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Abstract

We report on three-dimensional image reconstruction from alimited set of computed tomography projec-

tions. We focus on configurations with very limited angle of view and on applications in which the image to

be reconstructed is composed of one or several localized objects laying in a known background. We propose

an original method based on the detection of the localized object voxels and on a sparse modeling of the

image. Reconstruction is done by computing the maximuma posteriori estimator of the image parame-

ters. To implement image reconstruction, we adopt a multigrid strategy in which coarse-to-fine resoluted

images are successively reconstructed. This strategy provides detection of localized object voxels as well

as accurate initial solutions at each resolution level. Each optimization stage is carried out by using an it-

erative deterministic descent algorithm. We propose a convergent single-site update algorithm that consists

of successive constrained optimizations with respect to one voxel at a time. We show the performance of

the multigrid method on simulated data corresponding to a set of limited angle cone-beam projections of a

synthetic image. The results are accurate, while both memory storage and numerical time of computation

are dramatically reduced compared to the monogrid reconstruction method.

Keywords: X-ray tomography, 3D image reconstruction, anomaly detection and localization, anomaly reconstruction,

positive image modeling, sparse image modeling, maximuma posteriorireconstruction, single-site update algorithm,

multigrid reconstruction.
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I. INTRODUCTION

This paper deals with the tomographic reconstruction of a three-dimensional (3D) image com-

posed of one or several localized objects laying in a known background. Such images are encoun-

tered in nondestructive evaluation (NDE) of materials and represent a volume that may contain

anomalies (e.g.,air faults inside a metal). NDE is used for the online inspection of aerospace com-

ponents, fuel rods, and steel pipes in nuclear power stations. In this context, several modalities are

available, including eddy current, X-ray, or microwave imaging techniques [1–5]. The problem

of image reconstruction from X-ray measurements is known tobe a difficult problem, because

the number and the angles of projection are often limited, due to the geometric constraints of the

radiograph acquisition. In the case where the background isa known material, we can assume

that the attenuation function inside the 3D volume readsf(x, y, z) = fB(x, y, z) − fL(x, y, z),

wherefB stands for the attenuation function of the background region (that is, the nonnegative at-

tenuation function corresponding to a perfect, fault-freematerial), andfL is an unknown function

characterizing the presence of a localized fault at location (x, y, z),

fL(x, y, z)





6= 0 if (x, y, z) lays inside the localized object area,

= 0 otherwise.

In the following, functionfL is chosen nonnegative. This choice is motivated by the NDE

application, in which air and void faults are of negligible attenuation [f(x, y, z) = 0, hence

fL(x, y, z) = fB(x, y, z) > 0]. By a slight abuse of words, we will refer to the region where

fL(x, y, z) = 0 as thebackground area (that is, the fault-free area), by contrast to thelocalized

object area. The reconstruction problem aims at estimating the map of attenuationf(x, y, z) from

the computed tomography (CT) measurements. BecausefB is known, the estimation offL(x, y, z)

over the whole 3D volume affords both detection of localizedobjects and quantitative estimation

of their position and size.

Voxel-based methods consist of discretizing the entire volume of interest into a set of voxels

(i.e., parallelepipedic volume elements) and then directly estimating the voxel values from the

data. When the projection data are limited in number and/or in angles, the number of unknowns is

often largely greater than the number of data. As the reconstruction of an acceptable image is not

guaranteed, regularization is necessary. A classical choice is to model some prior information on

the sought image and then use the Bayesian inference framework. Markov random fields utilizing

intervoxel differences are a natural choice because they favor piecewise homogeneous images. The
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attenuation image is then usually reconstructed in the maximuma posteriori(MAP) sense [6, 7].

In NDE applications, attenuation images are generally composed of a large number of back-

ground voxels, in comparison with the localized object voxels. Consequently, the attenuation im-

agefL(x, y, z) has many zero-valued voxels. One can then take account of this knowledge to reg-

ularize the reconstruction problem. A possible regularization is to restrict the image to be binary,

hence reducing image reconstruction to the binary detection of the localized object voxels. Binary

image reconstruction has been applied to vascular cross-sectional images in angiography [5, 8]

and, more recently, to the NDE of materials [9]. However, binary reconstruction poses severe al-

gorithmic difficulties, in terms of optimization of criteria over discrete domains. In order to afford

a nonbinary reconstruction of the attenuation function, the use of a positive, continuous valued

image model has been addressed, allowing annealing of the image values [10, 11]. A natural

choice for suchpositive prior distribution is a Gamma distribution, or a mixture of independent

Gamma distributions. Contrarily to Markov random fields, these priors are "pointwise" (i.e., they

do not take into account the interactions between neighboring voxels). The related distribution

is parametrized by the variances of each Gamma distribution. In this paper, we consider at the

same time the assumptions of piecewise homogeneity and positivity, following [12]. We utilize a

Markov model defined from a combination of two types of energyfunctions: one involves neigh-

boring voxels and favors image smoothness and the other applies to single voxels and draws their

value towards zero. The computation of the MAP reconstruction image involves the optimization

of ann-dimensional criterion under positivity constraints, wheren stands for the number of vox-

els. We focus on convex criteria that can be optimized using deterministic descent algorithms. In

particular, we distinguish classical descent algorithms that work on the whole set of parameters

together [12] and single-site update strategies that involve successive optimizations with respect

to one voxel at a time [13–15].

