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From Bernoulli–Gaussian Deconvolution to Sparse
Signal Restoration

Charles Soussen, Jérôme Idier, Member, IEEE, David Brie, and Junbo Duan

Abstract—Formulated as a least square problem under an �

constraint, sparse signal restoration is a discrete optimization
problem, known to be NP complete. Classical algorithms include,
by increasing cost and efficiency, matching pursuit (MP), orthog-
onal matching pursuit (OMP), orthogonal least squares (OLS),
stepwise regression algorithms and the exhaustive search. We
revisit the single most likely replacement (SMLR) algorithm,
developed in the mid-1980s for Bernoulli–Gaussian signal restora-
tion. We show that the formulation of sparse signal restoration
as a limit case of Bernoulli–Gaussian signal restoration leads to
an �-penalized least square minimization problem, to which
SMLR can be straightforwardly adapted. The resulting algo-
rithm, called single best replacement (SBR), can be interpreted
as a forward–backward extension of OLS sharing similarities
with stepwise regression algorithms. Some structural properties
of SBR are put forward. A fast and stable implementation is
proposed. The approach is illustrated on two inverse problems
involving highly correlated dictionaries. We show that SBR is very
competitive with popular sparse algorithms in terms of tradeoff
between accuracy and computation time.

Index Terms—Bernoulli-Gaussian (BG) signal restoration,
inverse problems, mixed �- � criterion minimization, orthogonal
least squares, SMLR algorithm, sparse signal estimation, stepwise
regression algorithms.

I. INTRODUCTION

S PARSE signal restoration arises in inverse problems
such as Fourier synthesis, mono- and multidimensional

deconvolution, and statistical regression. It consists in the
decomposition of a signal as a linear combination of a limited
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number of elements from a dictionary . While formally very
similar, sparse signal restoration has to be distinguished from
sparse signal approximation. In sparse signal restoration, the
choice of the dictionary is imposed by the inverse problem at
hand whereas in sparse approximation, the dictionary has to
be chosen according to its ability to represent the data with a
limited number of coefficients.

Sparse signal restoration can be formulated as the minimiza-
tion of the squared error (where refers to the
Euclidean norm) under the constraint that the pseudo-norm
of , defined as the number of nonzero entries in , is small.
This problem is often referred to as subset selection because it
consists in selecting a subset of columns of . This yields a dis-
crete problem (since there are a finite number of possible sub-
sets) which is known to be NP-complete [1]. In this paper, we
focus on “difficult” situations in which some of the columns of

are highly correlated, the unknown weight vector is only ap-
proximately sparse, and/or the data are noisy. To address subset
selection in a fast and suboptimal manner, two approaches can
be distinguished.

The first one, which has been the most popular in the last
decade, approximates the subset selection problem by a con-
tinuous optimization problem, convex or not, that is easier to
solve [2]–[7]. In particular, the relaxation of the -norm has
been increasingly investigated [2], [3], leading to the LASSO
optimization problem.

The second approach addresses the exact subset selection
problem using either iterative thresholding [8]–[11] or greedy
search algorithms. The latter gradually increase or decrease by
one the set of active columns. The simplest greedy algorithms
are matching pursuit (MP) [12] and the improved version or-
thogonal matching pursuit (OMP) [13]. Both are referred to as
forward greedy algorithms since they start from the empty active
set and then gradually increase it by one element. In contrast, the
backward algorithm of Couvreur and Bresler [14] starts from a
complete active set which is gradually decreased by one ele-
ment. It is, however, only valid for undercomplete dictionaries.
Forward–backward algorithms (also known as stepwise regres-
sion algorithms) in which insertions and removals of dictionary
elements are both allowed, are known to yield better recovery
performance since an early wrong selection can be counteracted
by its further removal from the active set [15]–[18]. In con-
trast, the insertion of a wrong element is irreversible when using
forward algorithms. We refer the reader to [18, Ch. 3] for an
overview of the forward–backward algorithms in subset selec-
tion.

The choice of the algorithm depends on the amount of time
available and on the structure of matrix . In favorable cases, the
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suboptimal search algorithms belonging to the first or the second
approach provide solutions having the same support as the ex-
haustive search solution. Specifically, if the unknown signal is
highly sparse and if the correlation between any pair of columns
of is low, the -norm approximation provides optimal solu-
tions [3]. But when fast algorithms are unsatisfactory, it is rel-
evant to consider slower algorithms being more accurate and
remaining very fast compared to the exhaustive search. The or-
thogonal least squares algorithm (OLS) [19] which is sometimes
confused with OMP [20], falls into this category. Both OLS and
OMP share the same structure, the difference being that at each
iteration, OLS solves as many least square problems as there are
nonactive columns while OMP only performs one linear inver-
sion. In this paper, we derive a forward–backward extension of
OLS allowing an insertion or a removal per iteration, each iter-
ation requiring to solve least square problems, where is the
size of .

