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Discrete-Time Conewise Linear Systems with
Finitely Many Switches

Jamal Daafouz, Jérôme Lohéac, Constantin Morărescu, Romain Postoyan

Abstract—We investigate discrete-time conewise linear systems
(CLS) for which all the solutions exhibit a finite number of
switches. By switches, we mean transitions of a solution from
one cone to another. Our interest in this class of CLS comes
from the optimization-based control of an insulin infusion model,
for which the fact that solutions switch finitely many times
appears to be key to establish the global exponential stability
of the origin. The stability analysis of this class of CLS greatly
simplifies compared to general CLS, as all solutions eventually
exhibit linear dynamics. The main challenge is to characterize
CLS satisfying this finite number of switches property. We first
present general conditions in terms of set intersections for this
purpose. To ease the testing of these conditions, we translate them
as a non-negativity test of linear forms using Farkas lemma. As a
result, the problem reduces to verify the non-negativity of a single
solution to an auxiliary linear discrete-time system. Interestingly,
this property differs from the classical non-negativity problem,
where any solution to a system must remain non-negative
(component-wise) for any non-negative initial condition, and thus
requires novel tools to test it. We finally illustrate the relevance
of the presented results on the optimal insulin infusion problem.

Index Terms—Conewise linear systems, Lyapunov stability,
optimization-based control, insulin infusion, Farkas lemma.

I. INTRODUCTION

Conewise linear systems (CLS) are dynamical systems for
which the state space is partitioned into a finite number of non-
overlapping polyhedral cones [1]–[3]. The dynamics within
each cone is governed by a linear time-invariant dynamical
system called a mode. These systems pose significant chal-
lenges due to their piecewise linear nature. In particular, it
has been shown in [4] that the stability analysis of CLS is a
NP-hard problem. Hence, algorithms for deciding stability of
CLS are inherently inefficient. We can mention the converse
Lyapunov results in [3], which lead to necessary and sufficient
stability conditions. The results in [3] state that the origin of
a CLS is globally exponentially stable (GES) if and only if it
admits a conewise linear Lyapunov function, whose associated
conic partition does not coincide with the original system
partition in general. As a consequence, the method proposed
in [3] may be undecidable or computationally intractable.
We can also mention that CLS are known to be equivalent
to a class of linear complementarity systems [1] for which
cone-copositive Lyapunov functions may be synthesized, as
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done recently in [5] in continuous-time. The advantage is the
derivation of converse results with polynomial approximations
but, again, there is no guarantee of computational tractability
in general. To alleviate the computational obstruction of the
CLS stability analysis, an alternative approach is to exploit
additional properties for classes of CLS. This is the approach
pursued in this work, where we focus on discrete-time CLS,
whose solutions all exhibit a finite number of switches. By
switches, we mean the transition of a solution from one cone
to another.

Our motivation to study CLS with finitely many switches
comes from the application of the optimization-based control
approach of [6], namely quadratic control-Lyapunov policy
(QCLP), for optimal insulin infusion in [7]. The primary
objective is to minimize peak blood glucose level (BGL)
caused by a food impulse, while adhering to the constraint
that insulin flow must be positive [7]. Under the assumption
that the response of the meal lasts longer than the response
of an insulin impulse, as observed in specific situations (e.g.,
low glycemic index or high-fat/protein meals), it is proved
in [7] that the optimal infusion policy is given by an open-
loop policy combining an insulin bolus (applied with the
meal) and a specific form of decaying insulin flow thereafter.
This strategy exhibits the shortcomings of being open-loop
and of requiring the perfect knowledge of the meals. This
justifies the need for alternative efficient, suboptimal, closed-
loop feedback policies. It appears that the problem can be
formalized as a Linear Quadratic Regulator (LQR) problem
with positive control inputs, as we show. This constrained
optimal LQR problem arises in numerous real-world systems
and leads to major methodological challenges [8]–[12]. Nec-
essary and sufficient optimality conditions for the continuous-
time case are available in [9]. Nevertheless, the associated
numerical algorithm suffers from the curse of dimensionality,
approximations are thus required to determine the stationary
infinite horizon optimal feedback, moreover and importantly,
no stability guarantees are provided. This is the reason why we
opted for QCLP [11] instead, which is easy to implement and
shows remarkable performances in simulations when applied
to the model in [7]; see Figure 1 in Section II. We show that
the obtained closed-loop system can be modelled as a CLS
but ensuring its stability remains challenging. Indeed, despite
our attempts to apply existing methods for stability analysis of
CLS [3] or optimization-based control systems, such as [13]
and its extensions [14]–[16], as well as sum-of-squares-based
methods like [17] or the discrete-time counterpart of [5], we
were unable to obtain a stability certificate for the CLS under
consideration.
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We realized that the above-mentioned motivating example
satisfies a distinctive feature: the number of switches of any
solution to the closed-loop system is uniformly bounded. This
property is extremely useful to investigate stability, as any so-
lution is eventually given by a linear dynamical system. As, for
this example, each mode has a Schur state matrix, the global
exponential stability of the origin can then be established. Our
goal in this work is to formalize and generalize these findings.

We start by assuming that a given general discrete-time
CLS is such that all its solutions exhibit a finite number of
switches, and we give a necessary and sufficient condition for
the origin to be globally exponentially stable. This stability
property relies on the assumption that solutions switch finitely
many times, which is non-robust to exogenous disturbances
a priori. We might thus deduce that the ensured stability
property is not robust. We prove that this is not the case by
establishing that, for a CLS, global exponential stability of the
origin implies exponential input-to-state stability with respect
to a general class of additive disturbances. Afterwards, we
focus on the main challenge of this work that is to derive
conditions under which all solutions to a CLS exhibit a finite
number of switches. We are not aware of such results in the
literature. We can mention e.g., [18], which deals with linear
complementarity systems with continuous-time dynamics and
not discrete-time dynamics as we do, and ensures finitely many
switches for any solution on finite time intervals only, while we
are seeking for results over the whole domain of the solutions.
There is therefore a need for novel methodological tools that
allows establishing that any solution to given discrete-time
CLS switch a given maximum number of times.

In this context, we present general conditions in terms of
set intersections. To ease the testing of these conditions, we
derive alternative, tractable conditions, which boil down to
verifying whether a specific solution to an auxiliary discrete-
time system is non-negative thanks to the use of Farkas lemma.
These conditions are derived for the case of a partition of the
state space made of two cones, only to avoid over complicating
the used notation. It is interesting to note that the required
non-negativity property differs from the abundant literature
on positive systems e.g., [19], which concentrate on systems
for which all solutions take non-negative values (component-
wise). In our case, a single solution has to be non-negative,
we therefore present tailored conditions for this purpose, which
have their own interest and which are successfully applied to
the optimal insulin infusion problem.

The rest of the paper is organized as follows. The moti-
vating example inspired by [7] and the problem statement
are presented in Section II. Stability results are established
in Section III assuming all the solutions of the considered
CLS have a finite number of switches. Section IV provides
conditions under which solutions to a CLS exhibit no more
than a given maximum number of switches. Section V is
dedicated to the non-negativity analysis of the auxiliary system
derived from Farkas Lemma. The results are finally applied
to examples, including the insulin infusion problem, in Sec-
tion VI. Section VII concludes the paper. Some results are
postponed to the appendix to avoid breaking the flow of
exposition.

Notations. R denotes the set of real numbers, R+ the set
of non-negative real numbers, N the set of non-negative
integers, N⋆ ∶= N/{0}, and C the set of complex numbers. For
real matrices or vectors (⊺) indicates transpose. The identity
matrix of the considered set of matrices is denoted I. For
any symmetric matrix X > 0 (X ⩾ 0) means that X is
positive (semi-)definite. Given a1, . . . , an ∈ R with n ∈ N⋆, we
use diag(a1, . . . , an) to denote the diagonal matrix, whose
diagonal components are (a1, . . . , an). For any real square
matrix M , σ(M) denotes its spectrum. For any vectors v, we
write v ⩾ 0 when all its entries are non-negative. The notation
⌊s⌋ for s ∈ R stands for the integer part of s, and recall that
s−1 ⩽ ⌊s⌋. The interior of a set S is denoted int(S), its closure
cl(S) and we use B(0, r) for the closed ball centered at the
origin of radius r > 0 of the considered Euclidean space. Also,
card(S) is the cardinal of the set S. Given n ∈ N⋆, we say
that set C ⊂ Rn is a closed convex cone of Rn if C is closed
and, for any x, y ∈ C and any a, b ∈ R+, ax + by ∈ C. Given
two sets A and B, AB stands for the set of functions defined
from B to A.

II. MOTIVATION AND PROBLEM FORMULATION

We first focus on the LQR problem with scalar positive in-
puts (Section II-A), which covers the optimal insulin infusion
problem presented in more details afterwards (Section II-B).
After having illustrated the potential of QCLP for the near-
optimal insulin infusion, we formalize the stability analysis
of the obtained closed-loop system as the stability problem
of a CLS (Section II-C). There, we also discuss possible,
but unfortunately unsuccessful, Lyapunov-based approaches
to establish stability properties for the considered example
thereby motivating the problem statement (Section II-D).

A. LQR with positive inputs

The envisioned optimal insulin infusion problem is modeled
as a LQR problem with positive inputs. We thus consider the
deterministic discrete-time linear system

xt+1 = Axt +But, (1)

where xt = (x1t , . . . , x
n
t )

⊺ ∈ Rn is the state and ut ∈ R+

is the non-negative scalar control input at time t ∈ N, with
n ∈ N⋆. We denote the solution to (1) initialized at state
x ∈ Rn with input sequence u ∈ RN

+ at time t ∈ N as
φ(t, x,u) and φ(0, x, ⋅) = x. The cost function is given, for
any x ∈ Rn and infinite-length sequence of non-negative inputs
u = (u0, u1, . . .) ∈ RN

+ , by

J(x,u) ∶=
∞

∑
t=0

`(φ(t, x,u), ut), (2)

where `(z, v) ∶= z⊺Qz + 2z⊺Sv + Rv2 for any (z, v) ∈ Rn ×
R+, Q ∈ Rn×n such that Q = Q⊺ ⩾ 0, R ∈ (0,∞), S ∈ Rn

and [
Q S
S⊺ R

] ⩾ 0. We know from Bellman equation that the

optimal value function associated with (2), namely V ⋆(x) ∶=
minu∈RN+ J(x,u) satisfies, for any x ∈ Rn,

V ⋆
(x) ∶= min

u∈R+
(`(x,u) + V ⋆

(Ax +Bu)) (3)



3

based on which the optimal feedback policy is given by

g⋆(x) = min
u∈R+

(`(x,u) + V ⋆
(Ax +Bu)). (4)

Hence to construct the optimal policy g⋆, we need to know V ⋆,
which is very challenging in general because of the constraint
that u has to be non-negative; see [9] for results in the
continuous-time case. Consequently, we exploit an alternative
suboptimal policy proposed in [11] known as QCLP. The idea
is to construct the feedback policy using a known control
Lyapunov function Vclf instead of V ⋆ in (4). This leads to,
for any x ∈ Rn,

g(x) ∶= arg min
u∈R+

(`(x,u) + Vclf(Ax +Bu)). (5)

In this work, and as proposed in [6], we define Vclf as the
optimal value function associated with the unconstrained LQR
problem in the sense that the input can take any value in R, i.e.,
Vclf(x) ∶= x

⊺Px for any x ∈ Rn where P is the unique, real,
symmetric, positive definite solution to the Riccati equation
A⊺PA−P −(A⊺PB+S)(B⊺PB+R)−1(A⊺PB+S)⊺+Q = 0,
which exists as long as the pair (A,B) is controllable.