Despite their simplicity, voxel-based methods encounter limitations for high-resoluted images;

when the volume is described by a large number of voxels, its reconstruction requires a large

amount of memory space and is highly limited in speed of convergence. In contrast, alternative

image models based on deformable contours have enjoyed considerable interest because they rely

on a low number of parameters and do not need a volume discretization. This approach is well

suited to describe compact objects [16–20], but it suffers from several restrictions. Actually, the

attenuation function must be uniform inside the objects andthe number of objects embedded

inside the image has to be known as well. The use of implicit contours described by a level set
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of a higher dimensional function can alleviate the latter limitation, as the number of objects is

no longer needed [21]. Nevertheless, implicit representations of contours are computationally

expensive because they require the computation and update of a full discrete image volume. The

combination of both voxel and explicit contour-based models into a unified mixed approach has

been investigated in the literature. This approach, which performs joint estimation of the localized

object contours and the voxel values, yields promising results for the reconstruction of textured

objects and background despite its relative complexity [22, 23].

Another natural, yet simple strategy to decrease the parametrization of the image volume is

to detect a region of interest (ROI) inside the image in whichthe localized objects are embedded.

One can thus generate an irregular image grid in which the voxels do not have the same size and/or

shape and are distributed more densely in the vicinity of theROI, that is in the regions containing

significant details [24]. For an image composed of localizedobjects, several researchers have

attempted to detect a ROI inside the image. A hypothesis testing approach has been used to

detect the presence of uniform anomalies inside the volume from X-ray data, and to determine

their position by using a multigrid framework [2, 25]. In [9], the image is assumed binary and a

necessary condition for the reconstruction of background voxels is provided, based on marginal

a posterioriprobabilities. This test is very fast to compute, affordingthe predetection of a set of

background voxels and thus the formation of a ROI embedding the localized objects. Computing a

ROI prior to image reconstruction is advantageous since theimage parametrization is dramatically

reduced. One may also design a more highly resoluted discretization of the volume inside the ROI,

when the ROI domain is small.

In medical imaging, the reconstruction of the volume embedded inside a ROI from X-ray pro-

jections has been extensively studied. Wavelet image representations are very popular because

they afford reconstruction of the interior of a ROI at a fine-resolution level and reconstruction of

the rest of the image at a coarser level. These local tomography methods result in a drastic re-

duction of the radiation exposure delivered to the patient because the reconstruction can be done

from the projection rays that intersect the ROI and from a sparse sampling of the projections away

from the ROI [26–29]. Nevertheless, wavelet-based reconstructions rely on a complete set of

projection angles. Setting aside the ROI reconstruction problem, multigrid algorithms, affording

successive reconstruction of coarse-to-fine "complete" images, have enjoyed considerable success

in CT applications because they yield more accurate reconstructions within a very limited time

of computation. Basic multigrid implementations aim at reconstructing a sequence of coarse-to-
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fine images and at using the reconstruction at a given grid level to compute the initial solution

at the finer level [30, 31]. Multigrid models have been extended to nonlinear inverse problems

(e.g.,diffusion optical tomography which involves the reconstruction of a positive image from

nonlinear measurements) [6, 32–34]. The related multigridalgorithms are based on coarse-to-fine

image updates and on fine-to-coarse updates as well, according to the so-called V-cycle scheme.

The computation of the MAP reconstruction image at each resolution level requires a dynamical

adjustment of the cost functions at different levels due to the nonlinearity of the inverse problem.

In emission tomography, more elaborate Bayesian formulations relying on Markov random fields

and on a multigrid pyramidal representation have also been investigated, allowing hyperparameter

estimation at any resolution level using the reconstructedimage at a coarser level [35, 36].

In this paper, we propose a method that performs the detection of the ROI embedding the lo-

calized objects in conjunction with the reconstruction of the localized object voxels. The image

model relies on a sparse description of the volumef(x, y, z), taking account of the localized ob-

ject voxels only. This description is highly parsimonious because the localized object regions are

generally of small size relative to the rest of the volume. Therefore, the sparse model permits an

efficient exploration of the specific regions containing thelocalized objects. The detection of the

ROI domain (or similarly, of the complementary set of background voxels) is a key problem. We

propose a solution to this problem using a multigrid strategy, which affords successive reconstruc-

tions of coarse-to-fine positive images and recursive detection of the background voxels as well.

At each level, positive image reconstruction will be carried out by using a single-site update (SSU)

optimization algorithm with provable convergence.

The rest of the paper is organized as follows. Section II introduces the 3D image reconstruc-

tion problem. We specify the monogrid image discretizationand parametrization in both complete

and sparse cases. Then, we formulate the image reconstruction problem as an ill-posed inverse

problem. In Section III, we develop the monogrid positive image reconstruction method, provid-

ing the MAP estimator of the complete image voxels. Regularization is composed of two terms

related to both annealing and local homogeneity assumptions. To compute the MAP solution,

we will discuss the choice of a deterministic descent algorithm and will propose an iterative SSU

algorithm. Section IV provides an extension of this method to sparse image reconstruction. Lo-

calized object regions are detected using a multigrid strategy affording successive reconstruction

of coarse-to-fine images. Finally, Section V exhibits numerical simulations performed on a set of

limited angle projections of a synthetic 3D image formed of two small localized objects laying in
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a uniform background and located together along the direction of the projection rays. We show

the ability of the method to provide an accurate identification of the object locations as well as the

discrimination between the two objects.

II. PROBLEM STATEMENT

In Section I, we assumed that the attenuation function is of the formf(x, y, z) = fB(x, y, z) −
fL(x, y, z), wherefB is the known attenuation of the fault-free volume, andfL is an unknown

nonnegative function associated to the localized objects [fL(x, y, z) 6= 0 if and only if (x, y, z)

lays inside the localized object area]. Under this assumption, the reconstruction problem consists

of estimating the nonnegative imagefL(x, y, z) from a set of noisy projections off . Because of

the linearity of the X-ray projection operator, this problem is equivalent to the reconstruction of

fL, given its own projections, estimated up to the precomputation of the projections offB. In

the following, we focus on the tomographic reconstruction of fL, which will be renamedf for

convenience. We refer to the region wheref(x, y, z) = 0 as the background area, by contrast to

the localized object area.