The proposed forward–backward extension of OLS can be
viewed as a new member of the family of stepwise regression
algorithms. The latter family traces back to 1960 [15], and other
popular algorithms were proposed in the 1980s [18] and more
recently [21]. Note that forward–backward extensions of OMP
have also been proposed [22], [23]. In contrast with the other
stepwise regression algorithms, our approach relies on a bi-ob-
jective formulation in order to handle the tradeoff between low
residual and low cardinality. This formulation reads as the min-
imization of the -penalized least square cost function

. Then, we design a heuristic algorithm to min-
imize this cost function in a suboptimal way. While the other
forward–backward strategies [15]–[17], [21], [22] aim at han-
dling the same tradeoff, most of them are not expressed as op-
timization algorithms, but rather as empirical schemes without
any connexion with an objective function. Moreover, some of
them involve discrete search parameters that control variable
selection or de-selection [15], [16], [22] while others do not
involve any parameter [17], [21]. An exception can be made
for Broersen’s algorithm [17] since it aims at minimizing

for a specific value corresponding to Mallows’
statistic. However, it is only valid for undercomplete prob-

lems. On the contrary, our proposed algorithm is general and
valid for any value. It does not necessitate to tune any other
parameters (e.g., stopping parameters).

Our starting point is the single most likely replace-
ment (SMLR) algorithm which proved to be a very efficient
tool for the deconvolution of a Bernoulli–Gaussian (BG) signal
[24]–[27]. We show that sparse signal restoration can be seen
as a limit case of maximum a posteriori (MAP) BG restoration
which results in an adaptation of SMLR to subset selection.

The paper is organized as follows. In Section II, we introduce
the BG model and the Bayesian framework from which we for-
mulate the sparse signal restoration problem. In Section III, we
adapt SMLR resulting in the so-called single best replacement
(SBR) algorithm. In Section IV, we propose a fast and stable
SBR implementation. Finally, Sections V and VI illustrate the
method on the sparse spike deconvolution with a Gaussian im-
pulse response and on the joint detection of discontinuities at
different orders in a signal.

II. SPARSE SIGNAL ESTIMATION USING A LIMIT

BERNOULLI–GAUSSIAN MODEL

A. Preliminary Definitions and Working Assumptions

Given an observation vector and a dictionary
, a subset selection algorithm aims at com-

puting a weight vector yielding an accurate approxima-
tion . The columns corresponding to the nonzero
weights are referred to as the active (or selected) columns.

Throughout this paper, no assumption is made on the size of
: can be either smaller or larger than . is assumed to sat-

isfy the unique representation property (URP): any
columns of are linearly independent. This assumption is usual
when ; it is stronger than the full rank assumption [28].
When , it amounts to the full rank assumption. Al-
though URP was originally introduced to guarantee uniqueness
of sparse solutions [28], we use this assumption to propose a
valid algorithm. It can actually be relaxed provided that the
search strategy guarantees that the selected columns are linearly
independent (see Section VI-C for details).

The support of a vector is the set
defined by if and only if . We denote by

the active set and by the re-
lated vector defined by if and only if . When

, let be the submatrix of size
formed of the active columns of . We define the least

square solution and the related squared error:

(1)

(2)

B. Bayesian Formulation of Sparse Signal Restoration

We consider the restoration of a sparse signal from a linear
observation , where stands for the observation
noise. An acknowledged probabilistic model dedicated to sparse
signals is the BG model [24], [25], [27]. For such model, deter-
ministic optimization algorithms [27] and Markov chain Monte
Carlo techniques [29] are used to compute the MAP and the pos-
terior mean, respectively. Hereafter, we define the BG model
and then consider its estimation in the joint MAP sense.

A BG process can be defined using a Bernoulli random vector
coding for the support and a Gaussian random

vector , with the identity matrix of size
. Each sample of is modeled as [24], [25].

The Bernoulli parameter is the probability of
presence of signal and controls the variance of the nonzero
amplitudes . The Bayesian formulation consists in infer-
ring knowing . The MAP estimator can be obtained
by maximizing the marginal likelihood [27] or the joint
likelihood [25], [26]. Following [25] and assuming a
Gaussian white noise , independent from ,
Bayes’ rule leads to

(3)
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where is the diagonal matrix of size
whose diagonal elements are ( reads ), and is

a constant.
Now, a signal is sparse if some entries are equal to 0.

Since this definition does not impose constraints on the range
of the nonzero amplitudes, we choose to use a limit BG model
in which the amplitude variance is set to infinity. Note that
a parallel limit development was done, independently from our
work, in the conference paper [23]. In Appendix A, we show
that the minimization of w.r.t. rereads

(4)

This formulation is close to that obtained in the Bayesian subset
selection literature [18, Ch. 7] using an alternative BG model. In
the latter model, the Gaussian prior relies on instead of ,
with the Cholesky factor of the Gram matrix . This
leads to a cost function of the form (4), the difference being that

depends on the amplitude variance and tends to infinity as
tends to infinity [30], [31].

Remark 1 (Noise-Free Case): The Bayesian development
above is valid for noisy data. In the noise-free case, we define
the sparse solution as the limit of when
tends towards 0. According to classical results in optimization
[32, Ch. 17], if is a sequence decreasing towards 0 and

is an exact global minimizer of , then every limit
point of the sequence is a solution of
s.t. is minimal. In Appendix B, we derive a more
precise result: “the set of minimizers of is constant
when is close enough to 0 . It is equal to the set of
sparsest solutions to in the overcomplete case, and to
the unconstrained least-squares solution in the undercomplete
case.”

In the following, we focus on the minimization problem (4).
The hyperparameter is fixed. It controls the level of sparsity of
the desired solution. The algorithm that will be developed relies
on an efficient search of the support of . The search strategy is
based on the definition of a neighborhood relationship between
two supports: two supports are neighbors if one is nested inside
the other and the largest support has one more element.

