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ABSTRACT

We address the problem of complexity reduction in hyper-
spectral image unmixing. When the hyperspectral images
are highly resoluted, we propose to select a limited number
of pixels, therefore reducing dramatically the size of the data.
Then, the related mixtures are used as inputs to a positive
source separation algorithm. Our pixel selection procedure
is based on a convex cone analysis of the data mixtures; in-
deed, positive mixtures of sources are embedded in a convex
cone whose boundary contains complete available informa-
tion regarding the sources. We search for the least number
of mixtures embedding the convex cone and then store the
corresponding pixel indices as the selected pixels. We apply
this method to the analysis of hyperspectral images of bac-
terial cells obtained on a confocal microscope. The bacterial
cells, acting as whole-cell biosensors, display great potential
as living transducers in sensing applications.

1. INTRODUCTION

Blind positive source separation (PSS) is known to be a diffi-
cult, ill-posed inverse problem, because the positivity ofboth
source signals and mixture coefficients is not sufficient to
guarantee a unique solution. In the last decade, intensive
efforts were made to study the identifiability of the source
separation problem under the positivity constraints, and ef-
ficient algorithms were proposed. The algorithms either use
the positivity assumptions only [1, 2] or use additional con-
straints to force the solution to be unique [3, 4].

In imaging applications, the number of mixtures corre-
sponds to the number of pixels. For highly resoluted images,
this number can typically reach 5122. Most positive source
separation algorithms cannot be applied to such voluminous
data sets because they require a considerable amount of time
and/or memory. Therefore, it is necessary to reduce the data
sets,e.g.,by considering a limited number of pixels.

There exists a rich literature on pixel selection but we
will only refer to the approaches similar to that proposed in
this paper. One of the most popular algorithms for pixel se-
lection is Pixel Purity Index(PPI) proposed by Boardman
in [5]. PPI is based on the repeated projection of the mix-
tures onto random unit vectors, and the search for the ex-
treme pixels in each projection. From a cumulative account
recording the number of times each pixel is found to be ex-
treme, PPI identifies the mixtures which are more likely to be
the pure sources [5, 6]. In [7], the eigenvectors of the spec-
tral correlation matrix are used to estimate the sources, inthe
convex cone analysis (CCA) framework. The main drawback

of these methods is that the selected pixels are directly con-
sidered as pure sources, which is not always a valid assump-
tion in practice. In [8], the independent component analy-
sis (ICA) was used to yield a rough classification of pixels,
and then to design a heuristic selection procedure. This pro-
cedure avoids to select pixels belonging to artifact regions.
However, the number of selected pixels is arbitrarily chosen
and the positivity assumption is not taken into account.

The algorithm proposed in this paper aims at selecting
effectively the relevant pixels, based on the CCA framework.
The main idea in CCA is that each non-negative mixture of
sources lays inside the convex cone spanned by the sources.
The objective of CCA is to find the mixtures which fully
identify the convex cone boundary. Contrary to [7], we do
not set the sources as the “boundary mixtures”. Instead, these
selected mixtures are used as the input of a positive source
separation procedure.

In Section 2, we state the positive source separation prob-
lem and we discuss the complexity reduction issues. In Sec-
tion 3, we introduce the CCA framework and we present our
pixel selection algorithm. In Section 4, we apply this method
to the analysis of hyperspectral images obtained on a con-
focal microscope, which characterize genetically engineered
bacteria expressing optically active reporter molecules in re-
sponse to chemical or environmental effectors [9].

2. POSITIVE SOURCE SEPARATION AND
COMPLEXITY REDUCTION ISSUES

2.1 Positive source separation

In source separation problems, the observations are grouped
together in a matrixX = [x1, . . . ,xM]t of sizeM ×N rep-
resenting a collection ofM mixture signalsxi ∈ RN. The
linear instantaneous mixture model expresses each mixture
xi as a linear combination ofP source signalss1, . . . ,sP:

xi =
P

∑
j=1

ai j s j . (1)

In the matrix form, this model rereads:

X = AS, (2)

whereA is the mixing matrix, of sizeM × P, whosei-th
row gathers the weight of all sources in the mixturexi , and
S = [s1, . . . ,sP]t is the source matrix, of sizeP×N.