In this section, we first introduce discrete parametrizations of the 3D attenuation image and then

give a formulation of the direct model, relating the X-ray measurements to the image parameters.

This formulation will allow us to solve the image reconstruction problem by directly estimating

the image parameters from the data.

A. Image discretization: complete and sparse parametrizations

The volume of interest is discretized into a set ofn voxels of identical size, where the voxel de-

nomination stands for the parallelepipedic volume element. The discrete attenuation image is then

represented by vectorf = [f1, . . . , fn]
t ∈ Rn

+. In the following, we refer to this parametrization

as thecomplete parametrization.

Let us assume that we have a detection rule for the location ofthe background voxels (fi = 0).

We denote byB ⊂ {1, . . . , n} the set of the background voxel indexes, and byA = {1, . . . , n}\B
the complementary set of voxels. These voxels, referred to as active voxels, are candidates to

belong to the localized object regions (i.e.,fi > 0). Active voxels are represented by a vectorfa,

extracted from the global image vectorf . Denoting bya the number of active voxels, and up to a
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FIG. 1: Cone-beam projection parametrization. The volume of interest is represented by a parallelepipedic

domain. A projection line(s, t) is formed by a source positions ∈ R3 located below the volume of interest,

and a detector positiont ∈ R3 laying on the horizontal detector plane, above the volume. All projections

are defined with respect to the same horizontal plane. A radiograph image is obtained from a single source

positionsk and a collection of X-ray projectionsp(sk, t) onto the detector plane.

rearrangement of the voxels, the complete image parametrization rereadsf = [f t
a; 0

t]t, where0 is

the null vector of lengthn− a.

B. Projection modeling

The X-ray projection operator computes the line projections of a given imagef(x, y, z),

p(s, t) =

∫

(s,t)

f(x, y, z) dl,

where(s, t) is the projection line passing through the source and the detector positionss andt,

respectively; see Fig. 1.

8



Let us fix a source positions = sk (k = 1, . . . , m). The corresponding cone-beam projection

of the volume is a two-dimensional radiograph image obtained by putting together the projection

valuesp(sk, t) for nt discrete values oft in the detector plane. This projection image is then

represented by vectorpk of sizent×1. Finally, the global projection vector yielded by all sources

sk is the result of the concatenation of vectorspk: p = [pt
1, . . . ,p

t
m]t. This single vector represents

the collection of allm radiograph images.

For imagesf(x, y, z) that are discretized into a set of voxelsf = [f1, . . . , fn]t, the X-ray

projection operator rereadsp = Hf , whereH is aM × n projection matrix, only depending on

the geometry of X-ray projection acquisition.M = mnt stands for the global number of detector

pixels, andn is the number of voxels.

For a sparse image modeling{1, . . . , n} = A ∪ B, the projection model rereadsp = Hafa,

whereHa is the new projection matrix, of sizeM×a. Matrix Ha is extracted fromH by keeping

only the columnsi such thati ∈ A.

C. Direct and inverse problems

We model the X-ray data as the noisy projectionsd = p + n of the sought image, where the

noisen takes account of both errors of projection modeling and measurement. Actually, there

are many sources of error, including the photon counting errors, the electronic errors occurring

while recording data with a CCD camera, the influence of the finite width of the projection beam

as well as the diffusion of the X-rays along all spatial directions. Some of these phenomena can

be easily modeled using probability density functions [37], but it is rather difficult to tackle all of

them together without making any simplifying assumption.

Let us consider the photon counting errors alone. The Poisson model is the most appropriate to

describe that the measurements are related to a counting process [9, 38]. According to Beer law,

the noisy projections are related to the photon counts in thefollowing way:

d(sk, t) = − log

[
τ(sk, t)

τ(sk)

]
,

whereτ(sk) is the photon emission rate of thekth source andτ(sk, t) is the counting rate of the

detectort. The photon countτ(sk, t) is then modeled by a Poisson distributed random variable

with mean and varianceτ(sk) exp(−p(sk, t)). When the photon counting rates are high at each

radiograph pixel and of same magnitude, which is often the case in NDE applications, it is possible
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to use an independent identically distributed (i.i.d.) andGaussian modeld = p + n instead of

the Poisson model. Note that for low counting rates, the Poisson model can also be approximated

in a precise manner by an additive and Gaussian distributionwhose variance is not constant and

depends on the projection measurementsd(sk, t), according to [38, 39].

In the following, we will assume that the noisy projections read:

d = Hf + n = Hafa + n,

where the noise vector is additive, i.i.d. and Gaussian. Here, the Gaussian assumption is not

the result of a statistical hypothesis on the observation errors. It is mainly chosen for simplicity

reasons. The reconstruction method presented in this papercan be straightforwardly extended to

the case where the variance of the Gaussian noise is not constant. It is well known that when the

projections are limited in number and in angles, the inverseproblem, which consists of estimating

f from the datad, is very ill-posed [40]. In 3D problems, the numbern of unknowns is generally

greater than the number of data. To reduce the range of possible solutions and to obtain a realistic

image, it is necessary to regularize the solution by introducing some prior assumptions on the

sought image. In the following, we will enforce positivity of the voxel values and assume that

a fair amount of voxels are zero valued. The latter assumption states that the background voxels

usually are preponderant in the image. At the same time, piecewise smooth reconstructions will

be favored, in which neighboring voxels tend to have homogeneous values.