III. SINGLE BEST REPLACEMENT ALGORITHM

We propose to adapt the SMLR algorithm to the minimiza-
tion of the mixed - cost function defined in (4).
To clearly distinguish SMLR which specifically aims at mini-
mizing (3), the adapted algorithm will be termed as single best
replacement (SBR).

A. Principle of SMLR and Main Notations

SMLR [24] is a deterministic coordinatewise ascent algo-
rithm to maximize likelihood functions of the form (mar-
ginal MAP estimation) or (joint MAP estimation). In
the latter case, it is easy to check from (3) that given , the mini-
mizer of w.r.t. has a closed form expression .
Consequently, the joint MAP estimation reduces to the mini-
mization of w.r.t. . At each SMLR iteration, all the
possible single replacements of the support (set
while keeping the other unchanged) are tested, then

the replacement yielding the maximal decrease of is
chosen. This task is repeated until no single replacement can de-
crease anymore. The number of possible supports
being finite and SMLR being a descent algorithm, it terminates
after a finite number of iterations.

Before adapting SMLR, let us introduce some useful nota-
tions. We denote by a single replacement, i.e., an insertion
or removal into/from the active set

if
otherwise

When , we define the cost function

(5)

involving the squared error defined in (2). By definition of
coincides with

when the support of is equal to .
Although it aims at minimizing , the proposed

SBR algorithm involves the computation of rather
than . We make this choice because can be
computed and updated more efficiently, the computation of

being no longer necessary. In Section III-C, we show that
for noisy data, the replacement of by has a
negligible effect.

B. The Single Best Replacement Algorithm

SMLR can be seen as an exploration strategy for discrete op-
timization rather than an algorithm specific to a posterior likeli-
hood function. Here, we use this strategy to minimize .
We rename the algorithm Single Best Replacement to remove
any statistical connotation.

SBR works as follows. Consider the current support . The
single replacements are tested, i.e., we compute the

squared errors and we memorize the values of .
If the minimum of is lower than , then we select
the index yielding this minimum value:

(6)

The next SBR iterate is thus defined as . This task is
repeated until cannot decrease anymore. By default, we
use the initial empty support. The algorithm is summarized in
Table I.

C. Case Where Some Active Amplitudes Are Zero

We show that this case almost surely never arises when the
data are corrupted with “nondegenerate” noise.

Theorem 1: Let where is fixed and
is an absolute continuous random vector, i.e., admitting a

probability density w.r.t. the Lebesgue measure. Then, when
, the probability that

is equal to 0.
Proof: Let and be the minimizer of

over . reads where matrix
is of size , and .

Denoting by the row vectors of
if and only if there exists such that (where
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TABLE 1
SBR ALGORITHM. BY DEFAULT, � � �

denotes the inner product). Because is full rank, is full
rank and then . Denoting by the hyperplane
of which is orthogonal to , we have

(7)

Because the set has a Lebesgue measure equal to
zero and the random vector admits a probability density, the
probability of event (7) is zero.

Theorem 1 implies that when dealing with real noisy data, it
is almost sure that all active coefficients are nonzero. Hence,
each SBR iterate almost surely satisfies .
In any case, SBR can be applied without restriction and the prop-
erties stated below (e.g., termination after a finite number of it-
erations) remain valid when an SBR iterate satisfies

.

D. Properties of SBR

Proposition 1: Under the assumptions of Theorem 1, each
SBR iterate is almost surely a local minimizer of .
In particular, the SBR output satisfies this property.

Proof: Let be an SBR iterate. According to The-
orem 1, the support almost surely. Setting

, it is easy to check that if satisfies
, then , thus .

Assume that satisfies .
• If , then, by definition of , we have

. Thus, .
• Otherwise,

. By continuity of , there exists a
neighborhood of such that if

. Thus, if and
, then .

Finally, if and , then
.

Termination: Because SBR is a descent algorithm, a support
cannot be explored twice and SBR terminates after a finite

number of iterations. We emphasize that no stopping condition
is needed unlike many algorithms which require to set a max-
imum number of iterations and/or a threshold on the squared
error variation (CoSaMP, subspace pursuit, iterative hard thresh-
olding, iterative reweighted ).

OLS as a Special Case: When , SBR coincides with the
well known OLS algorithm [19], [33]. The removal operation

never occurs because it yields an increase of the squared error
.

Empty Solutions: We characterize the -values for which
SBR yields an empty solution.

Remark 2: SBR yields the empty set if and only if
.

This result directly follows from checking that any insertion
trial fails, i.e., . It allows us to design an auto-
matic procedure which sets a number of -values adaptively to
the data in order to compute SBR solutions at different sparsity
levels (see Section VI-D).

Relation Between SBR and SMLR: The main difference be-
tween both algorithms is that SMLR involves the inversion of a
matrix of the form whereas SBR computes
the inverse of . In the case of SMLR, the term
acts as a regularization on the amplitude values. It avoids insta-
bilities when is ill conditioned at the price of handling the
additional hyperparameter . On the contrary, instabilities may
occur while using SBR. In the next section, we focus on this
issue and propose a stable implementation.

IV. IMPLEMENTATION ISSUES

Given the current support , an SBR iteration con-
sists in computing the squared error for any re-
placement , leading to the computation of

. Our implementation is inspired
by the fast implementation of the homotopy algorithm for
regression [3], [34]. It consists in maintaining the Cholesky
factorization of the Gram matrix when is
modified by one element. The Cholesky factorization takes the
form where is a lower triangular matrix of
size . Also, is better conditioned than ,
improving the stability of matrix inversion. We now give the
main updating equations. Full detailed derivation can be found
in Appendix C.