Given a set of observationsX = [x1, . . . ,xM]t , the blind
source separation problem consists in decomposingX ac-
cording to (2). In the following,P will be assumed to be the
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rank ofX, and we will assume thatA andS are full rank,
i.e.,rank

[

A
]

= rank
[

S
]

= P.
For noisy data, model (2) is replaced by:

X = AS +N , (3)

where the noise matrixN takes account of the modeling and
the measurement errors. The blind source separation ofX
consists in searching for the factorizationX ≈AS for which
the residual betweenX andAS is minimal. In this paper,
we impose thatA andS are non-negative matrices,i.e., all
elementsai j andsi j are non-negative.

2.2 Unicity issues and regularization

Let us start by considering the noiseless problem and the non-
negativity constraint. This constraint is known to regularize
the source separation problem, because it restricts the range
of solutions for (2). However, it does not always guarantee
the unicity of the decomposition [10, 11] (unicity is defined
up to a permutation and scaling of the sources; if there is
no other ambiguity, the decomposition is called “unique”).
Typically, the non-negativematrix factorization algorithm [2]
provides one exact solution among all the possible solutions
satisfyingA > 0 andS > 0. Often, additional constraints
must be imposed,e.g., the sparsity of the source samples
and/or of their weights in the mixtures in order to uniquely
identify the sources [3, 4]. However, there exists a (rather
technical) necessary and sufficient condition, based on the
positive span of the mixturesxi , under which the identifia-
bility of (2) is guaranteed with the only non-negativity con-
straint [10, 11]. Let us first define the notion of positive span.

Definition. The positive span of a family of vectors
{z1, . . . ,zd} is the set vect+(z1, . . . ,zd)= {z = ∑i αizi ,αi ∈R+}, whereR+ denotes the set of non-negative reals.

In the following, we will denote by vect(X) and vect+(X)
the span and the positive span of the rows ofX, i.e.,
x1, . . . ,xM ∈RN

+. Shortly speaking, the condition of [10, 11]
states that vect+(X) has to be “close enough” to vect(X)∩RN

+ in order to guarantee the unicity of factorization (2).
In the noisy case, we do not search for an exact factoriza-

tion of X anymore, but rather for an approximate factoriza-
tion in whichA andS satisfy specific properties. The algo-
rithms which jointly estimateA andS from noisy data often
rely on prior assumptions on the sources and/or the mixture
coefficients,e.g.,sparsity assumptions [3, 4].

2.3 Complexity reduction

For hyperspectral image applications,M is the number of
pixels and the mixturexi is related to thei-th pixel. When
the value ofM is huge (typically,M can reach 5122 or more),
classical algorithms either yield poor results [1, 3] or cannot
be used [4] because of their greediness in terms of memory
storage and computation time. In all cases, it is of interest
to reduce the dimension of the dataX by keeping a subset
of the pixels{1, . . . ,M}, for instance those for which only a
limited number of sources are present. Formally, we want to
extract a matrixXe from X whose number of rows is lim-
ited, and then to unmix the new matrixXe:

Xe ≈ AeS. (4)

1

yi

xi

x(3)

x(2)1

x(1)

1

0

Figure 1: Pixel selection procedure: illustration forN = P =
3. A mixture signalxi is a vector ofR3

+ (+). Graphically,
the affine projectionyi of xi is defined as the intersection of
line (0,xi) with the plane of equationx(1)+x(2)+x(3) = 1.
The projectionyi is represented with a bullet (•). The pixel
selection procedure consists in projecting all the dataxi and
then computing the(N− 1)-dimensional convex hull of the
set of pointsyi . WhenN = 3, this convex hull is the 2D
polygon represented in plain line.

In this equation,Xe is of sizem×N with m≪ M, Ae is of
sizem×P andS remains of sizeP×N.

The key issue is to keep the available information regard-
ing the sources. This can be done by searching for the bound-
ary of the convex cone vect+(X) (also called theconical
hull), which fully describes the “extreme” mixturesxi . Se-
lecting the pixelsi such thatxi lays on the conical hull also
facilitates the further source separation (4) because the size
of the data is significantly reduced.

3. CONVEX CONE ANALYSIS FOR PIXEL
SELECTION

In this section, we present our algorithm whose goal is
to search for the conical hull,i.e., the minimal family of
mixtures whose positive span is equal to the convex cone
vect+(X). The selected pixels are finally the correspond-
ing indices. For the sake of simplicity and for illustration
purpose, we start by the case whereP = N.