III. MONOGRID RECONSTRUCTION

A. MAP estimation of the attenuation image

In this section, we consider the complete modelingf = [f1, . . . , fn]
t of the attenuation image.

We perform voxel estimation in the MAP sense, by minimizing overRn
+ a penalized cost function

of the form,

J (f ) = ‖d − Hf‖2 + λD(f ) + µ
n∑

i=1

fi, (1)

where

D(f ) =
∑

i,j,i∼j

φ(fi − fj).

10



T−T t

quadratic
hyperbolic

FIG. 2: Plot of the hyperbolic functionφ(t) = 2T
(√

t2 + T 2 − T
)

, together with the quadratic function

t2. φ is quadratic at the origin and behaves as2T |t| when|t| is large.

In this formulation,∼ denotes the six-neighborhood relationship between voxels: voxelsi andj

are neighborsif and only if they share a common face.φ : R→ R+ is a convex and even potential

function, which isC1 and increasing onR+.

The compound energyJ (f ) is composed of a fidelity-to-data term and of two penalization

terms, which favor piecewise homogeneous images and zero-valued voxels, respectively [12].

In order to favor the presence of sharp edges in the reconstructed image, functionφ is chosen

quadratic at the origin and linear at infinity. We select the hyperbolic function (see Fig. 2) defined

by

φ(t) = 2T
(√

t2 + T 2 − T
)
. (2)

WhenT is large,φ has a quadratic behavior and the regularization favors oversmoothed images,

whereas for low values ofT , sharp edges are more likely to appear. The second penalization term

is equal to the sum of the voxel values. Because the minimization of J is performed overRn
+,

this term is minimal when all voxels are set to 0. Consequently, its role is to favor the detection

of background voxels, whereas removing this term would allow free estimation of positive valued

voxels.

B. Optimization algorithm: single-site update strategy

Proposition 1. For theφ function defined in(2), criterionJ is a strictly convex function off onRn
+ provided thatλ > 0 and that at least one projection ray intersects the volume ofinterest.

Note that the latter condition is always true in practice.
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Proof. Straightforwardly, criterionJ is convex onRn
+ as a sum of convex terms. In addition, it

can be shown that a criterion of the form

‖d − Hf‖2 + λ
C∑

c=1

φ(vt
cf ), (3)

wherevc aren× 1 vectors, is strictly convex onRn under the following conditions [41]:

• λ > 0 andφ is strictly convex onR;

• KerH ∩ KerV = {0}, where Ker(.) denotes the null space of an operator andV is the

matrix of sizeC × n whose rows are formed by vectorsvt
1,v

t
2, . . . ,v

t
C .

Let us apply this result to the criterionJ defined in (1). In the case whereµ = 0, J (f )

rereads (3), whereφ is strictly convex and vectorsvc are replaced by the vectorswij, defined such

thatwt
ijf are the finite differencesfi − fj involved in the sumD(f ). One can easily check that:

• KerV is the set of constant images, thus KerH∩KerV is the set of constant images whose

projection is equal to0;

• the projectionHf of a constant image is equal to0 if and only if f = 0. The reason is

that the elements ofH are all nonnegative and thatH 6= 0, since at least one projection

ray intersects the volume of interest. As all the voxels share the same value,Hf = 0 only

whenf = 0.

As a consequence, criterion‖d−Hf‖2 +λD(f ) is strictly convex onRn and thus onRn
+. In the

case whereµ 6= 0, J is strictly convex as the sum of convex and strictly convex terms.

SinceRn
+ is a convex set, the strict convexity ofJ implies thatJ has a unique global minimizer

onRn
+ which can be obtained using an iterative local optimizationalgorithm. In [42], we chose

the projected gradient algorithm, which is a constrained analog of the classical gradient descent

algorithm [43]. However, this algorithm is known to be very slow. Following [13], here we

rather choose an SSU strategy, which consists of successiveminimizations of the criterion with

respect to one voxel at a time. However, the scalar subproblem of minimizingJ with respect to

a single voxelfi admits no closed-form solution. Resorting to a half-quadratic formulation of the

optimization problem [44, 45] provides an elegant solutionwith provable convergence.

Let us consider Geman and Reynolds’s augmented criterion

K(f , b) = ‖d − Hf‖2 + λD̃(f , b) + µ
n∑

i=1

fi,
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whereD̃(f , b) =
∑

i∼j

[
bij(fi − fj)

2 + ψ(bij)
]
, and the auxiliary functionψ is defined as the

opposite of the concave conjugate ofφ(
√
.) [46]. Becauseφ(

√
.) is concave, it is, in turn, the

concave conjugate of−ψ, and functionsψ andφ satisfy

ψ(b) = −min
f∈R (bf 2 − φ(f)),

φ(f) = min
b>0

(bf 2 + ψ(b)). (4)

The augmented criterion depends on the original vectorf , but also on a set of auxiliary variables

b =
{
bij > 0, i ∼ j

}
. From the definition (4) ofψ, it follows that:

(f̂ , b̂) = arg min
f∈Rn

+,b

K, (5)

wheref̂ is defined as the minimizer ofJ overRn
+. As a consequence, the minimization ofK with

respect to(f , b) provides an indirect means to minimizeJ .