In view of the expressions of ` and Vclf, (5) can be re-
written as

g(x) = arg minu∈R+ ((R +B⊺PB)(u −Kx)2)
= max{0,Kx},

(6)

with K = −(R + B⊺PB)−1(B⊺PA + S⊺) the optimal gain
for the unconstrained LQR problem. This equivalence follows
from (5) and the equalities K⊺(R+B⊺PB)K = A⊺PA−P +Q
and −(R +B⊺PB)K = B⊺PA + S⊺.

B. Optimal insulin infusion

We apply the approach of Section II-A to the problem of
optimal insulin infusion of [7] where the primary objective
is to minimize the peak of the blood glucose level (BGL)
resulting from a food impulse while ensuring that insulin
flow remains non-negative. We reformulate the problem as
a LQR problem with a control non-negativity constraint and
apply the associated QCLP strategy (5). The continuous-time
model of [7] was obtained from clinical trials. Here, we use a
sampled-data version with a sampling period T = 5 min; see
Appendix A for more details. As a result, the discrete-time
state model is given by (1) with n = 4, and

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8351 −0.1150 −0.0521 0
0.0716 0.9954 −0.0021 0
0.0014 0.0390 1.0000 0

−0.0082 −0.3249 −16.4423 0.9277

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.6702
0.1431
0.0029
−0.0163

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(7)

We have selected the weighting matrices Q,S and R as in
Appendix A, which leads to

K = [ −0.4936 −6.9988 −104.7360 1.6626 ] . (8)

A solution to the corresponding closed-loop system with (6)
is depicted in Figure 1 together with the solutions using

the optimal open-loop strategy given in [7] and the zero-
input strategy. As it can be seen in Figure 1, the control
is effective in reducing the excursion due to an impulse of
food ingested (60 g) compared to the open-loop behavior
with zero input in black dash-dotted line. Our result shows
a maximum BGL excursion of 2 mmol/L. The best feedback
policy in [7, Section 7], for the corresponding continuous-
time model (see Appendix A) has a maximum BGL excursion
of 1.28 mmol/L. However, the associated controller assumes
the BGL can be exactly differentiated, which is unfortunately
unrealistic. To make the strategy realistic, the bandwidth of
these differentiators has been restricted in [7], and the results
show larger peaks (5.71 mmol/L).

Fig. 1: Top: glucose evolution (open-loop with zero input in
black dash-dotted line, closed-loop with K in red solid line,
optimal open-loop of [7] in blue dashed line). Bottom: Insulin
flow (closed-loop with K in (8)).

QCLP (6) is thus promising for this application. However,
the stability of the corresponding closed-loop system is an
open question, as we now explain.

C. Limitations of existing Lyapunov-based techniques

System (1) in closed-loop with (6) is a CLS given by

xt+1 =

⎧⎪⎪
⎨
⎪⎪⎩

A1xt xt ∈ C1,

A2xt xt ∈ C2,
(9)

with A1 = A +BK and A2 = A and

C1 = {x ∈ Rn ∶ Kx ⩾ 0} ,
C2 = {x ∈ Rn ∶ −Kx ⩾ 0} = cl (Rn/C1) ,

(10)

where K ∈ R1×n is the gain associated with the optimal
unconstrained LQR problem. It appears that certifying the
stability of the origin for system (9) is challenging [4]; even
when A1 and A2 are Schur as in Section II-B.
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Interestingly, this stability problem can be formulated in
other frameworks such as optimization-based systems due
to (5), piecewise linear systems to which system (9) belongs to,
or linear complementarity systems1 (LCS) a well-established
class of nonsmooth systems [20]. This connection is signif-
icant, as it situates our problem within a broader theoretical
framework. However, while the LCS theory provides a useful
perspective, solving the problem at hand within this framework
is nontrivial and cannot be fully addressed by existing methods
in the literature as far as we know. This opens an interesting
avenue for future research, requiring the development of new
techniques to handle the specific challenges posed by the
considered system.

To elaborate more on the fact that none of the existing
Lyapunov-based stability tools of the literature certifies the
stability of the system in Section II-B, we introduce below a
novel comparison between three distinct classes of Lyapunov
function candidates commonly encountered in the above-
mentioned fields. The first one is found in the optimization-
based framework [13], [21], [22], and corresponds to the value
function associated with (5), i.e., for any x ∈ Rn,

V (x) ∶= min
u∈R+

(x⊺Qx + 2x⊺Su + u⊺Ru

+(Ax +Bu)⊺P (Ax +Bu)).
(11)

The second Lyapunov function candidate is the quadratic form
inherited from the LCS literature [23], i.e., for any x ∈ Rnx
and u = g(x) as in (5),

Vquad(x) ∶= [ x⊺ u⊺ ] [
X1 X2

X⊺
2 X3

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X

[
x
u

] (12)

where X1 = X
⊺
1 ∈ Rn×n, X2 ∈ Rn×m, and X3 = X

⊺
3 ∈ Rm×m

and X strictly copositive [23]. The third one is the piecewise
quadratic function, as in [24], that is for any x ∈ Rn,

VPWQ(x) =∶

⎧⎪⎪
⎨
⎪⎪⎩

x⊺P1x, if x ∈ C1,
x⊺P2x, if x ∈ C2,

(13)

where P1 = P ⊺
1 ∈ Rn×n and P2 = P ⊺

2 ∈ Rn×n. This function
is also a conewise quadratic function with the same partition
as (9).

The relationship between these three Lyapunov function
candidates unfolds as follows. Function V is a particular in-
stance of Vquad. Specifically, if we set, in (12), X1 = A

⊺PA+Q,
X2 = A

⊺PB+S, and X3 = B
⊺PB+R, then we obtain Vquad =

V . Function VPWQ is the most general form, encompassing
both (11) and (12), as it accommodates Vquad (which is more
general than V ) by setting P1 =X1+K

⊺X⊺
2 +X2K+K⊺X3K

and P2 = X1, leading to VPWQ = Vquad. Having identified
the most general Lyapunov function candidate among these
three options for system (9), LMI conditions under which the
stability of the origin of (9) would be guaranteed using (13)

1This can be seen by noticing that the necessary and sufficient optimality
Karush-Kuhn-Tucker (KKT) conditions of the quadratic problem (5) write
(R +B⊺PB)v − (R +B⊺PB)Kxt − λ = 0, v ⩾ 0, λ ⩾ 0, λv = 0, where
λ ∈ R is a Lagrange multiplier. As a result, the closed-loop system (1)-(5) can
also be written as a discrete-time LCS xt+1 = Axt +But, yt = Cxt +Dut,
0 ⩽ ut ⊥ yt ⩾ 0, where C = −(R +B⊺PB)K and D = R +B⊺PB.

are provided in Appendix B. Regrettably, these conditions are
infeasible for the system discussed in Section II-B. Further-
more, all our attempts to ensure the stability of this system
based on other existing tools from the literature [3], [5], [13]–
[16] failed.

Now, for all the tested values of Q, R and S in (2), all
the solutions of the corresponding system (9) have the dis-
tinctive feature to switch a maximum of 4 times, which, once
analytically established, allows concluding on the stability of
the origin for the considered system, see Section VI-B. In the
following, we formalize these findings for general CLS.

D. Problem statement

Motivated by the above developments, we consider in this
paper general discrete-time CLS of the form

xt+1 = Aixt xt ∈ Ci, i ∈ {1, . . . ,m}, (14)

where m ∈ N⋆ is the number of non-empty closed convex
cones Ci, i ∈ {1, . . . ,m}, which partition the state space Rn,
i.e.,

● C1 ∪ ⋅ ⋅ ⋅ ∪ Cm = Rn,
● int(Ci) ∩ int(Cj) = ∅ for all i ≠ j ∈ {1, . . . ,m}.

Assumption 1. Aiξ = Ajξ for any vector ξ ∈ Ci ∩ Cj .

As in [3], the continuity condition of Assumption 1 ensures
consistent behavior across the switching surfaces (the cone
boundaries) and guarantees the uniqueness of solutions for
system (14) for any initial condition. This assumption is crucial
because, in discrete-time systems, it is possible for trajectories
to converge in finite time towards sliding surfaces, as discussed
in [25]. The continuity assumption we make here prevents
the occurrence of sliding modes and attractive surfaces, which
would otherwise complicate the system dynamics.

Assumption 2. Matrices A1, . . . ,Am are are invertible.

The full-rank condition imposed by Assumption 2 is quite
classical for discrete-time systems. In our study, this assump-
tion will allow us to avoid additional technical difficulties.

For the sake of convenience and with some slight abuse
of notation, we use φ to denote solutions to (14), so that for
initial condition x ∈ Rn, the corresponding solution to (14) at
time t ∈ N is denoted φ(t, x). We refer to the dynamics of (14)
for a given i ∈ {1, . . . ,m} as a mode. We next formalize what
is meant by a switch and the maximum number of switches
of a solution to (14). Intuitively, one would say that, given
a solution to (14), a switching time occurs when the solution
leaves a set Ci. However, since our sets are not strictly disjoint,
this simple definition is not suitable. For instance, with m = 3,
if we have a sequence such that x ∈ C1/ (C2 ∪ C3), φ(1, x) ∈
(C1 ∩ C2) /C3, φ(2, x) ∈ C1 ∩ C2 ∩ C3, φ(3, x) ∈ (C2 ∩ C3) /C1
and φ(t, x) ∈ C3/ (C1 ∪ C2) for every t ⩾ 4, we would say that
switching times are 3 and 4, since C1 (respectively C2) is left
at time t = 3 (respectively t = 4). However, for this particular
case, the correct switching time is t = 3, since φ(t, x) ∈ C1
for t ∈ {0,1,2} and φ(t, x) ∈ C3 for t ⩾ 3. Thus, in order to
define the switching times and the number of switches, we
need to explore all possible sequences of modes. To this end,
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in the spitit of [3, Section 5], for every x ∈ Rn, we define the
possible sequences of modes

I(x) = {(it)t∈N ∈ {1, . . . ,m}
N
∶ ∀t ∈ N, φ(t, x) ∈ Cit} .