3.1 Case whereP = N

Given the mixturesx1, . . . ,xM ∈RN
+ (see Fig. 1 for a repre-

sentation ofR3
+), the method aims at researching the con-

ical hull vect+(X), defined as the minimal subsetXe =
[xσ1,xσ2, . . . ,xσm]t of X for which vect+(X) = vect+(Xe),
with σ1, . . . ,σm ∈ {1, . . . ,M} andm6 M.

In order to compute vect+(X), we use the affine pro-
jection whose center is0 onto the hyperplane of equation
x(1)+ · · ·+ x(N) = 1, wherex(k) refers to thek-th coordi-
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Table 1: Pixel selection procedure.

Input: M mixtures stored as vectorsx1, . . . ,xM ofRN
+.

Input: value ofP≈ rank
[

X
]

.

[Affine projection ]

For i = 1, . . . ,M,

Compute the affine projectionyi of xi using (5).

End For.

[Dimensionality reduction from N to P−1]

Perform PCA of the set ofM pointsyi ∈RN
+.

Compute the new coordinatesci ∈RP−1 of yi with

respect to the mainP−1 principal vectors.

[Convex hull computation]

Compute the convex hull of the pointsci , i = 1, . . . ,M.

Store the output pixel indices asσ1, . . . ,σm ∈ {1, . . . ,M}.

nate ofx. The affine projectionyi of a vectorxi reads

yi =
1

∑N
k=1xi(k)

xi . (5)

It is easy to see that the conical hull vect+(X) is sup-
ported by the origin0 and theconvex hullof the set of
points{yi , i = 1, . . . ,M} which all lay in an(N− 1)− di-
mensional space (see figure 1). Their convex hull is thus
an(N−1)− dimensional polyhedron whose vertices are de-
noted byyσ1, . . . ,yσm. In other words, we have:

vect+(X) = vect+(xσ1, . . . ,xσm) = vect+(yσ1, . . . ,yσm).
(6)

The approach is illustrated on Fig. 1 in the case whereN = 3:
the mixturesxi are vectors ofR3

+ and their projectionsyi lay
inside a common 2D affine plane.

In brief, the pixel selection procedure consists in com-
puting the affine projectionyi of each vectorxi , and then the
convex hull of the set of points{yi , i = 1, . . . ,M}. In order to
simplify the convex hull computation, and because the points
yi all lay inside an affine hyperplane of dimensionN− 1,
we choose to describe them by(N−1)-dimensional vectors.
This can be done in a very simple manner by processing the
Principal Component Analysis (PCA) of{y1, . . . ,yM} and
by keeping theN−1 main principal components.

3.2 Case whereP < N

Let us extend the conical hull procedure described above.
BecauseP is assumed to be the rank ofX, the mixtures
xi are vectors laying inside aP-dimensional subspace ofRN, thus their projections onto the affine plane of equation
x(1)+ · · ·+x(N) = 1 lay inside a(P−1)-dimensional affine
subspace. For this reason, the strategy described above re-
mains valid, the only adaptation being to further reduce the
dimension of the projected mixturesyi by keeping the main
P− 1 principal components. The procedure is finally sum-
marized in Table 1.

3.3 Practical utilization of the pixel selection procedure

Choice of P and implementation issues. The value of
P≈ rank

[

X
]

can be chosen easily if some prior knowledge

on the sources is available, or else, by performing a singu-
lar value decomposition (SVD) of the raw dataX, and by
searching for a significant gap between each pair of consec-
utive singular values.

WhenP is large, the computation burden of the pixel se-
lection procedure dramatically increases, because a(P−1)-
dimensional convex hull computation is required. In this
case, we propose an adaptation, which is approximate but
significantly faster. It is based on the following remark: the
convex hull of the orthogonal projections of a set of(P−1)-
dimensional vectorsyi onto a given 2D space yields a num-
ber of indicesσ j such that for allj, yσ j necessarily belongs
to the convex hull of{yi, i = 1, . . . ,M}. Consequently, we
propose to store the principal vectorsξ k related to the PCA
of the set of pointsyi , and, repeatedly, to consider each pair
of vectors(ξ k,ξ l ) (or the main vectors only), and then to
project orthogonally the set of vectorsyi onto the plane de-
fined byξ k andξ l . The repeated 2D convex hull compu-
tations do not yield the exact conical hull vect+(X) but a
representative subset of pixelsxi approximating vect+(X).