A. Efficient Strategy Based on the Cholesky Factorization

The replacement tests only rely on the current matrix and
do not require its update.

1) Single Replacement Tests: An insertion test
takes the form

(8)

with . This computation mainly requires a tri-
angular system inversion (computation of in ele-
mentary operations) up to the pre-computation of at
the beginning of the current SBR iteration.

According to [18], [35], a removal test reads
where is the th

element in vector and is the diagonal element of
corresponding to the position of in . The overall removal
tests mainly amount to the inversion of the triangular matrix
(in operations) as the computation of for all and
of (i.e., the values of ) from are both in

.
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Note that insertion and removal tests can be easily done in
parallel. In Matlab, this parallel implementation leads to a sig-
nificant save of computation time due to the SIMD capabilities
of Matlab.

2) Updating the Cholesky Factorization: The update of
can be easily done in the insertion case by adding the

new column at the last position in . The new matrix
is a 2 2 block matrix whose upper left block is

(see Appendix C). The removal case requires more care since
a removal breaks the triangular structure of . The update
can be done by performing either a series of Givens planar
rotations [21] or a positive rank 1 Cholesky update [36]. We
describe the latter strategy in Appendix C. The Cholesky
factorization update is in in the insertion case and in

in the removal case where denotes the position
of the column to be removed in .

B. Reduced Search

Additionally, we propose an acceleration of SBR yielding the
same iterates with a reduced search. We notice that a column
removal yields an increase of the squared error
and a decrease of the penalty equal to . Hence, the maximum
decrease of which can be expected is . The acceleration
of SBR consists in testing insertions first. If any insertion leads
to , then removals are not worth being
tested. Otherwise, the removals have to be tested as stated in
Table I. We have implemented this acceleration systematically.

C. Memory Requirements and Computation Burden

The actual implementation may vary depending on the size
and the structure of matrix . We briefly describe the main pos-
sible implementations.

When the size of is relatively small, the computation and
storage of the Gram matrix prior to any SBR iteration
(storage of scalar elements) avoids to recompute the vectors

which are needed when the insertion of into the active
set is tested. The storage of the other quantities (mainly ) that
are being updated amounts to scalar elements and a re-
placement test costs elementary operations in average.

When is larger, the storage of is no longer possible,
thus must be recomputed for any SBR iteration. This com-
putation costs elementary operations and now represents
the most important part of an insertion test. When the dictio-
nary has some specific structure, this limitation can be allevi-
ated, enabling a fast implementation even for large . For in-
stance, if a large number of pairs of columns of are orthogonal
to each other, can be stored as a sparse array. Also, finite
impulse response deconvolution problems enable a fast imple-
mentation since is then a Toeplitz matrix (save north-west
and/or south-east submatrices, depending on the boundary con-
ditions). The knowledge of the auto-correlation of the impulse
response is sufficient to describe most of the Gram matrix.

All these variants have been implemented.1 In the following,
we analyze the behavior of SBR for two difficult problems in-
volving highly correlated dictionaries: the deconvolution of a

1Matlab codes provided by the authors can be downloaded at http://ieeex-
plore.org. In our Matlab implementation, the insertion and removal tests are
done in parallel.

TABLE II
SEPARATION OF TWO GAUSSIAN FEATURES FROM NOISE-FREE DATA WITH

SBR. � STANDS FOR THE DISTANCE BETWEEN THE GAUSSIAN FEATURES.
WE DISPLAY THE SIZE OF THE SUPPORT OBTAINED FOR A SEQUENCE OF

DECREASING �-VALUES � � � � � � � � � . THE LABEL INDICATES AN

EXACT RECOVERY FOR A SUPPORT OF CARDINALITY 2

sparse signal with a Gaussian impulse response (Section V)
and the joint detection of discontinuities at different orders in
a signal (Section VI).

V. DECONVOLUTION OF A SPARSE SIGNAL WITH A

GAUSSIAN IMPULSE RESPONSE

This is a typical problem for which SMLR was intro-
duced [27]. It affords us to study the ability of SBR to perform
an exact recovery in a simple noise-free case (separation of two
Gaussian signals) and to test SBR in a noisy case (estimation
of a larger number of Gaussians) and compare it with other
algorithms. For simulated problems, we denote by the exact
sparse signal, the data reading . The dictionary
columns are always normalized: . The signal-to-noise
ratio (SNR) is defined by , where

is the average power of the noise-free data
and is the variance of the noise process .

A. Dictionary and Simulated Data

The impulse response is a Gaussian signal of standard
deviation , sampled on a regular grid at integer locations. It
is approximated by a finite impulse response of length by
thresholding the smallest values, allowing for fast implemen-
tation even for large size problems (see Section IV-C). The
deconvolution problem leads to a Toeplitz matrix whose
columns are obtained by shifting the signal . The dimension
of is chosen to have any Gaussian feature resulting from
the convolution belonging to the observation window

. This implies that is slightly undercomplete
.