In [45], it is shown that under the following hypotheses:

1. φ is convex onR,

2. φ is even,

3. φ(
√
.) is concave onR+,

criterionK is convex in(f , b). Clearly, the hyperbolic functionφ defined by (2) fulfills the above

conditions. The convexity ofK guarantees that a local descent algorithm provides the global

minimizer ofK and thus the minimizer ofJ . In particular, the SSU algorithm, which performs

successive updates of scalar variablesfi andbij , is well suited to solve (5), asK is quadratic inf

and the dependence ofK with respect tob reduces to the separable term
∑

i∼j ψ(bij), in which the

auxiliary variables are decoupled. In other words, the scalar subproblem of minimizingK with

respect to a single voxelfi or a single auxiliary variablebij can be straightforwardly solved. We

refer the reader to [45] for a detailed study of convergence of the SSU algorithm for minimization

of Geman and Reynolds’s augmented criterion.

Formally, the optimization ofK with respect to a single voxelfi reads

fi = max

{
0, fi +

[
H td

]
i
−

[
H tHf

]
i
+ λ

∑
j∼i bij(fj − fi) − µ/2

[
H tH

]
ii

+ λ
∑

j∼i bij

}
, (6)
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TABLE I: SSU reconstruction algorithm for monogrid image reconstruction.

Set initial solutionf(0).

Fork = 1, . . . ,K,

[Basic SSU loop]

For all voxeli ∈ {1, . . . , n},

[Perform optimization of K(f , b) with respect to single voxel fi]

Updatefi using (6), in which variablesbij are computed using (7).

End For.

Setf(k) = {f1, . . . , fn}.

End For.

and the optimization ofK with respect to a single auxiliary variablebij leads to the simple calcu-

lation

bij =





φ′(fi−fj)

2(fi−fj)
if fi 6= fj,

1 otherwise.
(7)

The latter result is a basic result of the duality theory [45]. Here, let us stress that the knowledge of

ψ is not necessary to compute (6) and (7). A more detailed description of the SSU algorithm can

be found in [14, 15] in the case of image deblurring. Our algorithm is a simple extension of Brette

and Idier’s algorithm [14] to the image reconstruction problem, including positivity constraints.

C. Implementation of the SSU algorithm

The SSU algorithm is finally summarized in Table I. In the following paragraphs, we discuss

the main difficulties of the implementation, namely, the storage and the recomputation of large

data arrays. Finally, we will discuss the choice of the parameters involved in the monogrid recon-

struction method (initial solution, hyperparameters).
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1. Data structure for storage of image and projection matrices

The implementation of the SSU algorithm raises several algorithmic difficulties, as the projec-

tion matrixH, of sizeM × n, is of enormous dimensions. Typical values ofM andn can reach

104 to 106 depending on the number of projections and the desired resolution of the reconstructed

image (see Section V). AlthoughH is sparse, the number of matrix elements, which are not equal

to zero, remains huge, which makes it not possible to storeH on a workstation, even in a sparse

description. Similarly, matrixH tH, of sizen × n, cannot be stored and its computation would

be burdensome. In the following, we propose a data structurethat avoids the memory storage

of huge arrays and, based on this structure, we derive an algorithm that restricts the number of

recomputations of the matrix elementsHki for each radiograph pixelk and for each image voxel

i. The recomputation ofHki is numerically expensive when performed many times, because it

requires one to compute the length of the intersection between a line (the projection ray) and a

parallelepipedic volume (the voxel).

Our data structure relies on four buffer arrays:

• buff_backproj, of sizen. Stores the data backprojectionH td.

• buff_HtH, of sizen. Stores the diagonal elements of matrixH tH: [H tH ]ii =
∑

k H
2
ki.

• buff_p, of sizeM . Stores the projection vectorp = Hf .

• buff_Hi, of sizeM . Stores the current column of matrixH. We also denote this column

vector byH•i. It is formed of the collection of all values{Hki, k = 1, . . . ,M}.

The first two buffers are computed prior to any SSU of voxels; their content remains unchanged

during the SSU iterations. The other two are recomputed for each voxel update.buff_Hi is

entirely recomputed when a new voxel is visited, whereasbuff_p is updated with a limited

computation cost.

a. Update of a voxel The update of theith voxel relies on the implementation of (6). It

is based on a direct combination of the four buffers, and doesnot necessitate the storage of the

auxiliary variablesbij ,

• compute bufferbuff_Hi,

• compute[H tHf ]i = [H tp]i =
∑

k Hki pk usingbuff_Hi andbuff_p,
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• directly compute
∑

j∼i bij(fj − fi) and
∑

j∼i bij using (7),

• apply (6) to updatefi.

b. Update of projections When theith voxel is updated, let us denote byfi andf ′
i its former

and new values, wheref ′
i is computed using (6). Denotingδfi = f ′

i − fi, the new image vector

readsf ′ = f + δf , whereδf = [0, . . . , 0, δfi, 0, . . . , 0]t. Hence, the new projection vector reads

p′ = Hf ′ = p + δp, where δp = Hδf = δfi H•i. (8)

As vectorH•i is stored in bufferbuff_Hi, the update ofp is straightforward and does not

necessitate any other computation.

c. Memory storage and computation costThe overall memory storage of the SSU algorithm

amounts to2M+3n scalar elements related to the four buffers and the image vectorf . This storage

is largely inferior to the size of matricesH andH tH.

When a voxeli is updated, the corresponding columnH•i is recomputed. During an SSU

iteration, this computation cost is then equivalent to one single computation ofH. Similarly, when

a voxeli is updated, the recomputation of[H tHf ]i = [H tp]i amounts to one dot product between

vectorsp andH•i, which are already stored. The cost of computation of all terms[H tHf ]i during

an SSU iteration is then equivalent to one matrix-vector product (H tp), where the matrix and the

vector are both already stored.

In conclusion, whenH cannot be stored because of its size, one iteration of the SSUalgorithm

requires only one computation ofH, and other matrix and scalar computations. This cost is very

limited in comparison to other algorithms that work onJ (f ) and on all the voxels together. For

the steepest descent algorithm, each iteration requires one backprojection computation (H tp) to

compute∇J (f ) and several projection computations (Hf ) to computeJ (f ) during the line-

search procedure.