Let us now define for (it)t∈N ∈ {1, . . . ,m}N the jumping times:

T ((it)t) = {t ∈ N∗
∶ it − it−1 ≠ 0} ⊂ N∗

and the number of jumps

 ((it)t) = card (T (it)t)) ∈ N ∪ {∞}.

We are now in position to define the number of switches and
switching times associated with a solution of (14).

Definition 1 (Switching times and number of switches). Given
an initial condition x ∈ Rn, the number of switches of the
solution φ(⋅, x) to (14) is given by

ς(x) = min{ ((it)t∈N) ∶ (it)t∈N ∈ I(x)} ∈ N ∪ {∞}.

Corresponding switching times are the elements of T ((i∗t )t),
where (i∗t )t ∈ I(x) is a sequence such that  ((i∗t )t) = ς(x).

Note that, in the above definition, ς(x) and (i∗t )t are well-
defined since we take the minimum of a non-negative function
having integer values. In view of Definition 1, a solution
φ(⋅, x) for some x ∈ Rn exhibits a finite number of switches
if and only if ς(x) <∞.

The main objective of this work is to derive conditions under
which all solutions to system (14) exhibits a finite number of
switches, see Section IV. This is motivated by the fact that
the stability analysis simplifies for this class of CLS, as we
show in the next section. In Section IV, to ensure that ς(x) is
uniformly bounded with respect to x ∈ Rn/{0}, we will ensure
that max{ ((it)t∈N) ∶ (it)t∈N ∈ I(x)} is uniformly bounded
with respect to x ∈ Rn/{0}.

III. STABILITY RESULTS

We first provide a necessary and sufficient condition for
x = 0 to be GES for system (14), again, assuming all its
solutions switch a finite number of times; conditions to ensure
this property are provided in Section IV. We then show that
this stability property is robust, in the sense that an input-
to-state stability property holds when (14) is perturbed by
exogenous disturbances.

A. Global exponential stability

We define next the set F , which characterizes the region of
the state space where solutions to (14) stop switching,

F ∶= {x ∈ Rn ∶ ∃i ∈ {1, . . . ,m}, ∀t ∈ N Atix ∈ Ci} . (15)

In other words, F = {x ∈ Rn ∶ ς(x) = 0} with the notation of
Definition 1. Obviously, 0 ∈ F and F is forward invariant
for system (14). The next theorem gives a necessary and
sufficient condition for the origin of system (14) to be GES,
i.e., there exist c1 ⩾ 1 and c2 > 0 such that for any x ∈ Rn,
∣φ(t, x)∣ ⩽ c1e

−c2t∣x∣ for any t ∈ N, when we know that any
solution exhibits a finite number of switches. Again, conditions
to ensure the latter property are provided in Section IV.

Theorem 1. Consider system (14) and suppose that any
solution exhibits a finite number of switches, i.e., ς(x) < ∞

for any x ∈ Rn with ς as in Definition 1. Then the origin is
GES if and only if the origin of the restriction of (14) to F ,
namely,

xt+1 = Aixt x0 ∈ Ci ∩F , i ∈ {1, . . . ,m}, (16)

is GES.

Proof: We first suppose the origin of (14) is GES. As F
is forward invariant, it follows that the origin of (16) is GES.

Suppose now that the origin of (16) is GES. Let φ be a
solution to (14) initialized at x ∈ Rn. Since φ(⋅, x) exhibits
a finite number of switches over N, for t0 = t0(x) (the last
switching time), we have φ(t0, x) ∈ F . As a result, φ(t, x) ∈ F
for any t ⩾ t0 as F is forward invariant. This implies that
φ(t, x) → 0 as t → ∞ as the origin is GES for system (16).
Since x has been arbitrarily chosen, we have proved that any
solution to (14) asymptotically converges to the origin, i.e.,
the origin is globally attractive for system (14). As item (i) of
Theorem 6 in Appendix C holds, it yields that the origin is
GES for system (14).

To apply Theorem 6 we use two ingredients: that the origin
of (16) is GES, and that any solution enters in F . This last
condition is ensured by assuming that any solution to (14)
exhibits a finite number of switches. We note that Ci ∩ F ,
which appears in (16), is the largest forward invariant set
within cone Ci for the dynamics xt+1 = Aixt. When we know
in which cone(s) the solutions eventually enter and remain for
all future times, this boils down to investigating the spectrum
of the state matrices associated with these cones. When all
the matrices Ai, i ∈ {1, . . . ,m}, are Schur as in the examples
of Section VI, the fact that the origin of (16) is GES directly
follows as solutions to (16) exhibit no switches. Now ensuring
the condition that all solutions exhibit a finite number of
switches, requires the development of novel tools, which are
presented in Section IV.

Remark 1. A necessary condition for the origin of system (16)
to be GES is that for every i ∈ {1, . . . ,m}, if λ ∈ σ(Ai)∩R is
such that there exists an eigenvector v ∈ Ci of Ai associated
with λ, then λ ∈ [0,1). This comes from the fact that, with these
conditions, the solution of (14) initialized at v, φ(t, v) = λtv,
belongs to Ci for every t ∈ N. In particular, we have R+v ⊆ F .

B. Exponential input-to-state stability

The property assumed in Theorem 1 that any solution to (14)
switches a finite number of times is non-robust a priori, in
the sense that an arbitrarily small exogenous disturbance may
destroy it. It is therefore essential to analyze the robustness
of the stability result in Theorem 1. This is formalized in
the next theorem, which we could not find in the literature,
although similar statements have been established for discrete-
time systems but with different homogeneity degrees, see [26,
Theorem 10], or for general continuous-time homogeneous
systems, see e.g. [27].
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We consider for this purpose system (14) perturbed by
exogenous disturbance as follows

xt+1 ∈ {Aixt +wt ∶ i ∈ {1, . . . ,m}, xt ∈ Ci, wt ∈ E(xt)vt} ,
(17)

where vt ∈ Rnv , with nv ∈ N⋆, is the disturbance at time t
and E is a set-valued map from Rn to Rn×nv such that:
(i) E(λx) = E(x) for any x ∈ Rn and λ > 0; (ii) there
exists mE ⩾ 0 such that for any x ∈ Rn and z ∈ E(x),
∣z∣ ⩽ mE . Set-valued map E covers as a special case the
situation where E(x) = {Ei ∶ i ∈ {1, . . . ,m}, x ∈ Ci} for
some constant matrices Ei. On the other hand, matrices Ai
and sets Ci, i ∈ {1, . . . ,m}, are as in (14). System (17) is a
difference inclusion, as its right-hand side is set-valued. For
the sake of convenience and like in Section II-A, we denote a
solution to (17) initialized at x ∈ Rn with disturbance sequence
v = (v0, v1, . . .) ∈ (Rnv)N at time t ∈ N as φ(t, x,v). We have
the next robustness result.

Theorem 2. Suppose the origin is GES for system (14), then
system (17) is exponentially input-to-state stable, in particular
there exist c1 ⩾ 1, c2 > 0 and c3 ⩾ 0 such that for any x ∈ Rn
and any v ∈ (Rnv)N, any solution φ satisfies ∣φ(t, x,v)∣ ⩽
c1e

−c2t∣x∣ + c3 supt′∈{1,...,t} ∣vt′ ∣.

Proof: We first apply [28, Theorem 2] to obtain a suitable
homogeneous Lyapunov function for system (14). With the
notation of [28], we take ω(⋅) = ∣ ⋅ ∣ and D = Rn. Then,
Assumption 1 in [28] holds by [29, Theorems 6.30 and 7.21],
as x = 0 is GES for system (14) and the vector field in (14)
is continuous2. Assumption 2 in [28] also holds, as the vector
field in (14) is homogeneous of degree 0. The last condition to
check is [28, Assumption 3], which is verified with Gλ = λI
and d = 1. Consequently, by [28, Theorem 2], there exist
V ∶ Rn → R+ continuous on Rn, smooth on Rn/{0}, such
that V (λx) = λV (x) for any λ > 0 and x ∈ Rn, as well as
α,α > 0 and µ ∈ (0,1) such that, for any x ∈ Rn and any
i ∈ {1, . . . ,m} such that x ∈ Ci,

α∣x∣ ⩽ V (x) ⩽ α∣x∣

V (Aix) ⩽ µV (x).
(18)

Let (x, v) ∈ Rn × Rnv , w ∈ E(x)v, and any i ∈ {1, . . . ,m}

such that x ∈ Ci. In view of (18) and Lemma 1 stated below,
there exists L ⩾ 0 (independent of x, v and thus w) such that

V (Aix +w) ⩽ V (Aix) + ∣V (Aix +w) − V (Aix)∣

⩽ µV (x) +L∣w∣ ⩽ µV (x) +LmE ∣v∣. (19)

Let v ∈ (Rnv)N, we derive from (19) that for any t ∈ N, any
solution φ to (17) satisfies

V (φ(t, x,v)) ⩽ µt V (x) +
LmE

1 − µ
sup

t′∈{1,...,t}
∣vt′ ∣.

We deduce the desired property with c1 = α/α, c2 = − ln(µ)
and c3 = LmE/(α(1 − µ)) by invoking the first line in (18).

We have used the next lemma in the proof of Theorem 2.

2Recall that Aix = Ajx for any x ∈ Ci ∩ Cj .

Lemma 1. Let V ∶ Rn → R be such that V (λx) = λV (x) for
every λ > 0 and every x ∈ Rn. V is globally Lipschitz if and
only if V is Lipschitz on the unit sphere of Rn.

A consequence of Lemma 1 is that, if V is C1 on Rn/{0},
then it is globally Lipschitz on Rn.