B. Separation of Two Close Gaussian Features

We first analyze the ability of SBR to separate two Gaussian
features from noise-free data. The centers of both
Gaussian features lay at a relative distance (expressed as a
number of samples) and their weights are set to 1. We an-
alyze the SBR outputs for decreasing -values by computing
their cardinality and testing whether they coincide with the true
support . Table II shows the results obtained for a problem
of size 300 270 with distances equal to 20, 13,
and 6 samples. It is noticeable that the exact recovery always
occurs provided that is sufficiently small. This result remains
true even for smaller distances (from ). When the Gaussian
features strongly overlap, i.e., for , the size of the output
support first increases while decreases, and then removals start
to occur, enabling the exact recovery for lower ’s.
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C. Behavior of SBR for Noisy Data

We consider a more realistic simulation in which the data are
of larger size ( 3000 samples) and noisy. The impulse re-
sponse is of size 301 yielding a matrix of size
3000 2700, and the SNR is set to 20 dB. Fig. 1(a) displays the
generated data. The unknown sparse signal is composed of
17 spikes that are uniformly located in . The nonzero
amplitudes are drawn according to an i.i.d. Laplacian dis-
tribution. Let us remark that the limit BG model is not a proper
probabilistic model so that one cannot use it to design simulated
data. We choose a Laplacian distribution since the nonzero am-
plitudes are more heterogeneous than with a Gaussian distribu-
tion with finite variance.

In Fig. 1(b)–(d), we display the SBR results for three
-values. For large ’s, only the main Gaussian features are

found. When decreases, the smaller features are being re-
covered together with spurious features. Removals occur for

yielding approximations that are more accurate than
those obtained with OLS and for the same cardinality (the
residual is lower) while when , the SBR
output coincides with the OLS solution of same cardinality.
Note that the theoretical value of obtained from (3) is equal to
0.3 yielding a support of cardinality 18. The residual is slightly
lower than that obtained with . The exact support of
is never found because the data are noisy and the neighboring
columns of are highly correlated. In such difficult case,
one needs to perform a wider exploration of the discrete set

by introducing moves that are more complex than
single replacements. Such extensions were already proposed in
the case of SMLR. One can for instance shift an existing spike

forwards of backwards [37] or update a block of neighboring
amplitudes jointly (e.g., and ) [38]. Various search
strategies are also reported in [18, Ch. 3].

D. Comparison of SBR With Other Sparse Algorithms

We compared SBR with classical and recent sparse algo-
rithms: OMP, OLS, CoSaMP [8], subspace pursuit [9], iterative
hard thresholding (IHT) [10], [11], regression [3], and
iterative reweighted (IR ) [5], [40]. A general trend is that
thresholding algorithms perform poorly when the dictionary
columns are strongly correlated. CoSaMP and subspace pursuit
yield the worst results: they stop after a very few iterations as
the squared error increases from one iteration to the next. On
the contrary, IHT guarantees that the squared error decreases
but the convergence is very slow and the results remain poor
in comparison with SBR. In the simulation of Fig. 1(c), SBR
performs 12 iterations (only insertions) leading to a support
of cardinality 12. Meanwhile, the number of iterations of IHT
before convergence is huge: both versions of IHT presented in
[10] require at least 10 000 iterations to converge, leading to
an overall computation time (22 and 384 s) that is much larger
than the SBR computation time (3 s).

Fig. 2 is a synthetic view of the performance of SBR, OLS,
OMP, regression, and IR for a given sparsity level . The
computation time and the value of are shown on the
horizontal and vertical axes, respectively. This enables us to de-
fine several categories of algorithms depending on their loca-
tions on the 2-D plane: the outputs of fast algorithms (OMP and

) lay in the upper left region whereas slower but more effi-
cient algorithms (OLS, SBR, and IR ) yield points laying in
the lower right region. We chose not to represent the outputs of
thresholding algorithms since they yield poorer performance,
i.e., points located either in the upper right (IHT) or upper left
(CoSaMP, subspace pursuit) regions. In details, we observed
that regression tends to overestimate the support cardinality
and to place several spikes at very close locations. We used
Donoho’s homotopy implementation [3], [39] and found that it
requires many iterations: homotopy runs during 200 iterations
before reaching a support of cardinality 18 when processing the
data of Fig. 1 (we recall that homotopy starts from the empty set
and performs a single support replacement per iteration). The
performance of regression fluctuates around that of OMP de-
pending on the trials and the sparsity level. Regarding IR , we
used the Adaptive LASSO implementation from Zou [40] since
it is dedicated to the minimization of . We stopped the
algorithm when two successive iterates share the same sup-
port. For the simulation of Fig. 1, IR and SBR yield com-
parable results in that one algorithm does not outperform the
other for all values, but IR generally performs slightly better
(Fig. 2). We designed other simulations in which the nonzero
weights are spread over a wider interval. In this case, SBR
most often yields the best approximations.

Fig. 2 is representative of the empirical results obtained while
performing many trials. Obviously, the figure may significantly
change depending on several factors among which the -value
and the tuning parameters of IR . The goal is definitely not
to conclude that an algorithm always outperforms the others
but rather to sketch a classification of groups of algorithms ac-
cording to the tradeoff between accuracy and computation time.

VI. JOINT DETECTION OF DISCONTINUITIES AT DIFFERENT

ORDERS IN A SIGNAL

We now consider another challenging problem: the joint
detection of discontinuities at different orders in a signal [41],
[42]. We process both simulated and real data and compare
the performance of SBR with respect to OMP, Bayesian
OMP (BOMP) which is an OMP based forward–backward
algorithm [23], OLS, regression [3], and IR [5], [7],
[40]. First, we formulate the detection of discontinuities at a
single order as a spline approximation problem. Then, we take
advantage of this formulation to introduce the joint detection
problem.