The detailed implementation of the SSU algorithm with limited memory storage is finally sum-

marized in Table II.

2. Practical settings of optimization parameters

In practice, we compute the data backprojectionH td in order to provide the initial solution

f (0). The maximum number of iterations is fixed relative to the number of voxels and we termi-
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TABLE II: SSU algorithm: implementation and memory storage.

Compute and store buffer arraysbuff_backproj andbuff_HtH, of sizen.

Set the initial solutionf to be the data backprojection (buff_backproj).

Computep = Hf , and store the result inbuff_p.

Fork = 1, . . . ,K, [SSU loops]

For all voxeli ∈ {1, . . . , n},

Compute bufferbuff_Hi, representing the column vectorH•i.

Compute[HtHf ]i by usingbuff_Hi andbuff_p.

Update voxelfi by using (6), in whichbij are directly computed using (7).

Update projection vectorp by using (8) and bufferbuff_Hi.

End For.

End For.

nate the descent algorithm ifJ [f (k)] − J [f (k + 1)] < ε for some arbitrary thresholdε. Hyper-

parametersλ, µ, andT are selected empirically. Generally, we first setλ = 0 and then assign a

value toµ by performing a few executions of the descent algorithm. This setting favors annealing

of the background voxels. If necessary, a similar setting ofλ can be done in order to preserve the

image smoothness. ParameterT is set relative to the range of attenuation values (e.g.,T = 0.01

when the image values are expected to vary between 0 and 1). However, a low value ofT tends to

reduce the speed of convergence of the algorithm, as function φ and, hence, criterionJ become

almost nondifferentiable.

IV. SPARSE AND MULTIGRID IMAGE RECONSTRUCTION

In this section, we design an original reconstruction method that offers significant reduction of

the image parametrization in conjunction with the detection of background voxels. The joint de-

tection and reconstruction method relies on the combination of the sparse image model introduced

in Section II with a multigrid strategy.
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A. Sparse image reconstruction

We first assume that we have a detection rule for the location of active and background voxels.

Given this segmentation
(
A,B

)
of the set of voxels, the discrete image is now parametrized by the

active voxelsfa belonging toA, and up to a rearrangement of the voxels, we havef = [f t
a, 0

t]t.

Sparse image reconstruction then reduces to the constrained minimization of the cost function

J (f ) = J (fa; 0) with respect tofa ∈ Ra
+. CriterionJ rereads

J (fa; 0) = ‖d − Hafa‖2 + λD(fa; 0) + µ
a∑

i=1

fi,

where

D(fa; 0) = D(f ) =
∑

j∈{1,...,n}

i∈A, i∼j

φ(fi − fj).

As criterionJ is strictly convex onRn
+, its restrictionJ (fa; 0) overRa

+ is also strictly convex.

Therefore, the constrained optimization of the latter criterion overRa
+ can be carried out by the

SSU algorithm to compute the minimizer̂fa. In the same way as in Section III B, we define the

Geman and Reynolds’s augmented criterion by

K(fa, b) = ‖d − Hafa‖2 + λD̃(fa, b) + µ
a∑

i=1

fi,

whereD̃(fa, b) =
∑

i∼j

[
bij(fi−fj)

2 +ψ(bij)
]

takes account of the neighboring voxels(i, j) such

thati ∈ A andj ∈ {1, . . . , n}. The minimization ofK with respect tofi andbij reads (6) and (7),

respectively. In these equations,fj has to be replaced by 0 in cases where voxelj is not active.

The algorithm presented in Table II is still valid for the implementation of fast SSU.

In the following, the sparse image representation will be denoted by
{
fa,A,B

}
or simply by

fa when no ambiguity is possible. We will distinguish the SSU iteratesfa(k) from the final image

reconstructionf̂a = fa(K) resulting from the SSU algorithm.

B. Multigrid strategy

An essential prerequisite for the reduction of the image parametrization is the detection of the

background voxels. In Section III, we designed our monogridreconstruction method in order to

favor background voxel detection. We now take advantage of this voxel detection and perform

sparse image reconstruction using a multigrid strategy. Multigrid image reconstruction consists of
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FIG. 3: Change of resolution: partition of a voxel into eightsubvoxels.

• sequential reconstruction of sparse coarse-to-fine resoluted imagesf̂ (1), f̂ (2), . . . , f̂ (R).

• determination, at each resolution levelr, of the image segmentation
(
Ar+1,Br+1

)
at the

next finer resolution levelr + 1 given the current sparse reconstruction
(
f̂ (r),Ar,Br

)
.

In the following, we will denote byar = #Ar the number of active voxels at resolution levelr.

We now specify each step of the multigrid reconstruction scheme.

1. Multigrid image modeling

The coarsest imagef (1) is a complete parametrization of the volume (a1 = n voxels,A1 =

{1, . . . , n} andB1 = ∅) whereas finer imagesf (2), . . . ,f (R) are sparse. These images are obtained

by discretizing the volume of interest on grids of8n, 82n, . . . , 8R−1n voxels respectively, as each

voxel is subdivided into eight subvoxels from one resolution to the next finer resolution; see Fig. 3.

2. Detection of background voxels

At a given resolution levelr < R, let us assume that the image estimate
(
f̂ (r),Ar,Br

)
has been

computed, where complementary setsAr andBr form a segmentation of the set of voxel indexes

{1, 2, . . . , 8r−1n}. At level r + 1, we defineAr+1 andBr+1 as follows:

• enumerate the zero-valued voxels at levelr: B̃r = Br ∪ {j ∈ Ar, f̂
(r)
j = 0},
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• defineBr+1 by subdividing all voxels of̃Br into eight subvoxels,

• defineAr+1 by subdividing all positive voxels ofAr into eight subvoxels.

