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Lucian Bus, oniua

aTechnical University of Cluj-Napoca, Automation Department, Memorandumului 28, 400114 Cluj-Napoca, Romania (e-mails: {tudor.santejudean, maria.ceapa,
elvin.pop, lucian.busoniu}@aut.utcluj.ro, herzal.eu.radu@student.utcluj.ro),
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Abstract

We propose Voronoi Simultaneous Optimistic Optimization (VSOO), a divide-the-best-based method for multirobot global op-
timization of a Lipschitz-continuous physical objective (e.g., quantity of material, density of litter, signal power), whose Lipschitz
constant is unknown. In this problem, a team of mobile robots must autonomously navigate as quickly as possible to all global op-
tima of the objective function defined over their operating area. The objective can have multiple local and global optima, is initially
unknown, and can only be evaluated online at robot locations. VSOO utilizes Voronoi partitions driven by the samples collected so
far by the robots, which allows them to incrementally refine the search space in their simultaneous search for the optima. We guar-
antee everywhere-dense and global convergence for any function, and analyze convergence rates for some representative classes of
function shapes. Extensive numerical simulations, performed on established classes of benchmark test functions, demonstrate that
VSOO approaches all global optima faster than a series of representative source/extremum seeking techniques that – similarly to
VSOO – are global optimizers designed for mobile robots. In terms of execution time, VSOO is competitive with these baselines.
We finally validate VSOO in real-robot experiments in which TurtleBot3 robots successfully search for the strongest antenna signals
indoors.
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1. Introduction

We consider a problem in which a team of autonomous mo-
bile robots must work together to find as quickly as possible the
global maxima of an initially unknown function. The function
to be optimized is defined over the physical search space of the
robots, is allowed to have multiple local and global maxima,
and must be Lipschitz-continuous. The function can in practice
be a physical quantity like pollutant concentration, litter den-
sity, signal strength, sound level, etc. Robots are equipped with
sensors that enable them to take function samples at their cur-
rent positions, and have access to their absolute positions (e.g.
they operate in a GPS-enabled environment). Robot dynamics,
such as limited velocity, restrict future samples to a neighbor-
hood of the robots’ current positions. To reach closer to the
optima, the path of the robots must be adapted online using
the samples collected so far. Since the robots typically do not
have sufficient computational power onboard, at every iteration
a centralized controller collects all function samples, computes
the next sampling location for all robots, and sends these posi-
tions to the robots for navigation.

We call the setting described above multirobot path-aware
global optimization (MR-PAO), an extension of the single-robot
case previously studied by Sântejudean and Buşoniu (2022);
Sântejudean et al. (2025). This setting encompasses multi-
ple practical applications, such as robots localizing the dens-
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est odor plumes (Bourne et al., 2019; Jing et al., 2021) to dis-
cover toxic gas leaks or pollutant sources (Bayat et al., 2016; Fu
et al., 2019; Francis et al., 2022), robots searching for the high-
est acoustic level in search and rescue missions (Basiri et al.,
2012; Hoshiba et al., 2017; Sibanyoni et al., 2018), or for the
strongest received signal to help localizing a transmitter (Grae-
fenstein and Bouzouraa, 2008; Fink and Kumar, 2010) to relay
data efficiently over a meshed network of antennas (Nguyen
et al., 2003; Saitou et al., 2013). Another application is search-
ing for the largest density of marine litter (e.g. for subsequent
collection) with underwater and aerial drones (Vasilijević et al.,
2017; Veettil et al., 2022; Šiljeg et al., 2023; Kim, 2023).

Our goals in this work are twofold. First, we aim to develop
a novel method that tackles MR-PAO and guarantees conver-
gence to all global optima of the Lipschitz-continuous objective
function, without having access to the Lipschitz constant, and
in general at faster rates than those given by uniformly sam-
pling the entire search space (Munos, 2011; Sergeyev et al.,
2013; Munos, 2014). Here, Lipschitz continuity will be used
to guarantee upper bounds on the objective in certain regions,
directing the search towards regions with large upper bounds
that are more likely to contain optima (Sergeyev, 1998; Munos,
2014). The second goal is to empirically outperform existing
source/extremum seeking methods that are applicable to our
problem setting, i.e. they optimize the objective while taking
into account the dynamics of the robots (Zhang and Ordóñez,
2011; Azuma et al., 2012; Scheinker, 2024).
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Literature review
The global Lipschitz optimization of multidimensional,

multiextremal, black-box functions has been under inten-
sive research in the last half-century (Strongin, 1978; Jones
et al., 1993; Pintér, 1995; Floudas et al., 2005; Stripinis and
Paulavičius, 2024), leading to the development of numerous
techniques, such as smooth-bounding approaches with ex-
act or estimated Lipschitz constants (Strongin and Sergeyev,
2013; Kvasov and Sergeyev, 2015), methods using space-
filling curves (Sergeyev et al., 2013, 2024), simplicial partition-
ing (Paulavičius and Žilinskas, 2014), optimistic optimization
(Munos, 2011, 2014), among many others. In general, these
methods iteratively subdivide the search domain into progres-
sively finer regions, selecting for division regions associated
with a best characteristic constructed based on function eval-
uations and region sizes. Such approaches were unified into a
general framework called “Divide-the-Best” (Sergeyev, 1998;
Kvasov and Sergeyev, 2015; Sergeyev and Kvasov, 2015).
Most of these methods can be divided in two large classes: al-
gorithms using exact knowledge of the Lipschitz constant to
build bounds on the objective (Strongin and Sergeyev, 2013;
Munos, 2014; Paulavičius and Žilinskas, 2014), and meth-
ods using global or local estimates of the Lipschitz constant
derived from continuous function evaluations (Strongin and
Sergeyev, 2013; Sergeyev et al., 2013; Munos, 2014; Kvasov
and Sergeyev, 2015). A subtype of the second class are methods
that only implicitly estimate the Lipschitz constant by work-
ing a priori for any such constant, like in the well-established
DIRECT-based algorithms (Paulavičius and Žilinskas, 2014;
Sergeyev and Kvasov, 2017; Stripinis and Paulavičius, 2023,
2024). Methods that adapt their Lipschitz estimates locally
are expected to work significantly faster compared to meth-
ods using exact or global Lipschitz estimates, as they are less
prone to overestimating the Lipschitz constant (Sergeyev, 1998;
Sergeyev and Kvasov, 2006; Strongin and Sergeyev, 2013). Al-
though global optimizers exist that do not rely on Lipschitz con-
tinuity, such as Bayesian optimization (Mockus, 2005; Lizotte,
2008; Zhigljavsky and Žilinskas, 2021) or metaheuristic tech-
niques (Dorigo and Blum, 2005; Boussaı̈d et al., 2013; Tomar
et al., 2024), this work specifically focuses on the class of op-
timizers that do make this assumption about the objective func-
tion.

The global optimization techniques mentioned above have
the disadvantage of not being directly applicable to MR-PAO,
as they do not take into account the dynamics of the robots and
instead sample the space at arbitrary locations. Thus, robots
would be assumed to “teleport” to these new states, or – stated
differently – samples taken along the way there would be ig-
nored. Our key novelty in this context is a global optimization
technique that takes into account the dynamics of the robots
(specifically, limited velocity).

Closest to the MR-PAO control-oriented setting is the class
of source and extremum seeking methods we already men-
tioned (Tan et al., 2010; Azuma et al., 2012; Scheinker, 2024).
These methods aim to optimize the steady-state process vari-
able of a dynamic system in a model-free fashion, when
only online measurements of the objective are available (Tan

et al., 2010; Scheinker and Krstić, 2017; Wang et al., 2022).
Many techniques have been proposed to achieve this, among
which approximate model-based or model-free gradient climb-
ing (Atanasov et al., 2012; Khong et al., 2014a; Poveda and
Krstić, 2020), simultaneous-perturbation stochastic approxima-
tion (Azuma et al., 2012; Ramirez-Llanos and Martinez, 2018),
sliding mode control (Zhu et al., 2014; Zhang et al., 2023),
particle swarm (Zou et al., 2015; Gronemeyer et al., 2017) or
Bayesian optimization (Bourne et al., 2019; Li et al., 2021;
Ghassemi et al., 2022). Different from MR-PAO, when ap-
plied to mobile robots, source and extremum seeking usually
assume the objective function to be (at least once) differen-
tiable everywhere (Tan et al., 2010; Fu and Özgüner, 2011),
possibly radially decaying around the optimum (Atanasov et al.,
2012; Zhu et al., 2013), and with a unique global optimum
(Azuma et al., 2012; Ghadiri-Modarres and Mojiri, 2020; Li
et al., 2021). The last assumption on the objective function is
particularly restrictive compared to our setting; indeed, if the
function has multiple global optima, only local or semi-global
optimization can be achieved (Fu and Özgüner, 2011; Grone-
meyer et al., 2020). However, source/extremum seeking consid-
ers more complex robot dynamics than we do here, e.g. higher-
order models that account for inertia, friction, and other phys-
ical effects (Khong et al., 2014a; Zhu et al., 2014; Scheinker,
2024). Often, practical asymptotic stability, which guarantees
convergence to a small neighborhood around a global optimum,
is sought (Krstić and Wang, 2000; Tan et al., 2010; Khong et al.,
2014b; Scheinker, 2024), instead of finding all global optima
which is the goal in MR-PAO. Another point of differentia-
tion is that source/extremum seeking do not store past trajec-
tory samples nor do they consider absolute positioning to be
available, i.e. robots are not equipped with GPS-like localiza-
tion systems (Tan et al., 2010; Azuma et al., 2012; Ghadiri-
Modarres and Mojiri, 2020). Nevertheless, exceptions exist that
aim to find global optima using absolute positioning, like in
the DIRECT-based method of Khong et al. (2014b), the Par-
ticle Swarm Optimization method of Zou et al. (2015), and
the Bayesian Optimization-based method of Ghassemi et al.
(2022). These methods will be used as baselines here.