Choice of the source separation algorithm. Once the se-
quence of pixelsσ1, . . . ,σm ∈ {1, . . . ,M} is selected, we
gather them corresponding mixtures into matrixXe =
[xσ1,xσ2, . . . ,xσm]t , and we solve (4) using a blind posi-
tive source separation algorithm, whose execution takes a
reduced time since the number of mixtures is limited. In
general, we cannot guarantee the identifiability of (4), ex-
cept if the unicity conditions of [10, 11] are fulfilled. Since
it is quite complex to compute this measure of unicity, we
assume, by default, that the decomposition is not unique, and
we choose the Bayesian Positive Source Separation (BPSS)
algorithm of [4], which imposes sparsity of the source sam-
ples and/or of their weights in order to restrict the range
of solutions to (4). This algorithm relies on Monte Carlo
Markov Chain sampling of the sources and the mixture coef-
ficients. Once the sourcesS have been found, the remaining
task is to estimate the mixture matrixA (i.e.,the mixture co-
efficients for thewhole M original pixels) fromX andS.
This task involves the minimization of the least-square error
‖X −AS‖2 with respect toA under the constraintA > 0.

4. APPLICATION TO REAL DATA

4.1 Imaging of bacterial sensors

The application context is the study of genetically engineered
bacteria expressing optically active reporter molecules in re-
sponse to chemical or environmental effectors. Bacterial
cells have the capacity to act as whole-cell biosensors and
display great potential as living transducers in sensing appli-
cations [9]. Most popular biosensors are produced by insert-
ing into an appropriate bacterial host,gfp anddsredgenes
that code for a green fluorescent protein (GFP) and a Disco-
soma red fluorescent protein (DsRed), respectively. Because
the expression of these fluorescent proteins can be assayed in
individual cells by non-destructive means such as confocal
laser scanning microscopy, engineered bacteria are attractive
biosensors and are increasingly being employed forin situ
studies in microbial ecology [12, 13].

In this work, a representative strain of the ubiquitous bac-
terial genusPseudomonas(P. putida, KT2440) was geneti-
cally engineered to design a GFP-based biosensor (gfp) that
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Figure 2: Bacterial cell imaging. The real data are 16 hyperspectral images of a set of genetically engineered bacteria (with gfp
anddsr genes). The excitation beam was set to 405 nm while the emission signal ranging from 450 to 610 nm was recorded
in steps of 10 nm. (a) Sum of the 16 hyperspectral images. The 9pixels selected by setting the number of sources toP= 3,
are superimposed with a (red) plus. (b) The two sources (wild-type strainwt alone andgfp gene) yielded by the BPSS
algorithm (P = 2) from the 9 data mixtures. (c,d) Weights of both sources in the pixels, displayed as two 2D images.

responds in a dose-dependent manner to toxic metal expo-
sure. The biosensor strain was also engineered to constitu-
tively express DsRed (dsr). Immobilized bacteria cells with
dsrandgfpgenes were examined using a Nikon inverted mi-
croscope (Eclipse TE2000-U) equipped with a Biorad confo-
cal scan head (Radiance 2100 Rainbow). Fluorescence spec-
tra were acquired pixel by pixel (512× 512 pixels, of size
100× 100nm2) and sequentially (16 wavelengths) in a fo-
cus plane (single cell layer). The excitation beam was pro-
vided by a blue laser diode (405 nm) while the emission sig-
nal ranging from 450 to 610 nm was recorded in steps of 10
nm.

4.2 Hyperspectral unmixing

The hyperspectral signalsxi are thus of sizeN = 16 (i.e.,
the number of wavelengths) and their number isM = 5122.
Each source is characterizing a “pure” component,i.e., the
wild-type strain (wt) and thegfp anddsr genes, respectively.
For this reason, we first set the number of sources toP= 3. In
Fig. 2 (a), the image equal to the sum of the 16 hyperspectral
images (in which the gray level of thei-th pixel is equal to
∑N

j=1xi( j)) is shown. It provides a global view of all the

bacteria cells together. The pixel selection algorithm yields
9 mixtures among the 5122 observations (see Fig. 2 (a)).