3. Interpolation and initial condition

The initial estimatef (r+1)(0) at levelr + 1 is computed using the zero-order interpolation of

imagef̂ (r) on the next finer grid. Given an active voxeli ∈ Ar, this interpolation assigns the

voxel valuef̂ (r)
i to the eight subvoxels ofi. This simple rule ensures continuity between both

consecutive images: images
{
f̂ (r),Ar,Br

}
and

{
f (r+1)(0),Ar+1,Br+1

}
, although sampled upon

two consecutive grids are identical representations of thevolume.

4. Projection matrices

Let us denote byH(r) the projection matrix at levelr. H(r) is a matrix of sizeM × ar, whose

(k, i)th element is equal to the length of the intersection betweenthekth projection ray and theith

active voxel. At the next finer resolution level,H(r+1) is of sizeM × ar+1, and by construction of

f (r+1)(0), it follows thatH(r+1)f (r+1)(0) = H(r)f̂ (r).

5. Optimization scheme

Multigrid image reconstruction involves sequential minimization ofR criteria,

f̂ (r) = arg min
f(r)∈Rar

+

{
Jr[f

(r)] = J (f (r); 0)
}

given the initial estimatef (r)(0). For the sake of simplicity, the dependence ofJr on
{
Ar,Br

}
is

implicit as well as the rearrangement(f (r); 0) of the8r−1n voxels. Here, criterionJ is associated

with the complete parametrization at levelr.

For all resolution levels, optimization is carried out using the local SSU algorithm described

in Section III and extended in Section IV A to sparse image reconstruction. Observe that the

image parametrization is complete at the coarsest resolution level (r = 1), hence, reducing the

optimization scheme to the monogrid reconstruction algorithm.

20



6. Hyperparameter setting

For all resolution levels, hyperparametersλr, µr, Tr are selected recursively in order to satisfy

∀r ∈ {1, . . . , R− 1}, Jr+1

[
f (r+1)(0)

]
= Jr

[
f̂ (r)

]
. (9)

This condition states that imageŝf (r) and f (r+1)(0) yield the same cost as they are identical

representations of the volume.

Proposition 2. The condition

λr+1 = λr/4, µr+1 = µr/8, Tr+1 = Tr. (10)

is sufficient to guarantee(9).

Proof. By construction off (r+1)(0), each voxel of
(
f̂ (r),Ar,Br

)
is subdivided into eight subvox-

els of same value. The smoothness term ofJr+1

[
f (r+1)(0)

]
is thus equal to four times that of

Jr

[
f̂ (r)

]
, while the annealing term ofJr+1

[
f (r+1)(0)

]
is equal to eight times that ofJr

[
f̂ (r)

]
. As

the data-fidelity term is unchanged, (10) is a sufficient condition for (9).

From Proposition 2, it follows thatλr = λ1/4
r−1, µr = µ1/8

r−1, andTr = T1 for all r =

2, . . . , R. Hyperparameters can thus be easily computed at any level given their value at either the

coarsest or the finest level.

Remark 1. Let us denote byJ the criterion associated with the complete parametrization at the

finest resolution levelR, and byIR
r the zero-order interpolation operator, which maps an image

{f (r); 0} at levelr onto an image{f (R); 0} at the finest levelR. Condition(9) guarantees the

decrease of the sequence of reconstructed images
{
f̂ (r),Ar,Br

}
in the sense of criterionJ ,

J
(
f̂ (R); 0

)
6 J

[
IR

R−1

(
f̂ (R−1); 0

)]
6 · · · 6 J

[
IR

1

(
f̂ (1); ∅

)]
.

In other words, the solution̂f (R) obtained at the finest level is more accurate than the zero-order

interpolation of any coarser level solution.

The overall multigrid reconstruction algorithm is summarized in Table III.

21



TABLE III: Multigrid algorithm for sparse image reconstruction.

Perform backprojectionf (1)(0) of the datad on a grid ofn voxels.

SetA1 = {1, . . . , n}, B1 = ∅, anda1 = n (all voxels are active).

Input λ1, µ1, T .

For r = 1, . . . , R,

Computef̂ (r) = arg minf(r)∈Rar
+

Jr[f
(r)] from f (r)(0).

If r < R,

DefineAr+1 by sampling each nonnull voxel of̂f (r) into eight subvoxels.

DefineBr+1 by sampling all voxels ofBr and all null voxels off̂ (r) into eight subvoxels.

Setar+1 = #Ar+1.

Setλr+1 = λr/4, µr+1 = µr/8.

Computef (r+1)(0) using zero-order interpolation of̂f (r).

End If.

End For.

V. SIMULATION RESULTS

A. Data simulation

The following simulation involvesm = 7 limited angle projections of a binary synthetic image,

designed according to the geometry of Fig. 1. The synthetic image is composed of two localized

spherical objects laying in a uniform background. The unknown attenuation function is thus de-

fined by

f ⋆(x, y, z) =





1 if (x, y, z) lays inside one of the two spherical objects,

0 otherwise.