Additional work on global optimization applied to robotics
can be found in applications such as determining the working
space of robot manipulators by means of space-filling curves
(Lera et al., 2021, 2024). Other optimization paradigms de-
signed for mobile robots can be found in coverage/informative
path planning, in which mobile robots maximize informa-
tion gathered about an unknown environment by continuously
adapting their route based on collected samples (Schmid et al.,
2020; Tan et al., 2021). Another sampling-based approach for
autonomous exploration is simultaneous localization and map-
ping (Grisetti et al., 2010), in which robots equipped with sen-
sors such as LiDARs (Hess et al., 2016; Xu et al., 2022) or
depth cameras (Castaneda et al., 2011; Taketomi et al., 2017),
try to reconstruct a map of the surrounding environment while
simultaneously localizing the robot. Different from MR-PAO,
which focuses on locating global maxima, these methods aim
to provide a complete map of the environment.
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Proposed method and contribution

The key research gap we address here is the lack of an ap-
proach for MR-PAO that provably finds all global optima of a
Lipschitz-continuous function and provides convergence rates,
without sacrificing practical performance. To this end, we adapt
a divide-the-best algorithm called Simultaneous Optimistic Op-
timization (SOO) (Munos, 2011, 2014) to solve MR-PAO. SOO
hierarchically partitions the search space so that deeper sets are
smaller. If a deeper set has a smaller sample of the objective
than a shallower one, it cannot have the largest upper bound no
matter the value of the Lipschitz constant: it is dominated by
that shallower set. At each iteration, SOO refines all undom-
inated sets. As discussed above for global optimization, SOO
and more generally DIRECT-based methods (Jones et al., 1993;
Sergeyev and Kvasov, 2017; Stripinis and Paulavičius, 2024)
suffer from a key weakness in MR-PAO: they impose an ex-
act partitioning scheme which requires to sample only the cell
centers at arbitrarily far apart positions. Therefore, instead of
imposing an exact partition shape, we use a Voronoi partition
driven by all the samples seen so far, leading to a method which
we call Voronoi SOO (VSOO). Similarly to SOO, using cell
sizes and sample objective values, VSOO only selects undom-
inated cells for expansion, which for some Lipschitz constant
may have the largest upper bounds and therefore the highest
chances of containing global optima. Differently from SOO,
robots are carefully assigned to the cells selected for refine-
ment, taking into account their limited velocity and making
sure that refinement ensures contraction of cell sizes. Robots
are divided in two types: exploration robots which focus on
wide cells, and exploitation robots which focus on cells with
large objective values. Since we deal with physical robots, we
mainly study VSOO in dimensions 1-3, although the method
may be extended to higher dimensions.

Our analysis shows that VSOO ensures everywhere-dense
and global convergence (Sergeyev, 1998), consequently reach-
ing arbitrarily close to all global optima. We further aim for
stronger guarantees, and so characterize convergence rates to
the global optima for two representative classes of function
shapes. The core novelty and contribution of this work con-
sists of the VSOO method itself, as well as in its analytical con-
vergence guarantees and rates. In particular, convergence rates
are rare and have mostly been proposed for global Lipschitz
optimization without control objectives (Sergeyev et al., 2013;
Munos, 2014). One exception is our earlier work (Sântejudean
et al., 2025), in which rates are given for PAO but only in the
single-agent case.

In extensive numerical simulations performed on bench-
mark optimization functions including GKLS-generated test
functions (Gaviano et al., 2003; Stripinis and Paulavičius,
2024), VSOO is shown to outperform a series of representative
source/extremum seeking techniques (Khong et al., 2014b; Zou
et al., 2015; Ghassemi et al., 2022) by approaching all global
optima faster on average, with competitive execution times.
We also validate VSOO using our new real-robot experimen-
tal testbed, in which a team of TurtleBot3 robots successfully
searches for the strongest antenna signal indoors.

Next, Section 2 formally defines the problem and provides
more background on SOO. Section 3 presents the VSOO
method, while Section 4 presents the analytical convergence
guarantees and rates. Then, VSOO is compared against rep-
resentative source seeking baselines in numerical simulations
in Section 5, and validated in real-robot experiments in Section
6. Finally, Section 7 concludes the paper.

2. Problem statement and preliminaries

This section describes the MR-PAO problem, and then briefly
introduces the SOO algorithm, which represents the foundation
of this work.

Consider first a compact and convex search space X ⊂ Rn,
with n ∈ {1, 2, 3}, over which the objective function f : X → R
is defined. The following assumption on f is imposed.

Assumption 1. Lipschitz continuity: The objective function f
is globally Lipschitz-continuous:

∥ f (x1) − f (x2)∥ ≤ M∥x1 − x2∥,∀x1, x2 ∈ X, (1)

where ∥·∥ represents the 2-norm and M ∈ (0,∞) is the Lipschitz
constant.

Remark 1. The global Lipschitz continuity could be relaxed to
hold only locally around the global optima, while the 2-norm
could be replaced by any semi-metric (Munos, 2014). These
settings were chosen in this paper for convenience and ease of
presentation.

Remark 2. A global optimizer typically requires a certain
smoothness of the objective function (Fu and Özgüner, 2011;
Suttner and Krstic, 2023), like Lipschitz continuity (Liu and
Krstic, 2010; Gronemeyer et al., 2020). Without this as-
sumption, there could be arbitrarily small regions with abrupt
changes in function values that might conceal a global opti-
mum. Many real-world phenomena, such as the diffusion of
pollutants in the atmosphere or the spread of heat in a medium,
exhibit smooth behavior over time, making this assumption rea-
sonable (Gronemeyer et al., 2020).

Consider now p mobile robots that search for the maxima
x∗ ∈ X∗ B arg maxx∈X f (x) inside their operating area, which is
equal to X. Each robot q ∈ {1, ..., p} is described in discrete time
by the positions xq

k , and applies control actions uq
k , with k ∈ Z+

indexing the time step. For convenience, the motion dynamics
of all the robots are the same, defined as g : X × U → X:

xq
k+1 = g(xq

k , u
q
k),∀q, k, (2)

and robots share the same sampling time Ts. Note that dynam-
ics g will be first-order in this work, but our method may be
generalized to more complex – e.g. second-order – models
like in (Lalish and Morgansen, 2008; Plaku et al., 2010), where
dynamics additionally include states like velocities and torques.

Remark 3. Denote the velocity of robot q at step k by vq
k , and

the maximum velocity by v ≥ vq
k , ∀q, k. Then, the maximum step

length of any robot, denoted by s, is s = vTs.
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The following reachability assumption holds for all the
robots. Note that the q index is omitted here in order to sim-
plify notation.

Assumption 2. Reachability: ∃R > 0 such that ∀x ∈ X and
∀x′ ∈ B(x,R), ∃u ∈ U such that g(x, u) = x′, where B(x,R) is
the ball centered at x and of radius R.

Assumption 2 ensures that the robots can eventually reach all
points within the set X. Such an assumption is not uncommon
and was made e.g. for the source seeking methods of Azuma
et al. (2012); Khong et al. (2014b); Zou et al. (2015).

Assumption 3. Sampling and localization: Robots can only
sample the objective function at their current position, and have
access to their absolute position.

It is reasonable to assume that robots are equipped with sen-
sors enabling the evaluation of f (xq

k) (which we call “sam-
pling”), only at their current positions xq

k ,∀q, k. Additionally,
robots can determine their absolute position coordinates xq

k in
many situations, e.g. during operation in a GPS-enabled field
(Khong et al., 2014b; Zou et al., 2015; Gronemeyer et al.,
2017). The results of the following sections hold under As-
sumptions 1-3.

To address the multirobot problem defined above, the method
proposed in this work adapts the global optimizer Simulta-
neous Optimistic Optimization (SOO) (Munos, 2011, 2014),
which belongs to the broader class of divide-the-best algo-
rithms (Sergeyev, 1998). SOO aims to find all global optima
of a Lipschitz-continuous function over a compact set, without
knowledge of the underlying Lipschitz constant. This set is in-
crementally partitioned into a hierarchical tree structure, where
each leaf node (cell) is associated with its function value (eval-
uated at the cell’s center) and a depth-dependent diameter (the
maximum distance from the cell center to its boundary, called
cell size, scaled by the unknown Lipschitz constant). Nodes
are chosen for further expansion based on their combination of
function value and depth in the tree, since computing diameters
is not possible without knowledge of the Lipschitz constant. At
each iteration, SOO expands at each depth one largest-function-
value node, but only if its value is also larger than those of all
nodes at shallower depths. This condition is imposed because
if it were not true, then some shallower node would have both a
larger cell size (because cells are larger higher in the tree) and
a larger sample value, so for any Lipschitz constant, its upper
bound would be larger. Any node satisfying the condition may
have the largest upper bound (and hence good chances of con-
taining an optimum) for some Lipschitz constant. SOO guaran-
tees convergence at well-characterized rates to all global optima
of the objective function.

3. VSOO algorithm

The method proposed in this paper is called Voronoi Simulta-
neous Optimistic Optimization (VSOO). It adapts the SOO ap-
proach of Munos (2014) to the MR-PAO setting: mobile robots

simultaneously search for the global maxima of a Lipschitz-
continuous function, whose Lipschitz constant is unknown. The
robots sequentially split the search space into increasingly finer
partitions that lead closer to all x∗ in X. Different from SOO,
due to the motion constraints of each robot (e.g. limited veloc-
ity), the next-step samples are limited to a neighborhood of the
robot’s current position. This makes the sampling strategy in
SOO inappropriate, as it would require sampling arbitrarily far
away states at consecutive steps. To address this issue, VSOO
replaces the hierarchical partitioning with Voronoi partitioning,
as will be explained next.

Given a time step k, let S k be the set of states (positions)
sampled by all robots in VSOO up to that point, and Xk

i be
the Voronoi cells constructed using as centers the states xi ∈

S k. Each index i is uniquely allocated once xi is sampled, and
remains unchanged throughout the algorithm. Thus, at any k,
xi remains the center of the (changing over time) Voronoi cell
Xk

i . Denote by Vk
i the set of vertices corresponding to Xk

i , ∀i, k.
Then, ∪iXk

i = X, and sets Vk
i are not disjoint, as adjacent cells

will have common sides, but their interiors are disjoint.
Each cell Xk

i is characterized by its underlying function value
f (xi), and a cell size δk

i defined as follows:

δk
i = max

j
{∥vi, j − xi∥ | vi, j ∈ Vk

i } = max
x∈Xk

i

∥x − xi∥. (3)

Cell Xk
i is dominated by Xk

i′ if both its function value and cell
size are strictly less than those of Xk

i′ , i.e. f (xi′ ) > f (xi) and
δk

i′ > δ
k
i .