A. Approximation of a Spline of Degree

Following [41], we introduce the dictionary of size
formed of shifted versions of the one-sided power func-

tion for all possible shifts (see Fig. 3) and we
address the sparse approximation of by the piecewise poly-
nomial (actually, we impose as initial condition that the
spline function is equal to 0 for ). It consists in the detec-
tion of the discontinuity locations (also referred to as knots in
the spline approximation literature) and the estimation of their
amplitudes: codes for the amplitude of a jump at location

, the change of slope at location , etc. Here,
the notion of sparsity is related to the number of discontinuity
locations.
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Fig. 1. Gaussian deconvolution results. Problem of size 3000� 2700 �� �
���. (a) Generated data, with 17 Gaussian features and with ��� � 20 dB.
The exact locations ��� are labeled �. (b), (c), (d) SBR outputs and data ap-
proximations with empirical settings of �: � � ���� 	�� and ���, respectively.
The estimated amplitudes ��� are shown with vertical spikes. The SBR outputs
(supports) are of size 5, 12, and 18, respectively. The computation time always
remains below 3 s (Matlab implementation).

B. Piecewise Polynomial Approximation

We formulate the joint detection of discontinuities of orders
by appending the elementary dictionaries in

a global dictionary . The product yields
a sum of piecewise polynomials of degree lower than with

Fig. 2. Comparison of sparse algorithms in terms of tradeoff between accuracy
�� ����
��� and CPU time for the deconvolution problem of Fig. 1. SBR�� �
���� is run first yielding a support of cardinality � � 	�. Then, we run
OLS�� �, OMP�� �, homotopy for � regression [39], and IR� ��� [40].
The � result is the homotopy iterate of cardinality � yielding the least value
of � ����
 ��.

Fig. 3. Signals ��� related to the 	th order discontinuities at location 
. ��� is
the Heaviside step function, ��� is the ramp function, and ��� is the one-sided
quadratic function. Each signal is equal to 1 at location 
 and its support is equal
to �
� � � � ���.

a limited number of pieces. The dictionary is overcomplete
since it is of size , with

for . Moreover, any column of overlaps all
other columns because their respective supports are the in-
tervals and . The discontinuity detection
problem is difficult as most algorithms are very likely to position
wrong discontinuities in their first iterations. For example, when
approximating a signal with two discontinuities at distinct loca-
tions and , greedy algorithms start to position a first (wrong)
discontinuity in between and , and forward greedy algorithms
cannot remove it.

C. Adaptation of SBR

The above defined dictionary does not satisfy the unique rep-
resentation property. Indeed, it is easy to check that the differ-
ence between two discrete ramps at locations and yields
the discrete Heaviside function at location : .
We thus need to slightly modify SBR in order to ensure that only
full rank matrices are explored. The modification is based
on the following proposition which gives a sufficient condition
for full rankness of .

Proposition 2: Let denote the number of columns
which are active for sample . Let us define the bi-

nary condition :
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Fig. 4. Joint detection of discontinuities of orders 0 and 1. The dictionary is of size 1000� 1999 and the data signal includes 18 discontinuities. The true and
estimated discontinuity locations are represented with unfilled black and filled gray labels. The shape of the labels (circular or triangular) indicates the discontinuity
order. The dashed gray and solid black curves represent the data signal ��� and its approximation ������ for the least �-value. (a) Approximation from noise-free data.
The recovery is exact. (b) “� -� ” curves showing the squared residual versus the cardinality for the SBR, OLS, and OMP solutions. (c), (d) Similar results for
noisy data (��� � 20 dB).

• if ;
• if .

If satisfies , then is full rank.

Proposition 2 is proved in Appendix D. Basically, it states
that we can allow several discontinuities to be active at the same
location , but then, the next samples must
not host any discontinuity. This condition ensures that there are
at most discontinuities in the interval of
length . The SBR adaptation consists in testing an insertion
only when the new support satisfies the above
condition.

D. Numerical Simulations

We first set leading to the piecewise affine approxi-
mation problem. The noise-free data of Fig. 4(a) are
of size with discontinuities. According
to Remark 2, we compute the value above which the SBR
output is the empty set, and we run SBR with
for . For the least -value, SBR yields an exact
recovery [see Fig. 4(a)]. For comparison purpose, we also run
27 iterations of OMP and OLS. The “ - ” curves represented
on Fig. 4(b) express the squared residual versus the
cardinality for each algorithm (we plot the first 27 iterates
of OMP and OLS and for all , we plot the output of SBR
after full convergence of SBR). Whatever the cardinality, SBR
yields the least residual. For noisy data, the “ - ” curve corre-
sponding to SBR still lays below the OMP and OLS curves for

most cardinalities. In the next paragraph, we also consider the
Bayesian OMP, regression, and IR algorithms for further
comparisons.

E. AFM Data Processing

In atomic force microscopy (AFM), a force curve measures
the interatomic forces exerting between a probe associated to a
cantilever and a nano-object. Specifically, the recorded signal

shows the force evolution versus the probe-sample
distance , expressed in nanometers. Researching discontinu-
ities (location, order, and amplitude) in a force curve is a chal-
lenging task because they are used to provide a precise charac-
terization of the physico-chemical properties of the nano-object
(topography, energy of adhesion, etc.) [43].