Proof: We set D = B(0,1) and ∂D = D/ int(B(0,1)),
the unit sphere of Rn. Obviously, if V is Lipschitz on Rn,
then V is Lipschitz on ∂D. Reciprocally, we assume that V
is Lipschitz on ∂D. It is enough to prove that V is Lipschitz
on D. In fact, by homogeneity, if V is Lipschitz on D, then
V is (globally) Lipschitz on Rn. Assume by contradiction that
V is not Lipschitz on D. Then, for every k ∈ N, there exists
xk, yk ∈D such that ∣V (xk)−V (yk)∣ > k∣xk − yk ∣. Obviously,
we have xk ≠ yk, and without loss of generality, we can as-
sume that ∣xk ∣>∣yk ∣. Using the homogeneity of V , we can also
assume without loss of generality that xk ∈ ∂D. In addition,
since k∣xk − yk ∣ < ∣V (xk) − V (yk)∣ ⩽ 2 maxξ∈∂D ∣V (ξ)∣, we
get that limk→∞ ∣yk ∣ = 1, and in particular, for k large enough,
we have ∣yk ∣ ≠ 0. We then define zk = yk/∣yk ∣ ∈ ∂D, and we
have

∣V (xk) − V (zk)∣ ⩾ ∣V (xk) − V (yk)∣ − ∣V (yk) − V (zk)∣

= ∣V (xk) − V (yk)∣ − (1 − ∣yk ∣)∣V (zk)∣

> k∣xk − yk ∣ − (1 − ∣yk ∣)max
∂D

∣V ∣.

Since V is Lipschitz on ∂D, there exists L ∈ R+ such that
∣V (xk) − V (zk)∣ ⩽ L∣xk − zk ∣ ⩽ L (∣xk − yk ∣ + (1 − ∣yk ∣)). We
thus have,

k∣xk − yk ∣ < L∣xk − yk ∣ + (L +max
∂D

∣V ∣) (1 − ∣yk ∣).

But, 1− ∣yk ∣ = ∣xk ∣− ∣yk ∣ ⩽ ∣xk−yk ∣, and finally, for every k ∈ N,
we should have k < 2L+max∂D ∣V ∣ (recall that xk ≠ yk) which
is a contradiction.

IV. CLS WITH A FINITE NUMBER OF SWITCHES

The objective of this section is to provide conditions under
which all the solutions to (14) exhibit a finite number of
switches, as required by Theorem 1. We will actually focus
on a stronger property, that is that there exists p ∈ N such
that ς(x) ⩽ p for any x ∈ Rn, where we recall that ς(x) is the
number of switches exhibited by the solution of (14) initialized
at x, see Definition 1. To this end, we first give a sufficient
condition based on the emptiness of the intersection of a finite
number of sets, see Section IV-A. To ease the testing of this
condition, we translate it in Section V in terms of checking the
non-negativity of linear forms, by exploiting Farkas lemma. As
a result, the problem reduces to verify the non-negativity of a
single solution to an auxiliary linear discrete-time system.

In Section IV-A, we consider the general case m ⩾ 2,
while for the sake of clarity and readability only, we focus
on the case m = 2 in Section IV-B. Note however that the
methodology described in Section IV-B is easily extendable
to the general case.
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A. A sufficient condition

Given p > 0 time instants t1, . . . , tp > 0 and t ⩾ 0, and
given indexes i1, . . . , ip+1 ∈ {1, . . . ,m} with ik+1 ≠ ik for
k ∈ {1, . . . , p}, we define the set Σt1,...,tp,t

i1,...,ip,ip+1
of initial condi-

tions x0 such that the solution to (14) satisfies xs = Asi1x0 ∈ Ci1
for 0 ⩽ s < t1, xt1+s = Asi2A

t1
i1
x0 ∈ Ci2 for 0 ⩽ s < t2,

etc, and finally xt1+⋅⋅⋅+tp+s = Asip+1A
tp
ip
. . .At1i1x0 ∈ Cip+1 for

0 ⩽ s ⩽ t. The first step is to give a condition under which any
solution to (14) initialized in Σt1,...,tp,t

i1,...,ip,ip+1
admits no more than

p switches. In other words, using notations of Section II-D, we
will give conditions ensuring that if (kt)t∈N ∈ I(x0) is such
that {t1, t1 + t2, . . . , t1 +⋯ + tp} ⊂ T ((kt)t)∩{1, . . . , t1+⋯+
tp} and kt1−1 = i1, . . . , kt1+⋯+tp−1 = ip and kt1+⋯+tp+s = ip+1
for every s ∈ {0, . . . , t}, then we have  ((kt)t) = p. This in
particular ensures that σ(x0) ⩽ p, according to Definition 1.

Writing down the definition of Σt1,...,tp,t
i1,...,ip,ip+1

, we obtain that

this set is given by the following intersections

Σt1,...,tp,t
i1,...,ip,ip+1

=
t

⋂
τ=0

(St1,...,tp,τ
i1,...,ip,ip+1

) ∩ (
p

⋂
k=1

tk−1

⋂
τ=0

St1,...,tk−1,τ
i1,...,ik−1,ik

) ,

(20)
where, for every k ∈ N, t1,⋯, tk ∈ N∗, τ ∈ N and i1,⋯, ik, i ∈
{1, . . . ,m} we have set

St1,...,tk,τ
i1,...,ik,i

∶= {x0 ∈ Rn ∶ AτiA
tk
ik
. . .At1i1x0 ∈ Ci} . (21)

For notation convenience, in (20), for k = 1 (resp. k = 2),
St1,...,tk−1,τ
i1,...,ik−1,ik

is identified with Sτ
i1
∶= {x0 ∈ Rn ∶ Aτi1x0 ∈ Ci1}

(resp. St1,τ
i1,i2

= {x0 ∈ Rn ∶ Aτi2A
t1
i1
x0 ∈ Ci2}).

To give a better intuition on the meaning of the sets
Σt1,...,tp,t
i1,...,ip,ip+1

and St1,...,tk,τ
i1,...,ik,i

, we consider a solution of (14) that

is initialized at some x0 ∈ C1, stays in C1 for times t ∈ {0,1},
enters in C2 in time t = 2 and stays in C2 at time t = 3. We
then have:

● x0 ∈ C1 = S0
1
;

● x1 = A1x0 ∈ C1, i.e., x0 ∈ S1
1
= {x0 ∈ Rn ∶ A1x0 ∈ C1};

● x2 = A1x1 = A2
1x0 ∈ C2, i.e., x0 ∈ S2,0

1,2
=

{x0 ∈ Rn ∶ A2
1x0 ∈ C2};

● x3 = A2x2 = A2A
2
1x0 ∈ C2, i.e., x0 ∈ S2,1

1,2
=

{x0 ∈ Rn ∶ A2A
2
1x0 ∈ C2}.

Gathering these constraints, we obtain x0 ∈ (
1

⋂
τ=0

S2,τ
1,2

) ∩

(
1

⋂
τ=0

Sτ
1
) = Σ2,1

1,2
. Reciprocally, if x0 ∈ Σ2,1

1,2
the solution

initialized from this x0 satisfies:
● x0 ∈ S0

1
= C1, thus x1 = A1x0;

● x0 ∈ S1
1
, thus x1 = A1x0 ∈ C1 and x2 = A1x1 = A

2
1x0;

● x0 ∈ S2,0
1,2

, thus x2 = A2
1x0 ∈ C2 and x3 = A2x2 = A2A

2
1x0;

● x0 ∈ S2,1
1,2

, thus x3 = A2A
2
1x0 ∈ C2.

We also emphasize that, without additional information, x0 ∈
St
i

does not imply x0 ∈ St−1
i

. In addition, if x0 ∈ St1,...,tk,τ
i1,...,ik,i

,

without additional conditions (which in fact, leads to x0 ∈

Σt1,...,tk,τ
i1,...,ik,i

), nothing ensures that the sequence defined by

x1 = Ai1x0, . . . , xt1 = A
t1
i1
x0, xt1+1 = Ai2Ai1x0, . . .

is solution of (14). In fact, nothing ensures that xt is in the
correct cone (for instance, nothing ensures that x0 ∈ Ci1 ).

We aim to give conditions ensuring that any nontrivial
solution to (14) exhibits no more than p switches. This is
ensured by enforcing that, if the solution associated with an
initial condition has already changed p times of cone, then it
cannot switch anymore. That is to say that Σt1,...,tp,t,0

i1,...,ip,ip+1,i
= {0}

for every t ⩾ 1, and every t1, . . . , tp ∈ N∗ and i1, . . . , ip+1, i ∈
{1, . . . ,m}, with ik+1 ≠ ik and i ≠ ip+1. The condition
Σt1,...,tp,t,0
i1,...,ip,ip+1,i

= {0} for every t1, . . . , tp+1 ∈ N∗ and every

t ∈ N explicitly means that the only initial condition for the
system (14) such that the corresponding solution of (14) has
visited successively the cones Ci1 , . . . ,Cip+1 , and will visit
the cone Ci, is 0. We recall that 0 ∈ ⋂

m
i=1 Ci, and hence,

I(0) = {1, . . . ,m}N. A sufficient condition for this is as
follows.

Proposition 1. Given p ∈ N⋆, i1, . . . , ip, ip+1 ∈ {1, . . . ,m}

with ik+1 ≠ ik for every k ∈ {1, . . . , p}, and given t1, . . . , tp ∈
N⋆, we also set tp+1 = 1. If there exist κ ∈ {1, . . . , p + 1},
1 ⩽ j1 ⩽ . . . ⩽ jκ ⩽ p + 1 and for every k ∈ {1, . . . , κ}, there
exist rk ∈ N and τk,1, . . . , τk,rk ∈ {0, . . . , tjk − 1}, such that
∑
κ
k=1 rk ⩽ n and

⎛

⎝

κ

⋂
k=1

rk

⋂
`=1

Stj1 ,...,tjk−1 ,τk,`
ij1 ,...,ijk−1 ,ijk

⎞

⎠
∩ St1,...,tp,t,0

i1,...,ip,ip+1,i
= {0}, (22)

for every t ∈ N⋆ and every i ∈ {1, . . . ,m}/{ip+1}, then all
the solutions to (14) initialized in Σt1,...,tp,0

i1,...,ip,ip+1
/{0} exhibit no

more than p switches.

We make several comments before proving Proposition 1.
● As claimed in the paragraph preceding Proposition 1, the

aim of this proposition is to give conditions ensuring that
Σt1,...,tp,t,0
i1,...,ip,ip+1,i

= {0} for every t ∈ N∗.

● The proof of this result relies on the fact that given a
sequence of sets (Si)i∈I , such that 0 ∈ ⋂i∈I Si, if there
exists J ⊂ I such that ⋂j∈J SJ = {0} then ⋂i∈I Si = {0}.