The domination concept is important in VSOO for the fol-
lowing reason. If the Lipschitz constant M were available to
the algorithm, cells could have been ranked for expansion by
sorting descendingly by upper bounds defined as f (xi) + Mδk

i
for each cell Xk

i , like in Deterministic Optimistic Optimiza-
tion (Munos, 2014) or Path-Aware Optimistic Optimization
(Sântejudean et al., 2025). By expanding largest-upper bound
cells, convergence to all global optima would be ensured per
Munos (2014). However, VSOO cannot use this bound-based
ranking system since it does not have access to M. Instead, all
undominated cells must be considered as worth expanding, as
for these cells there exists an M such that their bound would
be maximal. We can nevertheless eliminate from considera-
tion any dominated cell Xk

i since it has an upper bound smaller
than that of any Xk

i′ dominating it, no matter the value of M
(as f (xi′ ) > f (xi) and δk

i′ > δk
i ). Note that even if Xk

i is dom-
inated at step k, it may eventually become undominated, e.g.
once another cell is expanded to a smaller cell size than δk

i . Fi-
nally, even though the Lipschitz constant is not explicitly used,
the objective f must still be Lipschitz continuous for the above
procedure to work.

Remark 4. Since our problem involves mobile robots, VSOO
will be studied in dimensions n ∈ {1, 2, 3}, as in single or multi-
robot source seeking (Khong et al., 2014b; Matveev et al., 2014;
Gronemeyer et al., 2017). Nevertheless, ideas on how to extend
this method to higher dimensions will also be provided.

We will first explain how robots select Voronoi cells for ex-
pansion in Section 3.1, followed by a description of the proce-
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dure for cell expansion in Section 3.2. Then, in Section 3.3, we
explain how these elements are joined together in the overall
VSOO algorithm.

3.1. Cell selection and types of robots in VSOO
The VSOO method employs two different types of mobile

robots – exploration and exploitation robots – when searching
for x∗. The type of robot does not impose constraints on its
dynamics; exploration and exploitation robots may otherwise
be identical. If the robots are different, it is also possible to give
e.g. faster robots the exploration task.

We consider l1 exploration robots tasked with the expansion
of cells having the largest cell size among all undominated cells
Xk

i , where 1 ≤ l1 < p is fixed throughout the algorithm. For this,
define the array Xk which contains all the undominated cells
sorted first descendingly by cell size δk

i , and then by function
value f (xi). Exploration robots expand the first l1 highest rank-
ing cells in Xk (one per robot). At least one robot should be of
exploration type. Exploration robots will create a progressively
finer, nearly uniform partitioning of X that eventually leads ar-
bitrarily close to all x ∈ X (and, consequently, to all x∗ ∈ X∗),
thereby ensuring everywhere-dense and global convergence, as
will be proven in Theorem 1 of Section 4.

The remaining l2 = p − l1 robots are of exploitation type,
tasked with the expansion of Voronoi cells located in regions
where large samples were previously acquired. The expectation
is that (global) maxima are located in high f -valued regions.
Exploitation robots choose to expand the highest-ranking cells
from a second array Xk∗, built by sorting all the undominated
Voronoi cells descendingly by their function values f (xi), and
then by their cell size δk

i .
A possible issue for the exploitation robots occurs when large

samples have only been taken near one maximum, while other
high-valued regions were not yet visited. In this case, most –
or all – robots choosing cells in Xk∗ may focus their search
in the neighborhood of that particular maximum, disregarding
entirely other regions containing maxima. To avoid this, we im-
pose that the centers of the newly chosen cells in Xk∗ are at least
at a given distance away from all the cell centers currently se-
lected for expansion. This distance will be called the exclusion
distance and will be denoted by σ.

The use of the exclusion zone comes with a downside. If
multiple global optima are located in a ball B(x∗, σ) inside
which an exploitation robot q is currently expanding a cell,
cells containing other maxima in B(x∗, σ) might be excluded
for expansion by exploitation robots other than q due to σ. This
means that some maxima in B(x∗, σ) will be found by exploita-
tion robots at best with σ-accuracy. However, convergence to-
wards these global maxima is still ensured by the exploration
robots that will eventually sample ε-close to all x∗ ∈ X∗, for
any ε > 0. In any case, it is advisable to choose σ significantly
smaller than the size of the search space X to prevent the exclu-
sion of too many elements in X∗ from the search conducted by
the exploitation robots.

At certain steps k, tie-breaking may be required between
q′ > 1 robots of the same type that need to simultaneously se-
lect cells for expansion. In such a case, each robot will choose

a cell among the q′ highest-ranking cells in Xk (for exploration)
or Xk∗ (for exploitation), that was not yet chosen for expansion
by another robot, and is closest relative to its current position.
When cells are selected from Xk∗, the σ distance criterion be-
tween the cell centers will also be applied.

3.2. Voronoi cell expansion

Let Xk
i be a cell targeted for expansion by robot q at step k.

For the expansion of this cell to be completed, the robot must
sample a total of 2n points on its frontier, forming a “cross-
like” symbol in n dimensions; see Figure 1 left plot for some
intuition. These points are referred to as expansion points, and
collectively constitute the array of targets T q, as elements xq

t ∈

T q sequentially become targets of robot q.
The first expansion point (end of the cross) in T q is xi ∈

arg maxvi, j∈Vk
i
∥vi, j − xi∥, namely a vertex farthest from xi, which

also dictates cell size in (3). The second point at the opposite
end of the cross, is the intersection of the line passing through
xi and center xi with the cell frontier. The other elements in T q

are obtained by taking the remaining n − 1 perpendiculars that
together with the line created by the first two points form an or-
thogonal coordinate system (the n-dimensional cross), and in-
tersecting these perpendiculars with the frontier of the Voronoi
cell. Thus, a total of 2n samples will be acquired for the ex-
pansion of an n-dimensional Voronoi cell; in particular, for
n ∈ {1, 2, 3}, the number of expansion points is 2, 4 or 6, re-
spectively.

The cross-like cell expansion was chosen because, once all
expansion points of Xk

i have been sampled, it ensures a contrac-
tion of the cell size. More details on this contraction will be
given later in Section 4.

The left plot in Figure 1 provides an example of a 2D Voronoi
partitioning in which cell Xk

i was chosen for expansion. Cell
frontiers are marked with red lines, and cell Xk

i is also delim-
ited by the blue dashed-lines drawn on top of the red ones. Cell
centers (including xi of Xk

i ) are marked with black circles, and
elements of T q (expansion points) with black stars. The ver-
tex that gives the cell size δk

i of Xk
i is the first element in T q,

denoted by xi (upper-right expansion point). The second ex-
pansion point is at the intersection on the opposite side of the
line given by the points xi and xi. The perpendicular on this
line, passing through the cell center xi intersects the Voronoi
frontier in the last two expansion points. The total number of
points is, therefore, 2n = 4. Once all expansion points were
successfully sampled, becoming thus cell centers at future iter-
ations, the new Voronoi partitioning is shown on the right plot
of Figure 1. To enhance figure readability, intermediate sam-
ples acquired between expansion points have been omitted; in
reality, all samples are used by VSOO when partitioning the
search space.

3.3. Overall VSOO method

The steps of VSOO are summarized in Algorithm 1, and the
flowchart depicted later in Figure 12 of Section 6. The algo-
rithm receives as input the search space X, the motion dynamics
g, the number of exploration robots l1 and exploitation robots
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Figure 1: Left: Initial Voronoi partitioning and illustration of a cell expansion
procedure. Right: Partitioning after the cell expansion occurred (i.e. once all
expansion points have been sampled). Intermediate samples between expansion
points are omitted for clarity.

l2, the exclusion distance σ, the total number of iterations N
and the gap weight ζ.

Algorithm 1 VSOO

Input: search space X, dynamics g, numbers of exploration
and exploitation robots l1, l2, exclusion distance σ, maxi-
mum number of iterations N, gap weight ζ

1: allocate any l1 robots to exploration and the remaining l2 to
exploitation

2: initialize robots in states xq
0, ∀q = 1, . . . , p

3: set initial robot targets xq
t = xq

k , initial target arrays T q =

{xq
t }, and set of samples S 0 ← ∅

4: for each step k = 0, . . . ,N − 1 do
5: take samples f (xq

k), ∀q, and add (xq
k , f (xq

k)) to S k

6: partition X into Voronoi cells using the states in S k

7: for each robot q = 1, . . . , p do
8: if xq

k = xq
t then

9: drop the visited expansion point xq
t from

targets array T q, T q = T q \ {xq
t }

10: if T q = ∅ then
11: update T q with rules in Sections 3.1, 3.2
12: end if
13: select next target xq

t = arg minx∈T q ∥x − xq
k∥

14: end if
15: find uq

k = arg minu ||x
q
t − g(xq

k , u)||, then apply uq
k

to reach xq
k+1

16: end for
17: S k+1 = S k

18: end for
Output: fN = maxxs∈S N f (xs) and X̂∗ζ = {xs ∈ S N | fN − f (xs) ≤

ζ( fN − fN)}.

VSOO works as follows. Each robot q starts in the initial
state xq

0, which is also taken as the robot’s first target xq
t , i.e.

T q = {xq
0}, so as to properly trigger the first round of cell se-

lection. At every algorithm step k, where k indexes both the
current iteration of VSOO and the trajectory step for any robot
q, all robots sample their current positions xq

k and add the pairs
(xq

k , f (xq
k)) to the set S k. The search space X is then partitioned

into Voronoi cells using as centers the sampled states in S k.
Next, each robot is checking if it has reached the previously

targeted state xq
t . If so, that state is dropped from the targets

array T q. When this array becomes empty, i.e. at k = 0 or
when the samples needed to fully expand a Voronoi cell per the
procedure in the previous section have all been visited, a new
Voronoi cell is chosen for expansion based on the robot’s type
(exploration/exploitation) and the rules in Sections 3.1 and 3.2.
The resulting expansion points are stored in the targets array
T q, and xq

t is set as the closest element in T q relative to robot’s
current position, i.e. xq

t = arg minx∈T q ∥x− xq
k∥. Then, the action

uq
k leading the robot closest to its current target is determined

and applied so that the robot reaches xq
k+1. Note that the new

sample set S k+1 includes all of the previous samples and the
ones that are acquired at the k + 1th iteration.