The data displayed on Fig. 5(a) are related to a bacterial cell
Shewanella putrefaciens laying in aqueous solution, interacting
with the tip of the AFM probe [44]. A retraction force curve
is recorded by positioning the tip in contact with the bacterial
cell, and then gradually retracting the tip from the sample until
it loses contact. In the retraction curve shown on Fig. 5(a), three
regions of interest can be distinguished from right to left. The
linear region on the right characterizes the rigid contact between
the probe and the sample. It describes the mechanical interac-
tions of the cantilever and the sample. The rigid contact is main-
tained until 2840 nm. The interactions occurring in the
interval nm are adhesion forces during the
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Fig. 5. Joint detection of discontinuities of orders 0, 1, and 2 (problem of size
2167� 6498). (a) Experimental AFM data showing the force evolution versus
the probe-sample distance �. (b) Squared residual versus cardinality for the
SBR, OLS, and OMP solutions. (c) Time of reconstruction versus cardinality.

tip retraction. In the flat part on the left, no interaction occurs as
the cantilever has lost contact with the sample.

We search for the discontinuities of orders 0, 1, and 2. Sim-
ilar to the processing of simulated data, we run SBR with 14

-values and we run OLS and OMP until iteration 41. For each
algorithm, we plot the “ - ” curve and the curve displaying the
time of reconstruction versus the cardinality [Fig. 5(b) and (c)].
These figures show that the performance of SBR is at least equal
and sometimes better than that of OLS. Both algorithms yield
results that are far more accurate than OMP at the price of a
larger computation time.

Fig. 6 displays the approximations yielded by the three algo-
rithms together with the BOMP, , and IR approximations.
For the largest value , SBR runs during six iterations (four
insertions and two removals) yielding a support of cardinality
2. SBR performs better than other algorithms [Fig. 6(a)–(f)].

Although IR yields the most accurate approximation, it
relies on 4 dictionary columns leading to a larger value of

. We observed the same behavior for the lowest
value [Fig. 6(g)–(l)]. Again, SBR yields the least value of

among all algorithms. Moreover, SBR provides a very
precise localization of both first order discontinuities [Fig. 6(a)]
which are crucial information for the physical interpretation
of the data. On the contrary, all other algorithms fail for the
highest sparsity level, and some do not even succeed for the
lowest. Specifically, OLS accurately locates both first order
discontinuities when five iterations have been performed (the
desired discontinuities are the first and the last ones among the
five) while OMP fails even after five iterations. LASSO and
BOMP yield very poor approximations for the highest sparsity
level and approximations with many dictionary columns for
the lowest sparsity level. In terms of value of the cost function

, BOMP and LASSO fluctuate around OMP but they
are far outperformed by OLS, SBR, and IR .

VII. CONCLUSION

A. Discussion

We performed comparisons for two problems involving
highly correlated dictionary columns. SBR is at least as accu-
rate as OLS and sometimes more accurate, with a slightly larger
cost of computation. We also considered sparse algorithms that
are slower than OLS. SBR was found to be very competitive
in terms of tradeoff between accuracy and computation time.
Although OLS based forward–backward algorithms yield a rel-
atively large computational cost per iteration, we have noticed
that for correlated dictionaries, the number of SBR iterations
(i.e., of elementary modifications of the support) is much lower
than the number of support modifications performed by several
other algorithms. Typically, IHT and IR can often be more
expensive than SBR. Additionally, SBR terminates within a
finite number of iterations, thus it does not require to tune any
empirical stopping parameter. The limitation of SBR in terms
of speed arises when the dictionary is unstructured and the
size of is too large to store . The inner products
must then be recomputed for each iteration, which is relatively
burdensome.

In the recent literature, it is often acknowledged that the cost
function has a large number of local minimizers there-
fore discouraging its direct optimization [5], [7]. Many authors
thus choose to minimize an approximate cost function in which
the norm is replaced with a nonconvex continuous func-
tion . However, when the range of values of the (expected)
nonzero amplitudes is wide, it is difficult to find a good
approximation of for all . Selecting an appro-
priate function generally relies on the introduction of a de-
gree of freedom whose tuning is not obvious [5], [6]. For in-
stance, the IR algorithm can be interpreted as an approximate

- minimization method where the norm is replaced with
[5], [7]. The parameter controls the

“degree of nonconvexity” of the surrogate function .2

Although has a large number of local minima, we
have found that SBR is often as accurate as algorithms based on

2In the comparisons with SBR, we set � � � following [40].
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Fig. 6. AFM data processing: joint detection of discontinuities of orders 0, 1, and 2. The estimated discontinuities ��� are represented with vertical spikes and
with a label indicating the discontinuity order. (a) SBR output of cardinality 2: four insertions and two removals have been done �� � ����. (b)–(f) OLS and
OMP outputs after two iterations, BOMP and IR� [40] outputs for � � � , homotopy iterate (LASSO) leading to the minimal value of � ������ �. (g)–(l) Same
simulation with a lower �-value �� � ��	�. The SBR output is of cardinality 5 (seven insertions and two removals).

the nonconvex approximation of . Moreover, SBR is simple
to use. The good behavior of SBR is somehow related to the re-
sult of Proposition 1 which states that any SBR iterate is almost
surely a local minimizer of . We conclude that SBR is actually
capable to “skip” local minima with a large cost .