● Using the abstract notation of the previous point, we add
two constraints on the possible choices of J :

1) the cardinality of J is not greater than n (this constraint
is ∑κk=1 rk ⩽ n). This constraint is added for the
numerical verification of the test (see Theorem 4),
where a n × n matrix will be constructed from these
sets;

2) we do not consider sets (Sj)j∈J of the form
St1,...,tp,τ
i1,...,ip,ip+1

(with τ > 0). This fact is expressed by

the condition tp+1 = 1, together with τk,1, . . . , τk,rk ∈

{0, . . . , tjk − 1} (that is to say that if jκ = p + 1, we
enforce rκ = 1 and τκ,rκ = 0).
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Proof of Proposition 1: For every t ∈ N∗, we have

Σt1,...,tp,t,0
i1,...,ip,ip+1,i

⊂ Σt1,...,tp,0
i1,...,ip,ip+1

∩ St1,...,tp,t,0
i1,...,ip,ip+1,i

= (
p

⋂
k=1

tk−1

⋂
τ=0

St1,...,tk−1,τ
i1,...,ik−1,ik

) ∩ St1,...,tp,0
i1,...,ip,ip+1

∩ St1,...,tp,t,0
i1,...,ip,ip+1,i

⊂
⎛

⎝

κ

⋂
k=1

rk

⋂
`=1

Stj1 ,...,tjk−1 ,τk,`
ij1 ,...,ijk−1 ,ijk

⎞

⎠
∩ St1,...,tp,t,0

i1,...,ip,ip+1,i
.

We are ready to state conditions under which any solution
to (14), and not only those initialized in Σt1,...,tp,0

i1,...,ip,ip+1
as in

Proposition 1, exhibits at most p switches.

Theorem 3. Under Assumption 2, given p ∈ N⋆, if for
every i1, . . . , ip+1 ∈ {1, . . . ,m} and every t2, . . . , tp ∈ N⋆, the
conditions of Proposition 1 are satisfied with t1 = 1, then
all the possible nontrivial solutions of (14) admit at most p
switches.

Proof: Assume by contradiction that there exists x0 ∈

Rn/{0} such that the solution initialized at x0 switches
more that p times. Then there exists i1, . . . , ip, ip+1, ip+2 (with
ik+1 ≠ ik) and t1, . . . , tp, tp+1 ∈ N⋆ such that At1−1i1

x0 belongs
to Σ1,t2,...,tp+1,0

i1,i2,...,ip+1,ip+2
. This leads to a contradiction, since by

Proposition 1, this set is reduced to {0}, and by Assumption 2,
Ai1 is invertible.

Remark 2. Under the assumptions of Theorem 3,
we have in fact a stronger result, which is
max{ ((kt)t) ∶ (kt)t∈N ∈ I(x)} ⩽ p for every x ∈ Rn/{0}.
Obviously, this ensures the claim of Theorem 3: ς(x) ⩽ p for
every x ∈ Rn/{0}.

From a computational point of view, the main difficulties
with the result of Theorem 3 are related to checking the inter-
section (22) for every t ∈ N⋆ and every i ∈ {1, . . . ,m}/{ip+1}.
The problem is combinatorial by nature. However, we provide
in the sequel, tractable conditions for the case m = 2. In
Section IV-B, we propose a solution to tackle the fact that t is a
priori not bounded. It consists in using Farkas lemma, which is
a particular case of the S-procedure dedicated to linear forms,
to transform the problem into assessing the non-negativity
of a specific solution to an auxiliary discrete-time system.
We propose tractable conditions to check this non-negativity
in Section V. As to the combinatorial complexity related to
checking the intersection (22) for every i ∈ {1, . . . ,m}/{ip+1},
the situation is manageable as we will manipulate sets defined
by linear inequalities, and checking if their intersection is
reduced to {0} can be done using linear programming.

B. When m = 2

To streamline the discussion and maintain clarity, we focus
on the case where m = 2, i.e., the partition of Rn is made of
two cones, while keeping in mind that the results and concepts
presented here can be readily extended to the general case
when m ∈ N⋆. Note that the case where m = 2 is notoriously
difficult [4].

When m = 2, the cones C1 and C2 can be written as in (10)
for some matrix K ∈ R1×n, which is not the same as in
Section II in general. Recall that we assumed that the cones Ci
are convex, hence, for m = 2 the two cones C1 and C2 are half-
spaces of Rn.

1) General result: Since the indexes ik used in Sec-
tion IV-A, are such that ik+1 ≠ ik, the only possibilities,
when m = 2 are the sequences 1,2,1, . . . or 2,1,2, . . . This
observation together with the expression of C1 and C2 given
in (10), leads to set

Si1;t1,...,tp,t ∶= St1,...,tp,t
[i1],...,[i1+p]

= {x ∈ Rn ∶ (−1)i1+pKAt[i1+p+1]A
tp
[i1+p]

. . .At1
[i1]

x ⩾ 0} ,

where, for every i ∈ N, we have defined [2i + 1] = 1 and
[2i] = 2. Similarly, we define Σi1;t1,...,tp,t. Given i1 ∈ {1,2}
if we start from an initial condition in Ci1 , the solution stays
for the remaining times in Ci1 or enters in C[i1+1]. Hence, the
maximal number of switches starting from Ci1 is bounded by
one plus the maximal number of switches starting from C[i1+1].
This observation leads to the next corollary of Theorem 3.

Corollary 1. Under Assumption 2, consider the system (14)
with m = 2. Given p ∈ N⋆, if there exists i1 ∈ {1,2} such
that for every t2, . . . , tp ∈ N⋆, the conditions of Proposition 1
are satisfied with t1 = 1, then each nontrivial solution of (14)
admits at most p + 1 switches.

2) Tractable conditions: To make the paper self-contained,
we recall Farkas lemma in the form in which we will use it,
although other formulations are possible, see e.g. [30] and [31,
Corollary 4.3] for more detail.

Lemma 2 (Farkas lemma). Let `, n ∈ N⋆ and M0, . . . ,M` ∈

Rn. We have,

{x ∈ Rn ∶ x⊺M0 ⩾ 0} ⊂
`

⋂
i=1

{x ∈ Rn ∶ x⊺Mi ⩾ 0}

⇔ ∃α1, . . . , α` ∈ R+ s.t. M0 =
`

∑
i=1

αiMi.

In other words, Lemma 2 states that, given any x ∈ Rn,

x⊺Mi ⩾ 0 ∀i ∈ {1, . . . , `} Ô⇒ x⊺M0 ⩾ 0

if and only if there exist non-negative numbers α1, α2, . . . , α`
such that M0 = ∑

`
i=1 αiMi. In the sequel, to verify con-

dition (22), we consider without loss of generality that
∑
κ
k=1 rk = n. This is justified because, if (22) holds with

∑
κ
k=1 rk = ν with ν < n, it also holds with ∑κk=1 rk = n. This

can be achieved by including any n−ν sets from the available
sets, we recall that ∑κk=1 rk is the number of sets used for
testing the emptiness condition (22). For t1, . . . , tn−1 ∈ N⋆, we
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introduce the following matrices, which all belong to R1×n,

Ni1;t = (−1)i1+1KAt
[i1]

, for 0 ⩽ t < t1,

Ni1;t1,t = (−1)i1+2KAt
[i1+1]

At1
[i1]

, for 0 ⩽ t < t2,

Ni1;t1,t2,t = (−1)i1+3KAt
[i1+2]

At2
[i1+1]

At1
[i1]

, for 0 ⩽ t < t3,

⋮

Ni1;t1,...,tn−2,t = (−1)i1+n−1KAt
[i1+n−2]

Atn−2
[i1+n−3]

. . .At1
[i1]

,

for 0 ⩽ t < tn−1,
Ni1;t1,...,tn−2,tn−1,0 = (−1)i1+nKAtn−1

[i1+n−2]
. . .At1

[i1]
.

(23)
Observe that these matrices verify

Si1;t1,...,tp,t = {x ∈ Rn ∶ Ni1;t1,...,tp,tx ⩾ 0} . (24)

To verify (22) we investigate the intersection of
Si1;1,t2,...,tn−1,t,0 with n-sets taken from (23). We notice that
in (23), there are exactly 1+∑

n−1
i=1 ti row vectors defined (recall

that t1, . . . , tn−1 ∈ N∗, hence, 1 +∑
n−1
i=1 ti ⩾ n).

In addition, we also have (with t1 = 1)

Si1;1,t2,...,tn−1,t,0 = {x ∈ Rn ∶ Ni1;1,t2,...,tn−1,t,0x ⩾ 0} ,

with

Ni1;1,t2...,tn−1,t,0 = (−1)i1+nKAt[i1+n−1]A
tn−1
[i1+n−2]

. . .A[i1].

The next result gathers Corollary 1 and Lemma 2.

Theorem 4. Under Assumption 2, suppose there exists i1 ∈

{1,2} such that for every t2, . . . , tn−1 ∈ N⋆, we either have
Σi1;1,t2,...,tn−1,0 = {0} or one is able to build an invertible
matrix N ∈ Rn×n whose lines are taken from (23) such that

(i) β0 = −(KAi[i1+n−1]MN
−1)⊺ is non-negative,

(ii) the solution to

βt+1 = Lβt, with L⊺ = NM−1Ai[i1+n−1]MN
−1 (25)

initialized with β0 = −(KAi[i1+n−1]MN
−1)⊺ ⩾ 0 remains

non-negative for all future time,
where we have set,

M ∶= (−1)i1+nAtn−1
[i1+n−2]

. . .At2
[i1+1]

Ai1 .

Then any solution to (14) exhibits no more than n switches.

Proof: Using Corollary 1, any nontrivial solution to (14)
exhibits no more than n switches if (22) is satisfied with t1 = 1
and p = n − 1. This means checking that the intersection of
S1,...,tn−1,t,0
i1,...,in−1,in,i

with the sets characterized by (23) and (24)

is reduced to {0}. To check this condition, it is enough to
exhibit n sets such that, for every t ∈ N⋆, their intersection
with Si1;1,t2,...,tn−1,t,0 is reduced to {0}. This is equivalent to
find n rows in (23) such that the matrix N ∈ Rn×n formed by
these n rows is such that

Nx ⩾ 0 (26)

implies

(−1)i1+nKAt[i1+n−1]A
tn−1
[i1+n−2]

. . .A[i1]x ⩽ 0, ∀t ∈ N⋆,

i.e., implies

−KAt[i1+n−1]Mx ⩾ 0, ∀t ∈ N⋆. (27)

Invoking Lemma 2, checking that (26) implies (27) reduces to
check whether there exists βt ∈ Rn+ such that

−KAt[i1+n−1]M = β⊺tN , ∀t ∈ N⋆,

that is to say, with N invertible,

β⊺t = −KA
t
[i1+n−1]

MN
−1

⩾ 0, ∀t ∈ N⋆. (28)

To conclude the proof, we show that (28) is equivalent to
check the positivity of a solution of a discrete time dynamics.
Indeed, as the invertibility of A1 and A2 implies that M is
invertible, we have

β⊺t+1 = −KA
t+1
[i1+n−1]

MN
−1

= −KAt[i1+n−1]MN
−1
NM

−1A[i1+n−1]MN
−1

= β⊺tNM
−1A[i1+n−1]MN

−1

= (Lβt)
⊺.