The algorithm stops when the number of VSOO iterations
(trajectory steps per robot) has been exhausted, at which point
the method returns the largest objective value seen so far fN =

maxxs∈S N f (xs). The algorithm also returns X̂∗ζ , an approximate
set of near-optimal points in X driven by parameter ζ ∈ (0, 1).
This set is defined as:

X̂∗ζ = {xs ∈ S k | fk − f (xs) ≤ ζ( fk − fk)}, (4)

where ζ is a weight applied to the gap between the largest sam-
ple fN , and the lowest sample fN = minxs∈S N f (xs). The larger
the weight ζ, the wider the approximation of the near-optimal
points X̂∗ζ returned by VSOO.

4. Convergence analysis

We prove the everywhere-dense and global convergence of
VSOO in Section 4.1. In Section 4.2, we show contraction fac-
tors that characterize a systematic reduction in the size of a cell
after its expansion, which are then used in Section 4.3 to derive
convergence rates for some representative shapes of the objec-
tive function.

4.1. Asymptotic convergence

Theorem 1. Everywhere-dense and global convergence of
VSOO: For any ε > 0, there exists a large enough number k of
VSOO iterations such that ∀x ∈ X, ∃xs ∈ S k with ∥x − xs∥ < ε.
In other words, VSOO will eventually sample arbitrarily close
to each x ∈ X, consequently converging towards all global max-
ima in X.

Proof. Suppose the contrary: ∃x ∈ X and ε > 0 such that
minxs∈S k ∥x − xs∥ ≥ ε, ∀k, i.e. no samples in S k will ever get
closer than ε to x. Thus, Voronoi cells containing x will always
have the cell size greater than or equal to ε, which leads to:

ε ≤ min
xs∈S k
∥x − xs∥ ≤ δ

k
s ≤ δ

k
,∀k, (5)

where δ
k
= maxi δ

k
i is the maximum size of all the cells com-

prising the partitioning of X at step k. Recall that at least one
exploration robot is always expanding cells corresponding to
δ

k
in Xk. To complete the expansion process, that robot will
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sample the vertex xt corresponding to δ
k
. According to (5), fu-

ture such targets x+t will always have to be at least ε away from
previous ones and all other samples in S k. This translates to:

ε ≤ min
xs∈S k
∥x+t − xs∥,∀k. (6)

The number of future targets x+t that must maintain per condi-
tion (6) an ε-distance from all samples in S k (which includes
previous targets) will inevitably grow unbounded over time
within the compact search space X. However, there exists a
finite limit on the number of disjoint spheres with a radius of
at least ε and centers in S k that can fit inside X – related to
the sphere packing number (Hales, 2011; Conway and Sloane,
2013). Any new target added to S k after this number is reached
will imply the existence of at least one sample xs ∈ S k s.t.
∥x+t − xs∥ < ε, which is in contradiction with (6). Therefore,
the everywhere-dense and global convergence of VSOO was
proven.

Remark 5. The sampling strategy which considers the cell di-
ameter as the characteristic after which the “best” cell is cho-
sen for expansion (division) can be classified as a divide-the-
best algorithm (Sergeyev, 1998). Thus, the everywhere-dense
and global convergence also follows from Sergeyev (1998). We
nevertheless provide our own proof because it offers insight into
the Voronoi cell expansion performed by VSOO.

4.2. Contractions following cell expansions

A contraction factor γ ∈ (0, 1) is sought that characterizes a
systematic reduction of the cell size δk

i of Xk
i after it was fully

expanded at some future step k′, i.e. for Xk′
i centered in the same

xi and having size δk′
i , we wish δk′

i < γδk
i . This contraction fac-

tor will be later used to derive VSOO convergence rates. Given
that this study focuses on one-, two-, and three-dimensional
search spaces, the contraction factor will be provided for these
cases. An idea on how to expand this contraction property to
higher dimensions will also be provided.

Theorem 2. Contraction of the cell size in 1 − 3D: Let Xk
i be

a cell with size δk
i targeted for expansion by robot q at step k. At

the future step k′ (which is finite since X is compact and robots
commit to sampling all expansion points) so that all expansion
points T q = {xq

t, j| j = 1, . . . , 2n} of Xk
i have been sampled, the

following holds:

min
xs∈S k′

∥x − xs∥ ≤ γδ
k
i ,∀x ∈ Xk

i , (7)

where γ ∈ (0, 1) is the contraction factor. Specifically, when
the dimensionality of the space is n = 1, γ = 1

2 , for n = 2,

γ =

√
2 −
√

2, and for n = 3, γ =
√

2 − 2
√

3
3 .

Proof. To simplify the proof line without restricting its gener-
ality, intermediate samples between the expansion points in T q,
and samples acquired from step k to k′ by robots other than q
will be disregarded. In other words, we only add points T q to
the future set of samples S k′ that we characterize. Indeed, if (7)

holds for S k′ = S k ∪ T q, adding also the intermediate samples
between states in T q and/or samples gathered by other robots,
can only lead to even smaller distances in (7), i.e. smaller con-
traction factors. Thus, the value of γ proven here can be seen as
a worst case.

Since cell Xk
i belongs to the Voronoi partition of X built at

step k, initially it follows that:

min
xs∈S k
∥x′ − xs∥ = ∥x′ − xi∥ ≤ δ

k
i ,∀x′ ∈ Xk

i . (8)

1D: For n = 1, expansion points are taken at the ends of
the intervals selected for expansion (as Voronoi cells reduce to
intervals in 1D), which quickly leads to |T q| = 2n = 2 and
γ = 1

2 .
To reach a contraction in (8) so that (7) holds in dimensions

2 and 3, two distinct cases are possible:

1. x ∈ Xk′
i , i.e. contraction of cell size δk

i to δk′
i of Xk′

i ,
2. x ∈ Xk

i \ Xk′
i = Xk

i ∩ Xk′
j , i.e. contraction of δk

i when x
belongs to the intersection of Xk

i with one of the newly
created cells Xk′

j with centers xq
t, j ∈ T q chosen at step k

(expansion points indexed by j, for ease of reference).

2D case 1: Figure 2 shows a corner of the Voronoi cell
Xk

i with center xi, cell size δk
i and continuous-line red frontier,

markings consistent with Figure 1. Expansion point xq
t,1 is the

vertex corresponding to δk
i , while xq

t,2 is another expansion point
adjacent to it. After sampling the four points in T q (set at step
k), the newly created Voronoi cells with centers in T q would
surround the new cell Xk′

i , whose center remains xi. A few of
the new frontiers drawn at step k′ are marked in the same figure
with red dashed lines.

The cardinality of T q in 2D is 2n = 4, and the vertices of
Xk′

i are the intersection points of the perpendicular bisectors of
the segments connecting the endpoint pairs (xi, x

q
t, j). Thus, the

shape of Xk′
i will be a rectangle with its side length at most δk

i
(see Figure 2 for some intuition). The cell size of Xk′

i is at most
δk

i

√
2

2 , and the contraction in case 1 is:

γ1 B
∥xi − v′i,1∥

δk
i

=

√
2

2
, (9)

where v′i,1 is the common vertex shared by the cells with the
centers xi, xq

t,1 and xq
t,2.

2D case 2: When x ∈ Xk
i ∩ Xk′

j , arg max j ∥x − xq
t, j∥ can only

contain (a) vertices shared by Xk′
j with its adjacent cells (cells

with centers in T q or the vertices of Xk′
i , e.g., v′i,1 in Figure 2);

or (b) vertices of Xk
i that are closest to xq

t, j (e.g., vi,1 in the same
figure). In situation (a), the shared vertex denoted by v′i, j, is also
part of Xk′

j , i.e.:

∥v′i, j − xq
t, j∥ = ∥v

′
i, j − xi∥ ≤

δk
i

√
2

2
, (10)

which leads to a contraction of
√

2
2 . In situation (b), the largest

distance is obtained when vi, j is located as far away from the
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Figure 2: Illustration of a cell size contraction in 2D after sampling expansion
points xt,1 and xt,2.

center of Xk
i as possible, i.e. ∥vi, j − xi∥ = δ

k
i . Using the cosine

theorem in the triangle with the vertices xi, vi, j and xq
t, j (e.g. tri-

angle with vertices xi, x
q
t,1, vi,1, marked with dashed-dotted blue

lines in Figure 2), it follows that:

∥vi, j − xq
t, j∥ =

√
2 −
√

2δk
i , (11)

which leads to a contraction factor of:

γ2 B
∥vi, j − xq

t, j∥

δk
i

=

√
2 −
√

2. (12)

Therefore, given all the cases studied above, a contraction fac-
tor that always holds is:

γ = max (γ1, γ2) = γ2 =

√
2 −
√

2 ≈ 0.7654. (13)

3D case 1: The expansion of cell Xk
i requires 2n = 6 ex-

pansion points to be sampled by robot q. Thus, |T q| = 6, and
the shape of the resulting cell Xk′

i will be a 3-dimensional rect-
angular parallelepiped with side length at most δk

i . Half of the

parallelepiped’s diagonal is δk
i

√
3

2 , which leads to γ1 =
√

3
2 .

3D case 2: The approach for computing γ2 is similar to the
case taken in 2D, and it is not difficult to prove that ∥xq

t, j−vi, j∥ ≤√
2 − 2

√
3

3 δk
i . Then, γ2 =

√
2 − 2

√
3

3 , and a worst-case contrac-
tion factor could be taken as γ = γ2 ≈ 0.9194.

Remark 6. It is apparent that for dimensions n > 3, sampling
only the ends of the n-dimensional cross will not always ensure
a contraction, i.e. γ < 1. Indeed, following the same proof
line from Theorem 2, for n = 4, it follows that γ1 =

√
4

2 = 1.
To tackle this, one can split the segments (xi, x

q
t, j) connecting

the cell center to the expansion points, considered above in the
proof of Theorem 2, in several equal parts across each cross
axis (as many as needed to get γ < 1).

4.3. Asymptotic convergence rates in interesting special cases
This section presents our results on VSOO convergence rates,

characterizing the algorithm’s complexity in terms of the num-
ber of iterations (or equivalently, number of steps/samples for

each robot) required to reach ε−accuracy w.r.t. all maxima in
X∗. Rates will be studied for two particular cases: one in which
f is constant (flat) over X, and a second in which f decreases
uniformly radially around all its global maxima. These two
cases are representative because they are respectively the most
difficult and the easiest problems for VSOO. Note that rates
hold for a large number of iterations, given their asymptotic na-
ture.

