. Specifically, a synchronization equilibrium
Sc is locally asymptotically stable (AS) if and only if the
function satisfies specific local estimation properties around c:
for points x < c in a neighborhood of c, the function s must
overestimate, while for points x > c, the function s must
underestimate.

Remark 3: The same result can be shown for approxima-
tions of non-Lipschitz-continuous functions as long as they are
non-decreasing. For instance, consider the quantization func-
tion q(x) = sign(x) from [4] and [6]. For any 0 < ε < 1, one
may approximate q(x) by sε(x) = max(−1,min(1, x/ε))
Then, by Theorem 1, the same result holds for any sε with
0 < ε < 1. i.e., the only asymptotically stable synchronization
equilibria are {−1,1}.

This result provides a rigorous framework for analyzing
the local stability of synchronization equilibria at fixed points
of s for connected graphs for a general signal function s.
Figure 2 illustrates this phenomenon, contrasting a stable
consensus equilibrium (left panel) with an unstable consensus
equilibrium (right panel).

4) Domain of Attraction for Synchronization Equilibria: One
may ask what the domain of attraction for a synchronization
equilibrium is. With this aim, let us consider the following
proposition.
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Fig. 3: State evolution for agents with a globally overes-
timating signal under the same conditions as in Figure 1,
s(x) = 0.8 sin(2x)/ sin(1.6) for x ∈ [−0.8, 0.8] and s(x) = x
otherwise, chosen for illustration purposes only.

Proposition 4: Let k1 < k2 < · · · < km be the ordered
fixed points around which s is inconsistent. Then, for all l ∈
{1, . . . ,m− 1}, the sets

Kl = [kl, kl+1]
N \ {kl1, kl+11}

are forward invariant for the dynamics (2).
Additionally, let I = (kl, kl+1) and denote C = Fix(s)∩ I .

Then, the attraction domain of SC contains at least Kl.
Proof: To show the forward invariance of Kl, as before,

it is sufficient to prove that the dynamics (2) is pointing inward
on the boundary of Kl.

Let x ∈ {kl, kl+1}N \{kl1, kl+11}, and denote, for an node
i, n−

i and n+
i the number of neighbors with state kl and kl+1,

respectively. Then, for all i ∈ {1, . . . , N} one has,

ẋi =
1

di

N∑
j=1

aijs(xj)− xi =
1

di

(
n+
i kl+1 − n−

i kl
)
− xi,

where kl < (n+
i kl+1 + n−

i kl)/di < kl+1 since n+
i + n−

i = di
and n+

i , n
−
i > 0. Thus, if xi = kl, then ẋi > 0 and if xi =

kl+1, then ẋi < 0. Then, Kl is forward invariant, proving the
first part of the proposition.

Now, let us show the existence of a fixed point of s in I such
that SC is forward invariant. The function g(x) = s(x)− x is
continuous on I , for small ε > 0 one has g(kl + ε) > 0 and
g(kl+1 − ε) < 0. Then, by the intermediate value theorem,
there exists c ∈ (kl, kl+1) such that g(c) = 0. Then, C
is nonempty. Moreover, s must be a consistent estimation
around any c ∈ C by definition of k1, k2, . . . , km. Then,
by Theorem 1, for all c ∈ C, c1 is a stable equilibrium
of (2) and SC is forward invariant for (2). Finally, by using
V (x) = (x− c1)

⊤
D (x− c1) /2, and applying the LaSalle’s

invariance principle [12, Theorem 3.4], one has that the
attraction domain of SC contains at least Kl.

When s is a globally overestimating function, the following
corollary holds true.

Corollary 1: Let s be a globally overestimating function
and let x(0) ∈ [0, 1]

N or x(0) ∈ [−1, 0]
N . Then, the dynamics

(2) converges to the synchronization equilibrium SFix(s).
The proof of this corollary is straightforward due to the

Proposition 4. Indeed, if s is globally overestimating, then the
function s is overestimating for all x ∈ [0, 1] or x ∈ [−1, 0]
with −1 and 1 as fixed points. Then, by Proposition 4,
the dynamics (2) converges to one of the synchronization



equilibrium in SFix(s). However, the attraction basin of SFix(s)

is not restricted to [0, 1]
N or [−1, 0]

N as illustrated in Figure
3. In this figure, we observe a contraction of the states of the
agents around an unstable equilibrium due to the topological
properties of the graph, and then states enter in [0, 1]

N

and converge to a synchronization equilibria in SFix(s). This
motivates the analysis of graph structure on the convergence
properties of the dynamics (2).

D. Synchronization induced by the graph structure
In this section, we study the synchronization equilibria of

the dynamics (2) for the case of symmetric neighbors. We
will show how the symmetry of the neighbors can influence
the synchronization equilibria.

Proposition 5: Let i, j ∈ V such that i ̸= j and either:
“Ni = Nj” or “i ∈ Nj , j ∈ Ni and Nj\{i} = Ni\{j}”. Then,
agents i and j asymptotically synchronize. i.e., limt→∞ xi(t)−
xj(t) = 0.

Proof: Let i, j ∈ V such that i ̸= j and either: “Ni =
Nj” or “i ∈ Nj , j ∈ Ni and Nj \ {i} = Ni \ {j}”. We
consider the dynamics of the difference δij = xi − xj . Then,
we have

δ̇ij = ẋi − ẋj = (ei − ej)
⊤
D−1As(x)− δij .

Now, due to the symmetry of the neighborhood, we have that
for all y ∈ RN , (ei − ej)

⊤
D−1Ay = d−1

i aijyj−d−1
j ajiyi =

d−1
i aij (yj − yi). Then, we have

sgn
(
δ̇ij

)
= sgn

(
d−1
i aij (s(xj)− s(xi))− δij

)
= −sgn

(
d−1
i aij (s(xi)− s(xj)) + δij

)
= −sgn (δij) ,

since the function s is non-decreasing and d−1
i aij ≥ 0.

Then, limt→∞ δij(t) = 0 and agents i and j asymptotically
synchronize.

This result only relies on the neighborhoods of agents i and
j and does not depend on global properties of the graph G.
The following corollary is then immediate.

Corollary 2: Let G be the all-to-all graph or a complete
bipartite graph. Then, all agents asymptotically synchronize.

It is noteworthy that convergence to a synchronization
equilibrium is not universally guaranteed for every choice of
signal function. In particular, when the signal function exhibits
overestimating behavior, even connected graphs may fail to
achieve synchronization if they are sparse. Figure 4 illustrates
this phenomenon using a line graph with six agents, where
each agent has at most two neighbors. Under these conditions,
the overestimating nature of the signal may prevent the agents’
states from converging to a common state.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a framework for continuous-

time consensus-like dynamics that generalizes traditional lin-
ear consensus and allows a nonlinear Lipschitz-continuous
signaling function as the communication medium. Our analysis
rigorously characterized the synchronization equilibria as the
fixed points of the communication signal and established both
local and, in some particular cases, global stability conditions
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Fig. 4: State evolution for agents with a globally overestimat-
ing signal (s(x) = tanh(20x)) over a line graph of 6 agents.
The agents do not converge to a synchronization equilibrium
for these random initial conditions.

based solely on the properties of the signal function and the
underlying network topology.

These results provide insights on how communication non-
linearity and network connectivity jointly determine multi-
agent coordination. They also open several promising research
directions, such as: analyzing the asymptotic behavior un-
der non-smooth interaction signals, studying the convergence
properties when the signal is not globally underestimating the
state . Extending the analysis to directed and signed graphs,
which capture complex cooperative and antagonistic inter-
actions, presents particularly interesting and relevant future
research avenues.
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