This theorem states that to verify the non-negativity of a
single solution to the auxiliary linear discrete-time system
described in (25) is enough to ensure that any solution to (14)
switches no more than n times. This property is different from
the classical non-negativity problem, where any solution to a
system must remain non-negative (component-wise) for any
non-negative initial condition. In this classical setting, it is
well known that, for a discrete-time system to be positive, a
necessary and sufficient condition is that the entries of the
dynamical matrix have to be positive [19]. This does not
correspond to our problem, and we will see in Section VI
that the entries of the dynamical matrix L are not necessarily
non-negative, so that we cannot invoke the results from [19]
in general. This means new results are needed to ensure the
non-negativity of system (25) for a given initial condition: this
is addressed in the next section.

V. NON-NEGATIVITY ANALYSIS

We derive in this section conditions under which the solu-
tion to (25) initialized with a given β0 ⩾ 0 is non-negative. The
results are based on a function analysis and allows deriving
numerically tractable conditions.

A. Non-negativity theorem

The next theorem provides easy-to-test conditions to ensure
the satisfaction of item (ii) of Theorem 4. The result of
Theorem 5 is based on the necessary condition given in
Proposition 2, which is given below.

Theorem 5. Consider system (25) with a given β0 ⩾ 0 and
assume that σ(A[i1+n−1]) = {λ1, . . . , λn}, with λ1 > ⋅ ⋅ ⋅ >

λn > 0. Then L is diagonalizable, and we set v1, . . . , vn the
eigenvectors of L, and γ1, . . . , γn ∈ R such that β0 = ∑

n
i=1 γivi.

Let us finally set ρi = γivi ∈ Rn and µi = − ln(λi/λ1) with
i = 1, . . . , n and assume that ρ1 ⩾ 0. Then, the solution βt is
non-negative for any t ∈ N if for every ` ∈ {1, . . . , n}, one of
the conditions of Proposition 2 is satisfied, with zi the `-th
component of ρi.
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Proof: According to the definition of L in (25), the
eigenvalues of L are also eigenvalues of A[i1+n−1]. They
are distinct, and the n eigenvectors vi are independent. The
solution of the linear discrete-time system (25) is a weighted
linear combination of modal solutions:

βt =
n

∑
i=1

γiviλ
t
i.

To conclude the proof of this theorem, we have to find
conditions on (ρ1, . . . , ρn) such that

βt =
n

∑
i=1

γiviλ
t
i = λ

t
1ρ1 + ⋅ ⋅ ⋅ + λ

t
nρn ⩾ 0 (t ∈ N). (29)

We recall that ρi ∈ Rn and inequality (29) has to be understood
component-wise, i.e., [βt]` ⩾ 0 for every ` ∈ {1, . . . , n}.
According to the definition of µi, for every i ∈ {2, . . . , n},
we have 0 < µ2 < . . . < µn. Hence, the problem is equivalent
with finding a condition on (ρ1, . . . , ρn) ∈ Rn such that

ρ1 ⩾ −
n

∑
i=2

e−µitρi (t ∈ N). (30)

Note that (30) holds if we have

ρ1 ⩾ −
n

∑
i=2

e−µisρi (s ∈ R+).

We conclude the proof using Proposition 2

Proposition 2. Let n ∈ N∗, 0 < µ2 < ⋅ ⋅ ⋅ < µn and
z1, . . . , zn ∈ R. If z1 ⩾ 0, z1 + ⋅ ⋅ ⋅ + zn ⩾ 0 and one of the
following conditions holds:

(i) z2, . . . , zn ⩾ 0;
(ii) z2, . . . , zn ⩽ 0;

(iii) there exists j ∈ {2, . . . , n} such that

z1 ⩾ −
n

∑
i=2
i≠j

(1 −
µi
µj

) zie
−µis, ∀s ∈ R+. (31)

Then, the function ϕ(s) = z1 + z2e−µ2s + ⋅ ⋅ ⋅ + zne
−µns defined

for every s ∈ R+ is non-negative on R+.

Proof: Observe that ϕ(0) = z1 + ⋅ ⋅ ⋅ + zn and
lims→∞ ϕ(s) = z1. They are both non-negative in the setup of
the statement. Obviously, if (i) is satisfied, ϕ ⩾ 0 on R. If (ii)
is satisfied, we have ϕ′ ⩾ 0 on R and ϕ(0) = z1 + ⋅ ⋅ ⋅ + zn ⩾ 0.
Without the sign constraints on z2, . . . , zn, we have either
infR+ ϕ = ϕ(0) = z1 + ⋅ ⋅ ⋅ + zn or infR+ ϕ = lims→∞ ϕ(s) = z1
or infR+ ϕ = ϕ(s0) for some s0 ∈ R∗

+ such that ϕ′(s0) = 0.
Hence, to guarantee the nonnegativity of ϕ on R+ it remains
to check the positivity of ϕ(s0) in the last case. Observe
that, given j ∈ {2, . . . , n}, ϕ′(s0) = 0 is equivalent to
µjzje

−µjs0 = ∑
n
i=1
i≠j

−µizie
−µis0 . Hence, we have ϕ(s0) =

z1 +∑i=2
i≠j

(1 − µi
µj

) zie
−µis0 , and (iii) ensures that ϕ(s0) ⩾ 0.

Theorem 5 allows deriving numerically tractable conditions
by iteratively applying (31) to any chosen value of n. As
a title of example, consider the case n = 4. By iteratively
applying (31), one can conclude that βt ⩾ 0 for all t if

ρ1 ⩾ 0, ρ1 + (1 − µ3

µ2
)ρ3 + (1 − µ4

µ2
)ρ4 ⩾ 0,

and ρ1 + (1 − µ4

µ3
) (1 − µ4

µ2
)ρ4 ⩾ 0.

(32)

To check that this is true, first iterate (31) with n = 4. As

(1 − µ4

µ3
) (1 − µ4

µ2
)ρ4 ⩾ 0 or (1 − µ4

µ3
) (1 − µ4

µ2
)ρ4 ⩽ 0, this

together with ρ1 ⩾ 0 and ρ1+(1 − µ4

µ3
) (1 − µ4

µ2
)ρ4 ⩾ 0 ensures

ρ1 ⩾ −(1 −
µ4

µ3
)(1 −

µ4

µ2
)ρ4e

−µ4s (s ∈ R+).

This, together with ρ1 ⩾ 0 and ρ1+(1 − µ3

µ2
)ρ3+(1 − µ4

µ2
)ρ4 ⩾

0 ensures

ρ1 ⩾ −(1 −
µ3

µ2
)ρ3e

−µ3s − (1 −
µ4

µ2
)ρ4e

−µ4s (s ∈ R+).

Finally, this last fact, together with ρ1 ⩾ 0 and β0 = ρ1 + ρ2 +
ρ3 + ρ4 ⩾ 0 ensures

ρ1 ⩾ −ρ2e
−µ2s − ρ3e

−µ3s − ρ4e
−µ4s (s ∈ R+).

We will exploit (32) for the insulin infusion example in
Section VI-B.

B. Tailored results for small values of n

For small values of n, the function analysis in the proof
of Proposition 2 can be tailored to derive tighter conditions.
In this paragraph, we only present the cases n ∈ {2,3,4}. But
similar results could have been obtained for larget values of n.

When n = 2, it is easy to see that ϕ(s) = z1 + z2e−µ2s ⩾ 0
for every s ∈ R+ (with µ2 ⩾ 0) if and only if z1 ⩾ 0 and
z1 + z2 ⩾ 0. The next propositions provide tailored results for
n = 3 and n = 4.

Proposition 3 (Case n = 3). With the notation of Proposition 2
with n = 3, we have ϕ(s) ⩾ 0 for all s ∈ R+ if and only if
z1 ⩾ 0, z1 + z2 + z3 ⩾ 0 and one of the following conditions is
satisfied:

(i) z2 ⩾ 0.
(ii) z2 < 0, z3 ⩽ 0.

(iii) z2 < 0, z3 > 0, µ2z2 + µ3z3 ⩽ 0.
(iv) z2 < 0, z3 > 0, µ2z2 + µ3z3 > 0 and

z1 + z2 (
−µ2z2
µ3z3

)

µ2
µ3−µ2

+ z3 (
−µ2z2
µ3z3

)

µ3
µ3−µ2

⩾ 0.

Proof: Note that the cases where z2 and z3 have the same
signs are treated in items (i) and (ii) of Proposition 2. Hence,
it remains to prove the result when z2 and z3 do not have
the same sign. Recall that ϕ′(s) = −µ2z2e

−µ2s − µ3z3e
−µ3s,

and signϕ′ = sign g, with g = −z2 −
µ3

µ2
z3e

−(µ3−µ2)s. We also
have g′(s) = µ3

µ2
z3(µ3 − µ2)e

−(µ3−µ2), thus sign g′ = sign z3.
When z2 and z3 do not have the same sign, there exists one
and only one s0 ∈ R such that g(s0) = 0 (see fig. 2). We thus
have the following situations.

● If z2 > 0 and z3 < 0, we have the situation described by
fig. 2a. We observe that ϕ(s) ⩾ min{ϕ(0), z1} ⩾ 0 for
every s ∈ R+.

● If z2 < 0 and z3 > 0, we have the situation described by

fig. 2b. We observe that infR+ ϕ =

⎧⎪⎪
⎨
⎪⎪⎩

ϕ(0) if s0 ⩽ 0,

ϕ(s0) otherwise.
But s0 is such that g(s0) = 0, i.e., s0 = −1

µ3−µ2
ln −µ2z2

µ3z3
.
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s

g′(s)

g(s)

ϕ′(s)

ϕ(s)

−∞ s0 +∞

−

+∞+∞

−z2−z2

0

+ 0 −

−∞−∞ z1z1

(a) z2 > 0 and z3 < 0

s

g′(s)

g(s)

ϕ′(s)

ϕ(s)

−∞ s0 +∞

+

−∞−∞

−z2−z2

0

− 0 +

+∞+∞

ϕ(s0)ϕ(s0)

z1z1

(b) z2 < 0 and z3 > 0

Fig. 2: Different situations in the proof of Proposition 3.

We have s0 ⩽ 0 if and only if µ2z2 + µ3z3 ⩽ 0, and

ϕ(s0) = z1 + z2 (
−µ2z2
µ3z3

)

µ2
µ3−µ2

+ z3 (
−µ2z2
µ3z3

)

µ3
µ3−µ2 .

Proposition 4 (Case n = 4). With the notations used in
Proposition 2 with n = 3, we have ϕ(s) ⩾ 0 for all s ∈ R+ if
z1 ⩾ 0, z1+z2+z3+z4 ⩾ 0 and one of the following conditions
is satisfied:

(i) z4 ⩽ 0, z3 ⩽ 0.
(ii) z4 ⩽ 0, z3 > 0, z2 ⩾ 0.