The following result will be presented first, as it is useful for
deriving the convergence rates.

Lemma 1. Fix τ ∈ R such that 0 < τ < δX , where δX B
maxx,x′∈X ∥x − x′∥ denotes the size of X. The maximum number
of iterations kτ required by VSOO to reach τ-close to all points
in X (i.e., so that ∀x ∈ X, ∃xs ∈ S kτ with ∥x − xs∥ < τ) is no
larger than 2nN(N p(1 + 2n) + 1)⌈logγ

τ
δX
⌉, where N denotes the

maximum number of steps a robot requires to travel between
any two points in X.

Proof. To reach τ-closeness to all points in X it suffices if all
cells in X have a size no larger than τ. Since exploration robots
expand largest-size cells, we focus on them and consider the
case when l1 = 1, i.e. there is only one exploration robot. Recall
that the number of expansion points a robot has to sample to
expand a cell is 2n. A robot requires no more than N + 2nN =
N(1 + 2n) steps to travel towards (in N steps) and expand (in
2nN steps) a new targeted cell at any VSOO iteration.

Initially, each robot generates its own Voronoi cell centered
at its position, at the initial sample it takes. After no more than
2nN VSOO iterations/steps per robot these initial p cells are
fully expanded, leading to a contraction with factor γ of the
size of X. This means that the size of the largest cell in X is no
larger than γδX . Since each robot step leads to a sample, and
each sample could be the center of a newly created cell, at most
2nN p cells will comprise the new partitioning of X.

To apply another contraction and reach γ2δX-close to all
points in X, at most 2nN p additional cells have to be expanded.
At worst, all these cells are be expanded by a single exploration
robot, leading to at most N(1+2n)·2nN p = 2nN(N p(1+2n)) ad-
ditional steps per robot/VSOO iterations. Accounting also for
the previous 2nN iterations, reaching a γ2δX-closeness requires
no more than 2nN(N p(1+2n)+1) total iterations, corresponding
to at most 2nN(N p(1+ 2n)+ 1)p robot samples or cells making
up the partitioning of X. We have obtained the base case of the
induction that will be proven next.

For any h ∈ Z∗+, start the induction step by the following
statement: VSOO has reached γhδX−closeness to all points in
X after no more than 2nN(N p(1 + 2n) + 1)h−1 iterations and
2nN(N p(1 + 2n) + 1)h−1 p robot samples. Thus, there are at
most 2nN(N p(1+ 2n)+ 1)h−1 p cells making up the partitioning
of X. We suppose this statement holds for h, and to obtain our
induction step we prove it for h + 1.

To apply another contraction and reach γh+1δX-close to all
points in X, at most 2nN(N p(1 + 2n) + 1)h−1 p additional cells
have to be expanded. At worst, all these cells would have
to be expanded by a single exploration robot, leading to at
most N(1 + 2n) · 2nN(N p(1 + 2n) + 1)h−1 p additional steps
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per robot/VSOO iterations. Cumulating with the previous
2nN(N p(1+2n)+1)h−1 iterations, reaching γh+1δX-closeness re-
quires no more than 2nN(N p(1+2n)+1)h total iterations, which
leads to at most 2nN(N p(1+2n)+1)h p robot samples, or equiv-
alently, cells making up the partitioning of X. This proves our
desired property for h + 1.

Finally, by taking h such that τ ≥ γh+1δX , e.g., h = ⌈logγ
τ
δX
⌉,

the proof is complete.

Remark 7. While conservative, the upper bound on kτ given
in Lemma 1 depends only on τ and the finite constants n, N,
p, γ, and δX . Next, we will apply the bound with finite (not
infinitesimal) values of τ, which will allow us to integrate it in
the constant part of the asymptotic convergence rates.

Theorem 3. Convergence rate of VSOO in the “flat” case:
Take f (x) = C, ∀x ∈ X. Let γ ∈ (0, 1) be the contraction factor
of Theorem 2, and ε > 0 a small positive constant. For a small
enough exclusion zone σε, the number of steps for each robot
required to reach ε-close to all optima of f — i.e., to ensure
that ∃xs ∈ S k with ∥x − xs∥ < ε, ∀x ∈ X = X∗ — is at most
O

(
K log ε/ log γ

p

)
, where K = 1 + N + 2n.

Proof. All samples acquired by the robots will have equal value
due to f being constant (flat) over X. Thus, according to Sec-
tion 3.1, exploitation robots will behave like exploration ones,
always expanding cells with the largest sizes in X (except for the
σε constraint). If the exclusion zone σε is taken small enough,
as ε→ 0, no cells from Xk∗ will be excluded by σε.

Take τ = s
2 . By Lemma 1, there exists a finite number kτ ∈

Z+ of steps for each robot/VSOO iterations after which ∀x ∈ X,
∃xs ∈ S k such that ∥x− xs∥ < τ =

s
2 , ∀k ≥ kτ. Thus, δ

k
< s

2 , and
all expansion points in T q will be reachable within one robot
step/VSOO iteration. This means that a robot will require at
most N + 2n steps to travel towards and expand a new targeted
cell for any k ≥ kτ.

Recall the notation δ
kτ that represents the largest size among

the cells comprising the Voronoi partitioning of X at step kτ.
To reach a contraction of factor γ so that all points in X are at
most γδ

kτ
−away from their closest available sample in S k, the

p robots need to expand at most kτ cells in X. For this, at most
kτ
p · (N+2n) additional steps for each robot are required, leading

to no more than kτ(1+ (N +2n)) samples in S k, or, equivalently,
cells in X. To apply another γ contraction and get γ2δ

kτ
−close

to all points in X, at most kτ(1+(N+2n))
p · (N + 2n) additional steps

for each robot are needed. At this point, the total number of
samples in S k/cells in X is bounded by kτ(1 + N + 2n)2.

Applying the same mechanism up to step h ∈ Z+, it follows
by induction that to get γhδ

kτ
−close to all points in X, at most

kτ(1+(N+2n))h−1

p · (N + 2n) additional steps for each robot are re-
quired from the previous induction step h− 1. Take now h such
that ε ≥ γhδ

kτ (e.g., h = ⌈logγ
ε

δ
kτ ⌉). Reaching γhδ

kτ
−close to all

points in X requires at most N steps for each robot, where:

N = kτ +
h∑

i=1

kτ(1 + N + 2n)h−1

p
· (N + 2n)

= kτ +
kτ(N + 2n)

p
·

(1 + N + 2n)h − 1

1 + (N + 2n) − 1

= kτ +
kτ((1 + N + 2n)h − 1)

p

= O
 (1 + N + 2n)h

p

 = O
(
Kh

p

)
.

(14)

Using ε ≥ γhδ
kτ , from which h can be expressed as:

h ≤
log ε − kτ log δ

log γ
, (15)

it finally follows that reaching ε-optimality requires at most:

N = O

K
log ε−kτ log δ

log γ

p

 = O

K
log ε
log γ

p

 . (16)

steps for each robot.

Remark 8. The rates proven in Theorem 3 can be interpreted
as follows. The division by p shows that the complexity is
smaller when the number of robots increases. The presence
of constants N and n in K shows that complexity is larger for
larger sizes and dimensionality of the search space. Moreover,
we see exponential complexity in log ε

log γ , which is unavoidable in
the flat case.

In the second convergence rate result, f is required to de-
crease uniformly radially around all its global maxima (e.g.,
right circular cones or radial basis functions), so we will call
this the “cones” case for easy reference. The “cones” case can
indeed be found in practical applications, for instance a team of
mobile robots searching for the locations of some wireless an-
tennas (Fink and Kumar, 2010; Buşoniu et al., 2020) or chemi-
cal plumes (Spears et al., 2005; He et al., 2019).

Theorem 4. Convergence rate of VSOO in the “cones” case:
Consider a function f having at most l2 global maxima in X
situated at least σ-away from each other, where l2 is the num-
ber of exploitation robots. Suppose that ∃δε > 0 such that f
decreases uniformly radially around all its global maxima at
least inside a ball B(x∗, δε), centered in x∗ and of radius δε.
Then, the number steps for each robot needed to reach ε−close
to all global maxima x∗ ∈ X∗ — i.e., to ensure that ∃xs ∈ S k

with ∥x∗ − xs∥ < ε,∀x∗ — is O( log ε
log γ ).

Proof. The radially uniform decrease on f around all x∗ ∈ X∗

inside B(x∗, δε) is important here, as it ensures that inside
B(x∗, δε), the closest sample to x∗ also has the largest value.
Thus, once an exploitation robot targets to expand a cell fully
enclosed in B(x∗, δε) that contains x∗, each following expansion
of the same robot will contract the distance to x∗ by a factor of γ,
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provided the robot does not leave B(x∗, δε). The γ-contraction
occurs at each expansion since the cells targeted by the exploita-
tion robot will have the largest sample in B(x∗, δε), and due to
the uniform radial decrease of f inside B(x∗, δε), will also have
the center closest to x∗, thus containing x∗ per the Voronoi cell
definition.

Since f has at most l2 global maxima with the properties
described above, ∃δ′ε > 0 such that ∀x∗ ∈ X∗, ∃B(x∗, δ′ε) so
that ∀x′ ∈ B(x∗, δ′ε):

f (x′) > f (x),∀x ∈ X \
⋃

x∗∈X∗
B(x∗, δ′ε), (17)

i.e. any sample acquired by robots outside the union
∪x∗∈X∗B(x∗, δ′ε) will have a value below those inside the union.
Thus, once the exploitation robots have been tasked with the
expansion of cells fully enclosed inside the balls B(x∗, δ′ε), they
will not be redirected by larger-valued samples acquired by
other robots (as δ′ε can be taken small enough such that the
union of all exclusion zones σ of the exploitation robots fully
covers ∪x∗∈X∗B(x∗, δ′ε)).