B. Perspectives

In the proposed approach, the main difficulty relies in the
choice of the -value. If a specific cardinality or approximation
residual is desired, one can resort to a trial and error procedure
in which a number of -values are tried until the desired ap-
proximation level is found. In [45], we sketched a continuation
version in which a series of SBR solutions are computed for de-
creasing levels of sparsity , and the -values are recursively
computed. This continuation version is showing promising re-
sults and will be the subject of a future extended contribution.
A similar perspective was actually proposed by Zhang to gener-
alize his FoBa algorithm in a path-following algorithm (see the
discussion section in [22]).

Another important perspective is to investigate whether SBR
can guarantee exact recovery in the noise-free case under some
conditions on matrix and on the unknown sparse signal .
According to Remark 1, we will study the behavior of SBR

when . In the simulations done in Sections V and VI,
we observed that SBR is able to perform exact recoveries pro-
vided that is sufficiently small. This promising result is a first
step towards a more general theoretical study.

APPENDIX A
DETAILED DEVELOPMENT OF LIMIT BG SIGNAL RESTORATION

Consider the Bernoulli-Gaussian (BG) model in-
troduced in Section II-B and the joint MAP formulation (3) in-
volving the cost function . Given , let us split into two
subvectors and indexed by the null and nonnull entries of
, respectively. Since and do not

depend on , we have . Thus, the
joint MAP estimation problem reduces to the minimization of

w.r.t. . In the limit case , this problem
rereads

(9)

The equivalence between (9) and (4) directly follows from the
change of variable where and are the support and
nonzero amplitudes of .
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APPENDIX B
PROOF OF REMARK 1

The proof of the result stated in Remark 1 is based on the two
following lemmas.

Lemma 1: For , any minimizer of takes the
form with .

Proof of Lemma: According to the URP assump-
tion, any columns of yield an uncon-
strained minimizer of . Let be such min-
imizer, with , and let be a min-
imizer of . implies that

.
We denote by the support of . The related least-square

solution obviously satisfies and
, thus . Since is a

minimizer of , we have hence
. Because of the URP assumption, the least-

squares minimizer over is unique, thus .
Lemma 2: There exists such that for

, the minimizers of are unconstrained minimizers
of .

Proof of Lemma: When tends towards 0, we have
for all . In particular,

with an unconstrained minimizer of
yielded by a subset of cardinality .

Because the number of possible subsets is finite and for all
, there exists such that for ,

the subsets minimizing satisfy .
Consequently, the minimizers of are unconstrained
least-squares solutions according to Lemma 1.

Proof of Remark 1: The proof directly follows from the
application of Lemma 2. We denote by the set of minimizers
of .

In the undercomplete case, there is a unique unconstrained
least-square minimizer . Thus, for

.
In the overcomplete case, we denote by the set of sparsest

solutions to . To show that for ,
we consider and . According to Lemma 2,
satisfies , then . By definition of ,
we have and . Because

is a minimizer of , we deduce that ,
then and . We have proved that for

.

APPENDIX C
UPDATE OF THE CHOLESKY FACTORIZATION

At each SBR iteration, linear systems of the form
must be solved, the corresponding squared

errors reading .
Using the Cholesky factorization rereads

, thus

(10)

Insertion of a New Column After the Existing Columns: In-
cluding a new column leads to . Thus, the new
Gram matrix reads as a 2 2 block matrix:

and the Cholesky factor of can be straightforwardly up-
dated:

(11)

with . The update (8) of
directly follows from (10) and (11).

Removal of an Arbitrary Column: When removing a column
, updating remains possible although more complex. This

idea was developed by Ge et al. [46] who update the Cholesky
factorization of matrix . We adapt it to the direct (simpler)
factorization of . Let be the position of in (with

). can be written in a block matrix form

(12)

where the lowercase characters refer to the scalar and vector
quantities appearing in the th row and in the th column.
The computation of and the removal of the th
row and the th column in lead to

By identification with and because the
Cholesky factorization is unique, necessarily reads

(13)

where is a lower triangular matrix satisfying
. The problem of computing from and is classical; it

is known as a positive rank 1 Cholesky update and there exists a
stable algorithm in operations, where
is the size of [36].

APPENDIX D
PROOF OF PROPOSITION 2

Let us first introduce some notations specific to the piecewise
polynomial dictionary problem. Consider a subset of columns

and let denote the lowest location of
an active entry (we recall that denotes the number of active
columns for sample ). Up to a reordering of the columns of

rereads where gathers the active
columns such that and gathers the remaining
active columns (with ). The following lemma is a key
element to prove Proposition 2.

Lemma 3: Assume that satisfies the condition of Proposi-
tion 2. If is full rank, then is full rank.

Proof: Let denote the number of disconti-
nuities at location and let
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denote their orders, sorted in the ascending order. Suppose
that there exist two families of scalars and

and is active at order such that

(14)

Let us show that all -values are then equal to 0.
Rewriting the first nonzero equations in this system and

because satisfies the condition of Proposition 2, we have, for
all .

Hence, the polynomial has positive
roots. Because any nonzero polynomial formed of monomials
of different degrees has at most positive roots [47, p. 76],

is the zero polynomial, thus all scalars are 0. We deduce
from (14) and from the full rankness of that for all

.
We have shown that the column vectors of are linearly

independent, i.e., that is full rank.
The proof of Proposition 2 directly results from the recursive

application of Lemma 3. Starting from the empty set, all the
indices, sorted by decreasing order, are successively included.
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