We first ran the BPSS algorithm withP = 3 sources, but
in output, two sources among the three were almost identical
and shared similar weights. Thus, we concluded that only
two sources are detectable from the data. Fig. 2 (b) shows
the sources yielded by BPSS withP = 2, based on the same
9 mixtures. Here, it is not worth running the pixel selection
algorithm withP= 2 as it necessarily yields only 2 mixtures.
We rather consider the 9 mixtures shown on Fig. 2 (a), since
the BPSS algorithm remains fast with such a limited number
of entries. Both sources can be interpreted as the wild-type
(wt) and thegfp spectra, respectively, and the weight images
of Fig. 2 (c,d) show their respective response with respect to
the spatial dimensionsX andY.

4.3 Interpretation of the results

Although the exact expected values of the sources are not
knowna priori, we can analyze and comment the source sep-
aration results by comparing them with the spectra measured
by another modality of spectroscopy. We recorded average
population spectra, referred to asbulk fluorescence spec-

1941



0
1

4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0W a v e l e n g t h ( n m )
Fl uorescenceE mi ssi on(A .U) w t ( E x 4 0 5 n m )g f p + ( E x 4 0 5 n m )g f p + , d s r + ( E x 4 8 0 n m )g f p + ( E x 4 8 0 n m )7

8
9

Figure 3: Bulk emission fluorescence spectra (excitation
wavelengths: 405± 5 nm and 480± 10 nm) obtained from
cell suspensions of wild-type (wt) and engineered strains
containing reporter genes (gfp+ and/ordsr+). Zone 1: broad
autofluorescence band (440-470 nm); zone 2: principalgfp
emission band (515 nm); zone 3: predominantdsr emission
band (575 nm). Note that thegfp band is weakly detectable
(arrow) in thegfp+ spectrum acquired with the excitation
beam set to 405 nm.

tra, using a SAFAS Xenius FLX spectrofluorometer with
a xenon lamp excitation source. These average population
spectra were obtained from suspensions of several millions
of biosensor cells. We employed two excitation wavelengths
at 405 and 480 nm while the emission wavelength varied
from 420 to 650 nm in steps of 2 nm. The normalized emis-
sion spectra obtained for four cell suspensions of wild-type
(wt) and engineered strains (gfp+, dsr+) are shown in Fig. 3.

The wild-type strain spectrum can be associated with our
first source (Fig. 2 (b)). The predominant bands of wave-
lengths are indeed in good agreement (see Fig. 3, zone 1),
although that of the bulk spectrum is wider due to the very
large number of cells in the suspension, from which the av-
erage spectrum was obtained. Again, the predominant band
(zone 2) of thegfp+ spectra of Fig. 3 (wt andgfp together) is
in good agreement with the second source of Fig. 2 represent-
ing the GFP protein alone. The accurate identification of the
DsRed protein is more tricky, due to the very limited weight
of dsr in the mixtures. Actually, this source is considered as
noise when unmixing the hyperspectral images.

5. CONCLUSIONS

The proposed algorithm is efficient to select a limited num-
ber of relevant pixels in the hyperspectral mixtures. For the
real data relative to genetically engineered bacterial cells, the
further use of a positive source separation algorithm yields
sources which are realistic with respect to our knowledge of
the theoretical spectra of wild-type and engineered strains.

On the signal processing viewpoint, future work will be
dedicated to the extension of the method by taking into ac-
count the neighborhood between pixels in the hyperspectral
images. Indeed, the drawback of the pixel selection proce-
dure is that the selected pixels are generally not neighbors
on the image grid. This forbids the use of a source separa-
tion algorithm utilizing a spatial regularization on the weight
coefficients (e.g.,the weight of each source is constrained to

be a piecewise constant image). An extended pixel selec-
tion procedure would favor the joint selection of neighboring
pixels in different zones of the space domain. In the appli-
cation viewpoint, the proposed algorithm offers new insight
in the analysis of living bacteria activities in complex envi-
ronments, in which the background is unpredictable and the
natural fluorescence of cells cannot be controlled. The key
difficulties include the wide spectral overlapping betweenthe
biosensor emissions, the variability in the cell fitness andob-
viously, the impressive mass of data to compute [14].
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