Take now δε = min{δε, δ′ε, σ, s}. By Lemma 1, ∃kτ ∈ Z+,

τ =
δε

2 , a finite number of iterations after which ∀x∗ ∈ X∗,

∃xs ∈ S k such that ∥x∗ − xs∥ < τ =
δε

2 , and the cells contain-
ing the global maxima are fully enclosed in their correspond-
ing B(x∗, δ′ε). Thus, at iteration kτ, each x∗ that is at least at
σ-distance away from all other global maxima, already has an
exploitation robot assigned to it that is currently expanding a
cell containing x∗, fully enclosed inside B(x∗, δε). Following
the remarks from the previous two paragraphs, each new cell
expansion of each such exploitation robot leads to another con-
traction with factor γ of the distance to that x∗. Since each
expansion point is reachable within one robot step, each cell
expansion in this regime requires at most 2n steps/iterations.

Finally, ∃h ∈ Z+, a number of cell expansions following the
kτ steps for each robot, such that ε ≥ γhδε. Reaching ε−close
to all points in X∗ requires at most:

N ≤ kτ + 2nh (18)

steps for each robot. This leads to the following bound on the
number of steps:

N = O
(
kτ + 2n

log ε − log δε
log γ

)
= O

(
log ε
log γ

)
. (19)

Remark 9. In the cones case, only the global maxima hav-
ing their pairwise distances larger than σ are guaranteed to be
found with ε-accuracy at a rate O( log ε

log γ ), as these maxima are
not excluded from the search of the exploitation robots via their
exclusion zones σ. Any maxima that are closer to each other
than this limit, as well as any maxima that exceed in number the
value of l2 (the number of exploitation robots), will be reached
with ε-accuracy after no more than O

(
K log ε/ log γ

l1

)
steps, per the

uniform-exploration rate of Theorem 3 achieved here by the re-
maining l1 robots still employed in the exploration of X.

Remark 10. Unlike the uniform-exploration rate of Theorem
3, for which the number of steps grew exponentially fast with
log ε
log γ , the cones case shows a logarithmic rate increase w.r.t. the
same factor – a very low complexity.

Overall, our theoretical results proved not just that VSOO
achieves everywhere-dense and global convergence, but also
supplied convergence rates towards the optima in some interest-
ing special cases. In the flat function case VSOO degraded to
the convergence rate of a uniform-sampling algorithm, in which
case its guarantees follow from everywhere-dense convergence.
However, in the cones case we were able to show a much faster
convergence rate. In practice, we expect the algorithm to be
somewhere between these two extrema.

5. Numerical results

In the following experiments, multiple simulated robots are
considered, with the dynamics (2) instantiated to:

xq
k+1 = xq

k + Ts · u
q
k,1 · [cos (uq

k,2), sin (uq
k,2)]T ,∀q, (20)

where Ts = 1s is the sampling period, and uq
k = [uq

k,1, u
q
k,2]T

contains, respectively, the velocity and the heading of robot q.
The velocity is bounded: uq

k,1 ∈ [0, v] m/s. The maximum ve-
locity will be chosen directly proportionally to the size of the
search space. For a search space X = [−2, 2] × [−2, 2]m2, the
maximum velocity is set to v = 0.2m/s, whereas e.g. if X were
[−5, 5] × [−5, 5]m2, v would be 0.5m/s. In this way, we ensure
that the performance of the methods is not affected by the size
of the search space, and we can more fairly compare results on
objective functions that are defined on different domains. The
exclusion distance of the exploitation robots is set to σ = v · Ts.
Note this value is not sufficiently small to ensure the rates in
Theorem 3 in case f is constant (flat), which is not a concern
since f will not be flat in the experiments. Finally, the number
of robots considered is p ∈ {4, 8, 12}, out of which – with the
exception of the final simulation – one robot is always exploring
and the other are exploiting.

We validate VSOO both on benchmark synthetic optimiza-
tion functions, as well as on a noisy function that represents
a real-life source seeking scenario. The VSOO algorithm will
be compared to four baselines, respectively based on Particle
Swarm Optimization (PSO) (Kennedy et al., 2001), DIRECT
(Jones et al., 1993), Bayes-Swarm-P (Ghassemi et al., 2022),
and Bayesian Optimization (BayesOpt) (Frazier, 2018). The
first three methods are versions for the source seeking problem
that, like VSOO, aim to find the global optima of an unknown
objective function with a team of mobile robots with dynamics
(2), while the fourth method was adapted by us to the MR-PAO
setting. We will describe these methods next.

The PSO method is a population-based, gradient-free
stochastic optimization algorithm (Kennedy et al., 2001). The
method was adapted for the source seeking problem by Zou
et al. (2015), by considering individual robots as particles of
a swarm. The robots adapt their path by means of velocity
and heading updates at each step, towards a combination of
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their own best sample and the best sample collected by all
robots. The method assumes there is only one global opti-
mum, and given its tendency to be trapped in local optima,
the PSO in (Zou et al., 2015) uses an inertia weight to achieve
global search. The inertia weight, ω, is updated at each step
and depends on a damping factor, λ, that contributes to better
global search in the beginning of the simulations, and better
local search at the end. Our parameters for this baseline re-
main consistent with (Zou et al., 2015), i.e. ωk+1 = λωk, where
λ = 0.95. However, this addition to classical PSO does not
completely eliminate the possibility for the robots to converge
to local optima or to only a few of the global optima.

The second baseline is based on DIRECT (Jones et al.,
1993), a global optimizer able to search, like SOO, for mul-
tiple global optima of a Lipschitz-continuous function whose
Lipschitz constant is unknown. DIRECT normalizes the search
space to a unit hypercube, identifies at each iteration the poten-
tial optimal rectangles that have the largest function values at
the centers or have diameters large enough to be good targets
for global search, and then samples the centers of these rectan-
gles. The DIRECT method has been adapted to source seeking
by Khong et al. (2014b), where the search space is divided into
equally-sized regions of responsibility, and each such region
has a robot assigned to it. The movement of the robots is re-
stricted to their designated region, so when a potentially optimal
rectangle’s center falls within a region, only the corresponding
robot is able to sample that center. In order to visit all points
inside its assigned region in minimum time, each robot solves
a traveling salesman problem (TSP), e.g. using the method of
Kivelevitch (2024).

The third method is Bayes-Swarm-P (Ghassemi et al., 2022),
based on Bayesian Optimization, which uses a Bayesian statis-
tical model surrogate for the objective function that is updated
with each newly sampled point; and an acquisition function that
determines the future points to be visited. The surrogate is a
Gaussian Process (GP) model of the objective. The acquisition
function proposed in Ghassemi et al. (2022) balances explo-
ration and exploitation with the robots and reduces the overlap
in their planned knowledge gain. This is done by using a local
penalizing factor that depends on the knowledge of the maxi-
mum function value and on the Lipschitz constant. If these val-
ues are not known, they can be approximated, but this increases
the number of steps to find the optima. For the following ex-
periments, we used the real maximum function value and an
a priori estimate of the Lipschitz constant, so Bayes-Swarm-P
has an advantage over VSOO and the other baselines. In addi-
tion, the algorithm accounts for range limitations when sharing
the samples among robots, but we consider unlimited commu-
nication range in order to be fair when comparing it against the
other methods. The rest of the parameters were set as suggested
by Ghassemi et al. (2022).

The last baseline, BayesOpt, is also based on Bayesian Op-
timization, in a variant that only requires the objective func-
tion to be continuous. This method uses the standard MAT-
LAB bayesopt function and its default settings. A GP model
is used again, and the acquisition function is of type Expected-
Improvement-Per-Second-Plus (Snoek et al., 2012), which cal-

culates the future points to be sampled using the value and the
location of the lowest posterior mean given by the GP. Note that
this method is designed for minimization, so it will use the neg-
ative of the objective functions as they require maximization.
We adapted the method to the MR-PAO problem by considering
as future targets the best p points determined by the acquisition
function that are situated σ-away from each other (recall that
p and σ are, respectively, the number of robots and the exclu-
sion distance also used in VSOO). Each robot is assigned the
target closest to its current position, and travels towards it with
dynamics (2).

For a fair comparison, all methods consider the same initial
positions for the robots, with each run of the methods having
different initial positions. These positions are generated uni-
formly randomly, for each robot inside each region of responsi-
bility created by DIRECT. Recall that only DIRECT limits the
robots’ movement inside their assigned sub-region, while the
other methods do not take into account these sub-regions when
assigning the robots to their targets.

We first consider benchmark functions with a single global
optimum from Gaviano et al. (2003) and Surjanovic and Bing-
ham (2013). These functions have challenging shapes, e.g. the
global optimum is situated in areas in which the function’s val-
ues vary slowly or are surrounded by multiple local optima. The
benchmark functions are designed for minimization, whereas in
our problem formulation we are searching for maxima, so we
will run the tests on the negatives of these functions. For the
second part we consider functions with multiple global optima:
a function inspired from our previous work Sântejudean et al.
(2025), which has three global optima situated in a small area
in the search space; and an RSSI field generated using signals
collected from Bluetooth Low Energy-enabled devices (BLE),
thus simulating a real-robot scenario in which the robots have
to find the emission sources of a signal.

To compare the performance of the three methods, we will
use a metric that measures how closely the robots’ trajectories
approach all global optima X∗. Thus, at each kth trajectory step,
a distance dk is computed with:

dk =

∑b
i=1 dik

b
; dik =

∑|X∗ |
j=1 min {∥x∗j − xs∥|x∗j ∈ X∗, xs ∈ S k}

|X∗|
,

(21)
i.e., dk is the smallest distance from any sample to each maxi-
mum, averaged across maxima (note that the number of max-
ima is finite for all test functions). This metric will be re-
ported against the number of iterations performed by each algo-
rithm, averaged across all experiment runs. In multirobot sys-
tems, an iteration signifies a synchronized time step where all
robots move and sample once, providing a more accurate repre-
sentation of real-life effort and aligning better with real time
than solely considering the number of function evaluations.
We will also compare the execution time of the algorithms.
All simulations were performed on an Intel(R) Core(TM) i7-
1165G7 (2.80GHz) system with 16 GB RAM, running MAT-
LAB R2024a (except Bayes-Swarm-P which runs in Python,
on the same machine).