(iii) z4 ⩽ 0, z3 > 0, z2 < 0 and
µ4

µ2
(
µ4−µ2

µ3−µ2
− 1) e

µ4−µ2
µ4−µ3 ln(

z3
∣z4 ∣

µ3
µ4

µ3−µ2
µ4−µ2 )

z4 ⩾ z2.
(iv) z4 > 0, z3 ⩾ 0, z2 ⩾ 0.
(v) z4 > 0, z3 < 0, z2 ⩽ 0 and ∣z3∣µ3(µ3−µ2) ⩾ z4µ4(µ4−µ2).

(vi) z4 > 0, z3 < 0, z2 > 0 and
µ4

µ2
(
µ4−µ2

µ3−µ2
− 1) e

µ4−µ2
µ4−µ3 ln(

∣z3 ∣
z4

µ3
µ4

µ3−µ2
µ4−µ2 )

z4 ⩽ z2. ◻

The proof of this proposition follows the lines of the one
of Proposition 3. For the sake of brevity, we do not detail it
here.

VI. APPLICATIONS

Before applying the results to the insulin infusion example
in Section VI-B, we provide in Section VI-A a second order
example to illustrate the fact that the application of Corollary 1
and Theorem 4 is easy in R2. It reduces to check the
invertibility of a second order matrix and the non-negativity
of a second order dynamics.

A. Second order example

Consider system (14) with n = 2, m = 2,

A1 = [
13 12.5

−12.5 −12
] , A2 = [

0.93 0
0 0.95

]

K = [ −8.7 −9.2 ] ,

(33)

and C1 and C2 as in (10). The solutions associated with
various initial conditions selected from the unit circle are
represented in Figure 3 as well as the corresponding number
of switches they exhibit. These solutions predominantly reside
within C2 and only sporadically venture into C1. We observe
on this example that R2 is partitioned in three cones, which
are respectively defined by the set of initial conditions that
result in exactly 0, 1 and 2 switches. These cones are formed
by the line Kx = 0 and the half-line R+ [1 0]

⊺. Observe also
that [1 0]

⊺
∈ C2 is an eigenvector of A2. Moreover, all points

initialized in C1 reach the invariant region of C2 after a single
iteration as highlighted in Figure 4 for x0 = [0 − 1]⊺.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

0.15 0.2

-0.18

-0.16

-0.14

Fig. 3: Phase portrait in red with x0 on the unit circle.

-12 -10 -8 -6 -4 -2 0

0

2

4

6

8

10

12

Fig. 4: Phase portrait in red with x0 = [0,−1]⊺ (x0 in C1).

Let us illustrate the theoretical results of Section IV-B. The
application of Theorem 4 reduces to check that the following
implication holds true for x ∈ Rn

Kx ⩾ 0 and KA1x ⩽ 0 Ô⇒ ∀t ∈ N∗, KAt2A1x ⩽ 0

For t = 1, using Lemma 2, this is equivalent to the existence
of α1

1, α
1
2 ⩾ 0 such that

−KA2A1 = α
1
1K − α1

2KA1.

The pair (−A1,K) is observable. Hence,

[ α1
1 α1

2 ] = −KA2A1 [
K

−KA1
]

−1

= [ 0.1281 1.5541 ] .
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Now, we have to study the system

βt+1 = Lβt, β0 = [ α1
1 α1

2 ]
⊺
⩾ 0

with L = [
0.3259 0.1281

−2.9443 1.5541
] , β0 = [

0.1281
1.5541

] .

The eigenvalues of L, which are also eigenvalues of A2, and
the associated eigenvectors are given by λ1 = 0.95, λ2 = 0.93,
v1 = [ −0.2010 −0.9796 ]

⊺
. v2 = [ −0.2074 −0.9783 ]

⊺
,

We have βt = ∑ni=1 γiviλ
t
i, with β0 = ∑ni=1 γivi ⩾ 0, where γ1

and γ2 are given by

[
γ1
γ2

] = [ v1 v2 ]
−1
β0 = [

28.7099
−30.2574

] .

and γ1v1 = [
6.0818

29.6399
] , γ2v2 = [

−5.9537
−28.0858

] ,

with λ1 > λ2 > 0, we conclude from Theorem 5 that

βt =
2

∑
i=1

γiviλ
t
i > 0, ∀t ∈ N.

As a conclusion, any solution starting in the set C1 switches
not more than once. We can conclude that, for this example,
any solution to the considered system switches not more than
twice as some can be initialized in C2. The fact that the origin
of the considered system is GES follows by Theorem 1 as A1

and A2 are Schur.

Remark 3. For this example, it turns out that a piecewise
quadratic Lyapunov function, given by (13), exists. Indeed,
the LMIs conditions (35) given in Appendix B are feasible

with P1 = [
2.5662 2.6008
2.6008 2.6427

] , P2 = [
0.1744 0.1570
0.1570 0.1482

],

Y1 = 0.0091, Y2 = 9.2206 × 10−6, Y3 = [
0.0017 0.0232
0.0232 0.0038

],

Y4 = [
0.0043 0.0058
0.0058 0.0297

].

B. Insulin infusion problem

We consider system (14) with n = 4, m = 2 and matri-
ces A, B and K given by (7) and (8). Without the results
presented in this paper, stability analysis of this 4th-order ex-
ample is an open question as far as we know. Let A1 = A+BK
and A2 = A as in Section II-C. The eigenvalues of A2 are
λ1 = 0.9592, λ2 = 0.9512, λ3 = 0.9277 and λ4 = 0.9200. We
next show that the conditions of Theorem 4 hold with i1 = 2.
To this end, we use Theorem 5 along with conditions given
in (32).

We start by considering (23) with i1 = 1, n = 4 and t1 = 1.
We have to determine the values of t2 and t3 that satisfy
the conditions of Theorem 4, namely for every t2, t3 ∈ N⋆,
we either have Σi1;1,t2,t3,0 = {0} or there exists an invertible
matrix N ∈ R4×4, whose lines are taken from (23) such that
items (i) and (ii) of Theorem 4 are satisfied. By employing
linear programming techniques, we have identified 58 pairs of
values for t2 and t3, as displayed in Table I.

t2 1 3 4 5 6 7 8 9 10 11 12 13
t3 1 1 1 1 1 1 1 1 1 1 1 1
t2 14 15 16 17 18 19 20 21 22 23 24 1
t3 1 1 1 1 1 1 1 1 1 1 1 2
t2 3 4 5 6 7 8 9 10 11 12 13 14
t3 2 2 2 2 2 2 2 2 2 2 2 2
t2 15 16 17 1 2 3 4 5 6 7 8 9
t3 2 2 2 3 3 3 3 3 3 3 3 3
t2 10 1 2 3 4 1 2 3 1 2
t3 3 4 4 4 4 5 5 5 6 6

TABLE I: Values of t2 and t3 in section IV-B.

For all these 58 pairs, we checked that Theorem 4 holds,
that is, we have found for each of them an invertible matrix
N ∈ R4×4 whose lines are taken from (23) such that items (i)
and (ii) of Theorem 4 are satisfied. For item (ii), we use
Theorem 5 and conditions (32). Detailed computations for two
of these pairs are provided in Appendix D. The conclusion is
that any solution to the considered system exhibits no more
than 4 switches. As the eigenvalues of A1 and A2 lie inside
the unit circle, the origin is GES by Theorem 1.

VII. CONCLUSION

This paper focuses on the stability analysis of CLS, whose
solutions all exhibit a finite number of switches. This property
is very useful when investigating stability, as we showed,
and somehow move the problem to analytically establish that
all solutions indeed switch a finite number of times. We
have first presented general, sufficient conditions in terms of
sets intersections. To illustrate how these conditions can be
exploited, we have then concentrated on the case where two
cones partitions the state space, for which we have developed
numerically tractable sufficient conditions. Interestingly, these
contributions required the development of novel results on the
non-negativity of solutions to discrete-time dynamical systems
for given initial conditions. The theoretical developments have
been applied successfully to the optimization-based control of
a model of insulin infusion, for which all the existing stability
results we are aware of failed.

It would be interesting in future work to develop simi-
lar tools to prove that solutions exhibit a finite number of
switches and exploit this property for stability analysis for
other classes of hybrid dynamical systems. Another potential
direction would be proving the existence of a finite number of
switches using the LCS approach. This would first require
expressing the CLS as a LCS, followed by the derivation
of stability conditions for discrete-time LCS. This path is
very challenging. Indeed, stability analysis for discrete-time
LCS remains underdeveloped, with limited attention in the
literature.

APPENDIX

A. Sampled-data modeling for optimal insulin infusion

Let y be the BGL response, u the insulin input and f = Fδ
an impulse of food at time t = 0. In [7] impulses are used
as a mathematical abstraction of insulin applied, and meals
consumed and the optimal insulin infusion model is given by
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linear transfer functions as, for any s ∈ C, y(s) = TF (s)f(s)−
TI(s)u(s) where

TI(s) ∶=
KI

(a1s + 1)(a2s + 1)(a3s + 1)
, (34)

with KI = 600 (mmol/L)/(U/min), a1 = 60 min, a2 =

100 min, a3 = 120 min, and

TF (s) ∶=
KF

(b1s + 1)(b2s + 1)(b3s + 1)

with KF = 50 (mmol/L)/(g/min), b1 = 70 min, b2 = 110 min
and b3 = 125 min. To enhance disturbance rejection, we add
an integral action, however instead of implementing a pure
integral action, we opt for a first-order filter, for any s ∈ C,
ỹ(s) = y(s)/(s + τ) with τ = 0.015. To design the state
feedback control, we use a state space model with four state
variables, three of them correspond to the transfer function TI
in (34). It is given by ẋ = Acx +Bcu, y = Ccx with

Ac ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0350 −0.0249 −0.0114 0
0.0156 0 0 0

0 0.0078 0 0
0 0 −3.4133 −0.0150

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Bc ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Cc ∶= [ 0 0 −3.4133 0 ] .

We consider the quadratic cost

Jc(x0, u) ∶= ∫
∞

0
(x⊺(τ)Qcx(τ) + u

⊺
(τ)Rcu(τ))dτ,

with Qc ∶= diag(1,1,1,70) and Rc = 1. The design is
performed using a sampled-data version, with a sampling
period of T = 5 min, that is (1) with A = eAcT , B = eAcTBc,
and cost J as in (2) with Q = ∫

T
0 (eAcν)⊺Qce

Acνdν, S =

∫
T
0 (eAcν)⊺Qce

AcνBcdν, R = ∫
T
0 B⊺

c (e
Acν)⊺Qce

AcνBcdν +
Rc. This leads to the matrices in (7), and R = 17.8719,

Q = 104

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0004 0.0000 0.0009 −0.0001
0.0000 0.0012 0.0474 −0.0036
0.0009 0.0474 3.2140 −0.2772
−0.0001 −0.0036 −0.2772 0.0325

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8.4359
0.1558

18.8537
−1.3612

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B. LMI conditions for conewise quadratic Lyapunov function
(13) with the same partition as (9)

The next result reduces the conservatism of the conditions
in [24] by taking into account the switches from one cone to
another, and obviously applies to general CLS with m = 2.