The remainder of the numerical results is organized as fol-
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lows. Section 5.1 presents the performance and execution time
comparison between VSOO, DIRECT, PSO, Bayes-Swarm-P
and BayesOpt for p = 4 robots on objective functions with
single global maximum, in 2 dimensions. In Section 5.2 we
validate the quality of X̂∗ζ , the approximate set of near-optimal
points determined by Algorithm 1, by comparing the distance
calculated with points from this set and from all the samples. In
this section we also compare VSOO with a naive adaptation of
SOO to MR-PAO. Section 5.3 provides the same performance
comparison as in the single-global-optimum case, but now for
functions that have multiple global optima. All these compar-
isons are made for a number of p − 1 exploitation robots and 1
exploration robot. Lastly, in Section 5.4, we study the perfor-
mance of VSOO and DIRECT for a varying number of robots,
in 3 dimensions. We also discuss the behavior of VSOO when
the number of exploration robots is p − 1, instead of 1 as it was
in the experiments conducted in the previous sections.

5.1. Baseline comparison for single-global-optimum functions
The objective functions considered in this section can be sep-

arated into 3 types: continuously differentiable (D-type), twice
continuously differentiable (D2-type), and non-differentiable
(ND-type). All the functions are concave quadratic and dis-
torted by cubic and quintic polynomials in order to introduce
local optima. The software proposed by Gaviano et al. (2003),
also known as the GKLS-generator, allows the generation of
multiple test functions belonging to the types mentioned above
(Sergeyev and Kvasov, 2006; Sergeyev et al., 2018). For each
such type, we generated 100 test functions defined on the space
X = [−1, 1] × [−1, 1]m2, with 10 local optima, keeping the de-
fault settings used by Gaviano et al. (2003). The algorithms are
run for each function for p = 4 robots, and the distance at each
step to the global optimum, dk, is averaged across all functions.
Note that the maximum velocity is v = 0.1m/s, σ = 0.1m, and
the number of exploitation robots is p − 1 = 3.

Figures 3a-c compare the performance of VSOO with the
DIRECT, PSO, Bayes-Swarm-P and BayesOpt baselines on
the three types of functions. The comparison remains consis-
tent across all types, showing a better performance in the tran-
sient regime for VSOO than for DIRECT, Bayes-Swarm-P and
BayesOpt, while PSO demonstrated a propensity for conver-
gence to local optima, reaching the global optimum in only
47%, 56% and 64% of the cases, for the three types of func-
tions respectively. Bayes-Swarm-P did approach the global op-
timum, but 300 steps were not enough to sufficiently reduce
the distance to it. VSOO, DIRECT, and BayesOpt always con-
verged to the global optimum.

Figure 3d shows the execution time of the algorithms for the
D-type functions (execution times remain consistent across all
types of functions). VSOO has a linear increase in the execu-
tion time as the number of samples increases, unlike DIRECT,
Bayes-Swarm-P and BayesOpt which have approximately the
same execution time for each step. The average step time
of VSOO is 0.01s, faster than of DIRECT’s 0.024s and of
BayesOpt’s of 0.029. Bayes-Swarm-P and PSO are the fastest
methods, averaging 0.007s and 6.81 · 10−4s per step, respec-
tively, but of course they do not find the global optimum.
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(d) Execution times on D-type functions.
Note that the vertical axis is logarithmi-
cally scaled.

Figure 3: Comparison between VSOO and the baselines in 2D: DIRECT, PSO,
Bayes-Swarm-P and BayesOpt. For consistency, the methods are represented
using the same colors across all experiments.

5.2. Quality of X̂∗ζ and SOO-like baseline

In the first part of this section, we compare the average dis-
tance dk used in the previous experiments with d′k, the dis-
tance calculated similarly to (21), but using now xs ∈ X̂∗ζ and

ζ = 0.05, where X̂∗ζ is the approximation of X∗ returned by
VSOO (Algorithm 1). The objective function is Goldstein-
Price, a single global-optimum function chosen to be differ-
ent from the ones used in Section 5.1, so that we increase
the variety of functions. The function is defined on the space
X = [−2, 2] × [−2, 2]m2, and is given by:

f (x1, x2) =

− [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

[30 + (2x1 − 3x2)2(18 − 32x2
1 + 48x2 − 36x1x2 + 27x2

2)]. (22)

Figure 4 (left) shows that the performance of VSOO, when us-
ing the distance d′k, remains similar to the one obtained for dk,
which means in this case X̂∗ζ is a good proxy for the final near-
optimal set of samples. We do not report the performance of
VSOO and the baselines for this function because all methods
behave as before.

Furthermore, for the same function (22), we compare VSOO
with a ‘naive’ adaptation of SOO to MR-PAO. Recall that at
each tree depth with unexpanded nodes remaining, SOO ex-
pands a largest-value node, unless it is dominated by a shal-
lower one in the tree. Expansion means splitting the node in
three equal parts across its largest dimension, and sampling the
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Figure 4: Performance comparison between VSOO with the distance d′k and dk
(left). Performance comparison between VSOO and naive SOO (right).

centers of these three new children. To adapt SOO, at each it-
eration the undominated nodes (depths) are equally distributed
among the robots (the last robot may have fewer nodes, and in
the initial regime there may be robots left with no nodes to ex-
pand). A robot responsible for expanding a node travels to each
new child’s center and reads the function value there. Interme-
diate samples along the way are ignored during the algorithm,
but they are considered when computing the distance dk, and
they are counted on the horizontal axis of Figure 4 (right). In
this figure, we see that VSOO significantly outperforms this
naive version of SOO.

5.3. Baseline comparison for multiple-global-optima functions

The function taken for this case is inspired from our previous
work (Sântejudean et al., 2025), defined on X = [0, 4]×[0, 4]m2,
and given by:

f (x1, x2) = max{ϕ1,2,3(x), ψ1,2,3(x)}, (23)

where ϕi(x) = hi · exp
[∑2

j=1
(x j−ci j)2

b2
i j

]
(radial basis functions),

and ψi(x) = λi · [ f ∗ − M′||x − c′i ||] (cones). The parameters of
ϕ are as follows: slope coefficients λi = [1, 2/3, 1/2], heights
hi = [255, 255, 127.5], widths bi = [1.4, 1.4]λi, and centers
ci = [2.75, 3.5], [3.25, 3.25], [3.75, 1.75], and of ψ: centers
c′i = [2.25, 2.25], [1, 0.75], [1.5, 0.5], and M′ = 312.5. Please
refer to Figure 5 for a plot of this function. The global optima
optima is situated at x∗1 = [3.25, 3.25]T , x∗2 = [2.25, 2.25]T , x∗3 =
[2.75, 3.5]T . This function is taken in order to analyze the be-
havior of the 4 robots when the three optima are all situated in
a small region.

Figure 6 shows largely similar trends to the previous exper-
iments in Section 5.1, although the performance gap between
VSOO and DIRECT is much larger, BayesOpt improves its
performance, and Bayes-Swarm-P performs worse. Whereas
VSOO consistently reduces (on average) the distance to all x∗,
DIRECT has multiple plateaus in which the distance hardly
varies, so it needs more time to reach as close as VSOO to the
global optima. The reason for this is that the region in which the
multiple global optima are situated corresponds to a single re-
gion of responsibility defined by DIRECT. Due to this, only the
robot assigned to that region can travel between all these global
maxima, which leads to many intermediate steps in the case

Figure 5: The function adapted from (23) such that all global optima are located
inside a single DIRECT sub-region.
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Figure 6: Performance comparison between VSOO and the baselines: DI-
RECT, PSO, Bayes-Swarm-P and BayesOpt on the function in (23).

of DIRECT. However, this is not the case for VSOO, which
allows all robots to focus their search on a single sub-region,
if needed, as long as points are further away than σ. More-
over, due to the exclusion distance σ, robots eventually target
each optimum separately, no more than one robot per x∗, which
greatly helps in decreasing the distance to all optima simultane-
ously. PSO remains once again suboptimal, discovering x∗1 and
x∗2 in 35% of the cases, and x∗3 in only 25% of the cases. Bayes-
Swarm-P discovers x∗1 in only 45% of the cases, and x∗2 and
x∗3 in 60% of the cases. Due to the exclusion distance and the
acquisition function that allow BayesOpt not to overly exploit
regions, the average distance to all x∗ is considerably reduced
for this method. Thus, BayesOpt performance, although worse
in the transient regime than of VSOO’s, improves afterwards.

For the following experiment, we evaluate VSOO and the
baselines on a physical objective function, which is a Received
Signal Strength Indication (RSSI) map built using two Blue-
tooth Low Energy devices (Cypress PSoC4 BLE Pioneer kits).
The two antennas were placed at [−0.9, 0.1] and [−0.9, 1.45],
inside a search space X = [−3, 0.2] × [−0.2, 3]m2. The func-
tion was mapped by collecting antenna signals with a ROBO-
TIS TurtleBot3 equipped with a Raspberry Pi 4 module. This
setup is very similar to that used in our real robot experiments
in Section 6; see Figure 10 for an overview of the experimental
testbed. To build a map for the simulation, the robot moved on
an equidistant grid with points spaced at 0.05m on each dimen-
sion of X and at each location averaged 100 RSSI samples to
estimate the objective value. Note that the robots in VSOO do
not sample uniformly like this.

Figure 7 presents on the left a contour plot of the acquired
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Figure 7: The RSSI map acquired (in dBm) from two Bluetooth Low En-
ergy antennas (Cypress PSoC4 BLE) (left). Performance comparison between
VSOO and the baselines: DIRECT, PSO, Bayes-Swarm-P and BayesOpt on the
RSSI map (right).

RSSI map on the 3.2 × 3.2m2 search space X. The location of
the global optima (the BLE antennas) is marked on the plot with
solid red circles. Although this function is quite noisy, which is
true in general for antenna signals (Yılmaz et al., 2013; Wang
et al., 2015), the performance comparison between the meth-
ods in Figure 7 (right) follows the same trend from above. DI-
RECT decreases the distance in stairs, in the transient regime,
while PSO remains highly suboptimal and only succeeds in
finding the first optimum in 35%, and the second one in 20%
of the cases. PSO did not discover more than one global opti-
mum in any of the experiments for the functions with multiple
global optima. BayesOpt performs as in the previous experi-
ment. However, Bayes-Swarm-P is highly suboptimal, since it
finds x∗1 in 35%, and x∗2 in 40% of the cases. We hypothesize
that this method is highly affected by the noisy measurements.
VSOO is able to find both signal sources as fast as DIRECT,
which shows that it handles reasonably well a medium level
of noise present on the objective function, although it was not
specifically designed for noisy samples.

5.4. Influence of the ratio of exploration to exploitation robots
The goal of this section is to study the evolution of VSOO

performance when the number of robots in the team varies, as
well as when the ratio of exploration to exploitation robots in-
creases. For the experiments in this section, we used the GKLS-
generator to determine 100 D-type functions defined on the
space X = [−1, 1] × [−1, 1] × [−1, 1]m3, with 10 local optima
and one global optimum. In 3D we only compare VSOO and
DIRECT. The initial positions of the robots are generated uni-
formly randomly inside the regions of responsibility defined by
DIRECT.

Figure 8 shows that the performance of VSOO improves as
the number of robots increases, regardless of the ratio between
the exploitation and exploration robots. This is expected, since
there are more robots involved in the search, which are there-
fore able to reach the neighborhoods of the global optima faster.
However, we can see that DIRECT does not exhibit a consid-
erably improved performance, since still the optimum belongs
to the responsibility region of only one robot. Figure 8 (left)
illustrates the case when there are p − 1 exploitation robots and
one exploration robot. This shows the exploitation robots sam-
ple around the local optima because the only exploration robot
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Figure 8: Performance of VSOO and DIRECT when varying the number of
robots and the ratio between their types.
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Figure 9: Execution time of VSOO and DIRECT on the D-type functions, in
3D.

needs more steps to discover the area around the global opti-
mum. Figure 8 (right) shows the performance of VSOO when
the ratio between exploration and exploitation robots is p− 1 to
1. Unlike the previous case, the performance is significantly im-
proved, since there are more exploration robots that can reach
the area around the global optimum faster, and one exploitation
robot is enough to sample around the single global optimum.

We also study the execution times of both methods. Figure 9
shows similar trends for the execution times as in the 2D case,
but this time, VSOO is slower than DIRECT, its average step
time being 0.143s and of DIRECT 0.056s.

A possible drawback of the method could be the com-
putational cost that might grow faster for larger dimensions
compared to the baselines. However, this drawback was not
significant in the 2D and 3D cases discussed in this study,
where VSOO exhibited competitive execution time. Note that
VSOO’s execution time is significantly influenced by the ef-
ficiency of its Voronoi partitioning. While the current im-
plementation utilizes an incremental approach based on the
voronoiDiagram function from MATLAB’s Computational
Geometry toolbox, further optimizations may improve compu-
tational speed.

Overall, VSOO outperforms the baselines by finding all
global optima in fewer steps (on average).

6. Real-robot experimental results

In this section, a real-life implementation of the VSOO al-
gorithm is used to verify that the simulated results also hold in
a real-robot scenario. The goal of the experiment is to find a
group of radio frequency broadcasting antennas using a team
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Figure 10: Overview of the TurtleBot3 experimental setup. The beacons are
suspended on metal rods from the ceiling so that the robots can pass unhindered
underneath. The plywood edges help with LiDAR-based localization.

of mobile robots. The antennas are arbitrarily placed indoors
within an enclosed space. Figure 10 gives an overview of the
experimental testbed.

For the antennas, two Infineon PSoC™ 4 development
boards were setup as Bluetooth Low-Energy beacons, which
constantly broadcast. Three ROBOTIS Turtlebot3 robots were
used in the search. The Turtlebot3 is a unicycle mobile plat-
form equipped with all of the necessary sensors and modules
for self localization including inertial measurement unit, Light
Detection And Ranging (LiDAR) and communication devices
including WiFi and Bluetooth. The robots will seek the max-
ima of the RSSI field generated by the beacons. As the RSSI
is a measure of an antenna’s signal strength, these maxima will
appear in close proximity to the sources.

Robot movement is bounded to a [0.5, 3.5] × [0.5, 3.5]m2

search space, inside of a 4 × 4m2 safety perimeter partially
surrounded by walls. The starting positions of the robots
were chosen arbitrarily such that the robots are distributed
over the search space: x1

0 = [0.7, 0.7], x2
0 = [2.5, 0.7], and

x3
0 = [3.3, 3.0]. The approximate coordinates of the two RSSI

maxima (which are approximations because they were obtained
by sampling on a grid) are [1.69, 1.79] and = [1.17, 3.05], re-
spectively. The first two robots were configured as exploita-
tion robots, whilst the third one as an exploration robot. The
exclusion distance σ = 0.5 m, and the maximal velocity v̄ =
0.22 m/s.

To integrate VSOO with real hardware, a centralized con-
troller was implemented that sends the robots to the targets
whilst avoiding inter-agent collisions. This was achieved using
a central computer which communicates with all of the robots
using the Robot Operating System (ROS) infrastructure over a
WiFi network. For each robot, an instance of the ROS navi-
gation stack was run together with a translation layer that al-
lows interoperability with Matlab. A simplified block diagram
of the architecture can be found in Figure 11, where all of the
blocks and signals with a q superscript should be understood
as being repeated for each robot q. The flowchart in Figure 12
depicts the system’s control flow and the information exchange
between the centralized controller and the robots.

The ROS navigation stack is a modular robotics framework

Figure 11: Simplified architecture diagram.

which integrates global and local planning with pose estima-
tion to abstract the low-level control and localization for the
user. The global planner is based on an extension of Dijkstra’s
algorithm (Dijkstra, 1959) and periodically recalculates a path
for the robot to follow. A trajectory is generated by consid-
ering a discretized cost-map spanning the whole search space,
where a higher cost is associated with an obstacle. The local
planner employs the Dynamic Window Approach (Fox et al.,
1997), which calculates the real-time control signals for the
robot’s wheel motors based on the required trajectory and ob-
stacles detected. The pose estimator uses the adaptive Monte
Carlo localization method (Dellaert et al., 1999) which fuses
wheel odometry data and LiDAR readings. To achieve multi-
robot planning, a plugin introduced by Chen (2020) was used,
which allows for a centralized cost-map calculation based on
the obstacles perceived using the LiDARs of all of the robots.
In this configuration, each robot perceives the others as obsta-
cles, around which a path will be generated.

To synchronize the sampling of the RSSI function between
all of the robots, a ROS message is sent to all of the robots with
a fixed frequency fs = 1Hz. Whenever this message is received
by a robot, the latest reading of the RSSI is sent to the interface
node, which bundles the reading together with the correspond-
ing pose estimate into a tuple. These tuples are forwarded to
the Matlab centralized node.

Whenever a robot reaches its target, a callback message is
sent to the Matlab node that triggers the calculation of a new
waypoint using VSOO. The new goal is then sent to the navi-
gation node for the robot to follow.
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Figure 12: Flowchart of the VSOO method. The centralized controller is split
into three asynchronous processes (stemming from the initialization block at
the top left) which wait for a specific event to trigger execution. Solid lines
represent state transitions, while dotted lines represent messages passed over
network between processes and devices. Program start and end blocks are cir-
cled with thicker lines.
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Figure 13: Trajectories of the robots in the real experiment (left). Performance
of VSOO (right).

Figure 13 reports the experimental results for a representa-
tive run of the method. The left plot of the figure shows the
robots’ trajectories, while the right plot illustrates the perfor-
mance of VSOO. The initial positions of the robots are marked
with squares, the RSSI maxima locations with circles, and the
‘x’ symbols indicate sample locations. While robot 3 (yellow)
continues to explore the search space, the exploitation robots 1
(blue) and 2 (red) converge to neighborhoods of the beacons,
finding approximate maximal-RSSI locations at [1.6, 1.92] and
[1.1, 3.13], both of them closer than 0.2m to their respective
source.

The experiment in Figure 13 also exemplifies Theorem 4 and
Remark 9 in practice. Specifically, 2 exploitation robots search
for an equal number of 2 global optima distanced more than σ-
away from each other. Moreover, the theoretical RSSI profile is
expected to decay uniformly radially in a neighborhood of the
transmitters (Atanasov et al., 2012; Zhu et al., 2013). Following
Theorem 4, each such robot will eventually focus its search on
a different x∗, reaching these optima at rather fast rates. This is
also the case in our experiment, as seen in the left plot of Figure
13 and in the timelapse video of the experiment, available on-
line at http://rocon.utcluj.ro/files/vsoo_demo.mp4.

7. Conclusion

This work introduced Voronoi Simultaneous Optimistic Op-
timization (VSOO), a novel divide-the-best-based method for
mobile robots to find as quickly as possible all global optima
of a Lipschitz-continuous objective function defined over their
search area. We analytically concluded that VSOO (i) ex-
hibits everywhere-dense and global convergence, and (ii) has
well-characterized convergence rates for representative func-
tion shapes. Extensive numerical simulations on benchmark
optimization functions, including GKLS-generated test func-
tions, demonstrated that (iii) VSOO outperforms a series of
representative global source/extremum seeking techniques, by
approaching faster the global optima and always finding all
these optima, with (iv) competitive execution time. Finally, (v)
VSOO was validated in real-robot experiments where Turtle-
Bot3 robots successfully identified the strongest wireless sig-
nals, effectively locating the antennas.

Future work will explore dynamically adapting the number
of exploration/exploitation robots in VSOO. Moreover, we plan
to extend VSOO to accommodate more complex robot dynam-
ics, implement the method on diverse robotic platforms such as
aerial drones and underwater robots, and apply it to more intri-
cate real-world scenarios, including mapping and collection of
surface or seabed litter.
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Khong, S. Z., Tan, Y., Manzie, C., Nešić, D., 2014b. Multi-agent source seeking
via discrete-time extremum seeking control. Automatica 50 (9), 2312–2320.

Kim, D., 2023. Engineered Underwater Vehicle for Ocean Litter Mapping. New
Mexico Journal of Science 57.

Kivelevitch, E., 2024. MDMTSPV-GA - Multiple Depot Multiple Traveling
Salesmen Problem solved by Genetic Algorithm. Retrieved June 6, 2024,
from MATLAB Central File Exchange.
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L., 2025. Globally convergent path-aware optimization with mobile robots.
Nonlinear Analysis: Hybrid Systems 55, 101546.

Scheinker, A., 2024. 100 years of extremum seeking: A survey. Automatica
161, 111481.
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Stripinis, L., Paulavičius, R., 2023. Derivative-Free DIRECT-Type Global Op-
timization: Applications and Software. Springer Nature.
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