Proposition 5. The origin of (9)-(10) is GES if there exist
symmetric matrices P1, P2, and symmetric matrices Yi, i ∈

{1, . . . ,4} with non-negative entries, satisfying

P1 − [
K
KA1

]

⊺

Y1 [
K
KA1

] > 0

A⊺
1P1A1 − P1 + [

K
KA1

]

⊺

Y1 [
K
KA1

] < 0

P2 − [
K
KA2

]

⊺

Y2 [
K
KA2

] > 0

A⊺
2P2A2 − P2 + [

K
KA2

]

⊺

Y2 [
K
KA2

] < 0

A⊺
2P1A2 − P2 + [

−K
KA2

]

⊺

Y3 [
−K
KA2

] < 0

A⊺
1P2A1 − P1 + [

K
−KA1

]

⊺

Y4 [
K

−KA1
] < 0.

(35)

Proof: The proof uses (13) as a Lyapunov function can-
didate. The next conditions ensure that x↦ x⊺Pix, i ∈ {1,2},
strictly decreases along solutions to (9), for x ≠ 0,

{
x⊺P1x > 0,

x⊺(A⊺
1P1A1 − P1)x < 0,

x ∈ C1 and A1x ∈ C1,

{
x⊺P2x > 0,

x⊺(A⊺
2P2A2 − P2)x < 0,

x ∈ C2 and A2x ∈ C2,

x⊺(A⊺
2P1A2 − P2)x < 0, x ∈ C2 and A2x ∈ C1,

x⊺(A⊺
1P2A1 − P1)x < 0, x ∈ C1 and A1x ∈ C2.

The desired result is obtained by using the S-procedure, which
leads to the LMIs conditions in (35).

C. Discrete-time version of the results in [32]

The aim of this appendix is to prove that global attractivity
of the origin is equivalent to the origin to be GES for ho-
mogeneous discrete-time systems of degree 1, which includes
system (14). We consider for this purpose the system

xt+1 = f(xt), (36)

where xt ∈ Rn is the state at time t ∈ N, n ∈ N⋆, and f ∶ Rn →
Rn satisfies the next assumption.

Assumption 3. Vector field f in (36) verifies the properties:
(i) f is continuous on Rn.

(ii) f is homogeneous of degree 1, i.e., for any x ∈ Rn and
any λ ∈ R+, f(λx) = λf(x).

We denote the solution to (36) initialized at x ∈ Rn at time
t ∈ N as φ(t, x). The goal is to prove the next result, which
is stated in [32] for continuous-time systems. Note that the
result below is invoked in [33], [34] with no proofs.

Theorem 6. Consider system (36) and suppose that Assump-
tion 3 holds. The following statements are equivalent.

(i) x = 0 is globally attractive, i.e., any solution φ asymptot-
ically converges to 0 as time grows.

(ii) x = 0 is GES.

Before proving Theorem 6, we need to state the next
lemmas. Define for x ∈ Rn and Ω an open set of Rn,

τ(x,Ω) = inf {t ∈ N ∶ φ(t, x) ∈ Ω} ,
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with the convention that inf ∅ = ∞. The next lemma is a
discrete-time special case of [35, Corollary III.3].

Lemma 3. Consider (36) and suppose the following holds.

(i) Item (i) of Assumption 3 holds.
(ii) There exist D ⊂ Rn compact, Ω ⊆ Rn open, S compact

with S ⊂ Ω and

∀x ∈ D, ∃t ∈ N s.t. φ(t, x) ∈ S. (37)

Then there exists t0 ∈ N such that τ(x,Ω) ⩽ t0 for every x ∈ D.

Proof: Assume by contradiction that there exist
(xm)m∈N ∈ DN such that τ(xm,Ω) ⩾m. Since D is compact,
up to an extraction, we can assume that (xm)m converges to
some x∗ ∈ D. But according to (37), there exist t∗ ∈ N such
that φ(t∗, x∗) ∈ S. In particular, there exists ε > 0 such that
B(x∗, ε) ⊂ Ω. But for every m > t∗, we have φ(t∗, xm) /∈ Ω,
hence, ∣φ(t∗, xm)−φ(t∗, x∗)∣ ⩾ ε. This leads to a contradiction
with x↦ φ(t∗, x) continuous on Rn.

The second and final lemma is stated without proof, as it
directly follows from the continuity assumption made on f .

Lemma 4. Consider system (36) and suppose that item (i) of
Assumption 3 holds. Let Ω be a bounded set of Rn and let
t0 ∈ N. There exist c > 0 depending on Ω and t0 such that
∣φ(t, x)∣ ⩽ c, for every x ∈ Ω and every t ∈ {0, . . . , t0},

We are ready to prove Theorem 6.
Proof of Theorem 6: The implication (ii)⇒(i) directly

follows from the corresponding statements. We therefore focus
on proving (i)⇒(ii). By homogeneity, it is enough to prove
the implication for ∣x∣ = 1. Lemma 3 together with item (i)
of Theorem 6 ensure the existence of t0 ∈ N and of tx,0 ∈

{0, . . . , t0} such that φ(tx,0, x) ∈ B(0,1/2). Now, for every
t ∈ N, φ(tx,0 + t, x) = φ(t, φ(tx,0, x)) = ∣φ(tx,0, x)∣φ(t, y)
for y ∈ Rn, such that ∣y∣ = 1 and ∣φ(tx,0, x)∣y = φ(tx,0, x).
Hence, there exists ty,0 ∈ {0, . . . , t0} such that ∣φ(ty,0, y)∣ ⩽
1/2, i.e., ∣φ(tx,0+ty,0, x)∣ ⩽ 1/4. Thus, using the homogeneity
relation, and repeating the above argument, we conclude to
the existence of (tx,`)`∈N ∈ NN such that tx,` ⩽ tx,`+1 ⩽ tx,` +
t0 and φ(tx,`, x) ∈ B(0,2−`) for every ` ∈ N. Finally, using
the homogeneity, together with Lemma 4, we conclude to the
existence of a constant c = c (t0) such that for every ` ∈ N and
every t ∈ {tx,`, . . . , tx,`+1}, ∣φ(t, x)∣ ⩽ c2−`. That is to say that
∣φ(t, x)∣ ⩽ c2−νx(t), where νx(t) = card{` ∈ N ∶ tx,` ⩽ t}.
Observe that νx(t) ⩾ ⌊t/t0⌋ ⩾ (t/t0) − 1. We conclude the
proof by setting c1 = 2c and c2 = ln 2

t0
.

D. Details for the example of Section VI-B

To illustrate how the conditions of Theorem 4 are checked,
we treat two pairs of (t2, t3) among the 58 pairs: (t2, t3) =
(1,1) and (t2, t3) = (3,2).

For t2 = 1 and t3 = 1, we have from (23)3

N1;t =K,

N1;t1,t = −KA1, (38)
N1;t1,t2,t =KA2A1,

N1;t1,t2,t3,0 = −KA1A2A1.

This leads to

N =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.4936 −6.9988 −104.7360 1.6626
0.0139 −3.5448 −93.6330 2.0398
−0.0248 9.9744 246.4813 −4.9790
−0.0140 1.8974 69.7493 −1.8635

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To check that the intersection (22) is reduced to {0} for every
t ∈ N⋆, we have to check that Nx ⩾ 0 implies −KAt2Mx ⩾ 0,
for all t ∈ N⋆ or equivalently −KAt2M = β⊺tN , for all t ∈ N⋆.
We obtain

β0 = [ 0.0100 3.3166 1.0539 3.7582 ]
⊺

,

L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0000 0.0000 −0.0000 0.0100
−77.6570 −0.0000 0.0000 3.3166
−22.1708 −0.0129 0.0000 1.0539
300.8926 22.1708 −77.6570 3.7582

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

γ1v1 = 105

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0090
2.2552
0.7100
0.8637

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, γ2v2 = 105

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0148
−3.6872
−1.1608
−1.4041

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

γ3v3 = 105

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0141
3.4783
1.0951
1.3027

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, γ4v4 = 105

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0083
−2.0462
−0.6442
−0.7622

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As β0 = ∑
4
i=1 γiviλ

0
i > 0, λ1 > λ2 > λ3 > λ4 > 0, and

conditions (32) hold, we conclude using Theorem 5 that

βt =
4

∑
i=1

γiviλ
t
i > 0, ∀t ∈ N.

Now, we consider the case t2 = 3 and t3 = 2. The number
of possible matrices having 4 lines that can be generated
from (23) is 35. We have to check if there is an invertible
matrix N that allows to conclude that the intersection (22) is
reduced to {0} for every t ∈ N⋆. We found,

N =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.4936 −6.9988 −104.7360 1.6626
0.0139 −3.5448 −93.6330 2.0398
0.0248 −9.9744 −246.4813 4.9790
−0.0210 11.0313 262.8501 −4.9946

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As previously, we compute

β0 = [ 0.0017 0.0607 0.3860 2.7102 ]
⊺

,

L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.1997 −0.0049 −0.00076 0.00166
210.63 −1.1799 −0.42343 0.0607
−239.25 1.9792 1.0282 0.386
32044 −286.92 −98.232 2.7102

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

γ1v1 = 104

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0122
1.0926
0.8372
1.8402

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, γ2v2 = 104

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0201
−1.7998
−1.3368
−2.9338

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

3Recall Theorem 4 is used with t1 = 1, and recall that in (23),
Ni1;t1,...,tp,t is defined for 0 ⩽ t < tp+1. Hence, in (38), the variable t
is 0 in any cases.
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γ3v3 = 104

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0190
1.7366
1.1679
2.5604

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, γ4v4 = 104

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0112
−1.0295
−0.6683
−1.4666

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We have β0 = ∑4
i=1 γiviλ

0
i > 0, λ1 > λ2 > λ3 > λ4 > 0, and we

verified that conditions (32) are satisfied. We conclude that

βt =
4

∑
i=1

γiviλ
t
i > 0, ∀t ∈ N.

The same procedure has been repeated for all the 58 possible
values of t2 and t3 meaning that we were able to exhibit a
matrix N such that, for every t ∈ N⋆, the intersection (22) is
reduced to {0} in all these cases.
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