The volume of interest is the cube(x, y, z) ∈ [0, 1]3, and both spherical objects are of same

size and are located along the vertical direction. Their center locations are(0.5, 0.5, 0.5) and
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TABLE IV: Location of the seven X-ray sources. All sourcessk = (xk, yk, zk) are located inside the

horizontal plane(z = −13) and around central locations1 = (0.5, 0.5,−13). Sourcess2, . . . , s7 lay on a

circle of centers1 and of radius equal to 3.75. Projection anglesθk are defined as the angles between the

vertical direction(0, 0, 1) and the vector formed bysk and the average locations(0.5, 0.5, 1) in the detector

plane. Projection angles are roughly equal toπ/4.

k 1 2 3 4 5 6 7

xk 0.50 0.50 − 2.75 − 2.75 0.50 3.75 3.75

yk 0.50 −3.25 −1.38 2.38 4.25 2.38 −1.38

θk 0 0.79 0.79 0.79 0.79 0.79 0.79

(0.5, 0.5, 0.69), respectively, and their radius is equal to 0.031; see Fig. 4(a). The projection

geometry is defined as follows. The seven sourcessk = (xk, yk, zk) are all located inside the

horizontal plane(z = −13) and around central locations1 = (0.5, 0.5,−13). All six other sources

lay on a circle of centers1 and of radius equal to 3.75, according to the geometry of Fig.1. Table IV

displays the exact values of the source coordinates. The cone-beam projections are all computed on

a same horizontal plane of equation(z = 1). This plane is discretized by a set of128×128 square

pixels partitioning the rectangular domain{(x, y) ∈ [−0.30, 1.11]× [−0.30, 1.11]}. The simulated

data are generated by computing theexact line projections[52] of analogic imagef ⋆(x, y, z) and

by adding an i.i.d. Gaussian noise to the projections. The signal to noise ratio is defined by SNR=

10 log vp/vn, wherevp is the spatial variance of the projection signal andvn is the ensemble

variance of the noise. It is set to−10 dB. The seven simulated radiographs are displayed in

Fig. 4 (b).

The difficulty of the image reconstruction problem lies in the limited nature of the data. Specif-

ically, all projection rays are close to the vertical direction hence complicating the discrimination

of objects that are vertically aligned. The synthetic imageof Fig. 4 (a) has been chosen in order

to evaluate the capability of the reconstruction method to discriminate two close tiny objects, in

a difficult case where the radiograph images do not qualitatively provide a clear discrimination

between the two. In a more classical geometry of acquisitionwith a limited number of projections

but with equidistributed angles, it is generally possible to localize the objects in a qualitative fash-

ion using standard algorithms (e.g.,filtered backprojection). In the following, we evaluate both
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FIG. 4: Binary image to be reconstructed and seven noisy projections (SNR= −10 dB). (a) The binary

image is formed of two localized spherical objects of same size, centered at locations(0.5, 0.5, 0.5) and

(0.5, 0.5, 0.69), and of radius 0.031. (b) The seven simulated radiographs computed from noisy cone-

beam projections of image (a) onto the plane(z = 1). Radiographs are gray level images formed of

128 × 128 pixels. The darker gray levels correspond to the larger values.
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monogrid and multigrid reconstruction methods by discussing the accuracy of the detection of the

localized objects and the quality of the reconstructed image in terms of attenuation values and size

of the reconstructed objects.

B. Monogrid reconstruction

We first perform the monogrid reconstruction algorithm on a grid of 323 voxels yielded by

a uniform sampling of the volume of interest[0, 1]3. All displayed reconstructions are obtained

with the data backprojection [Fig. 5 (a)] as initial solution and by performing only 50 iterations

of the SSU algorithm, since the optimization task is numerically expensive. The results displayed

in Fig. 5 are obtained withλ = 0 and with two different values ofµ. For convenience, the two-

dimensional (2D) central slice [plane of equation(x = 0.5)] of each reconstructed image is also

shown, together with the slice of the two unknown spherical objects (bold circles in black or white).

These results are promising, as they correctly localize thetwo objects that are not, however, fully

discriminated. Selecting a large value ofµ clearly enhances the image sparsity, as the annealing

of voxels is favored. However, the values of the localized object voxels are underestimated in

comparison to their expected value (f ⋆
i = 1), since the penalization term involved in criterion

J (f ) is predominant with respect to the fidelity-to-data term. Inparticular, a large value ofµ such

asµ = 0.5 yields the null imagêf = 0.

When the smoothness regularization is also taken into account (i.e., λ 6= 0), the threshold

parameterT occurring in the hyperbolic function is set toT = 0.01. This selection is done relative

to the prior knowledge of the range of the voxel values:fi ∈ [0, 1]. Although a lower value

of T further favors the appearance of sharp edges in the image, this choice leads to an "almost

nondifferentiable" criterionJ (f ), sinceφ(t) is equivalent to2T |t| whenT ≈ 0. This choice

may thus slacken the decrease of series{J [f (k)], k > 0} during the optimization stage. The

reconstructed images obtained while using two hyperparameters are represented on Fig. 6. We first

setµ to 0.01 and then tune the value ofλ. Large values ofλ yield a homogeneous image as well

as a larger number of active voxels. Although increasing theimage parametrization is desirable

in order to prevent false detection of the background voxels, the use of smoothness regularization

suffers from two drawbacks:

• the voxel values are underestimated. This behavior is similar to the influence of an overes-

timated value ofµ, as illustrated in Fig. 5;
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• the size of the localized objects is overestimated along thevertical direction.

Fig. 7 (a) shows a reconstruction obtained on a643 voxel grid while performing only 10 iter-

ations of the SSU algorithm. For such fine grids, we need to reduce the number of iterations due

to the very large computation time. Despite the large numberof unknowns, the monogrid method

provides very accurate reconstructions when using the annealing term only (λ = 0, µ 6= 0). On

Fig. 7 (a), the two localized objects are clearly discriminated and their size and attenuation values

are correctly estimated. In conclusion, the finer grid yields the best results in terms of discrimina-

tion of tiny localized objects, in spite of the large number of parameters to estimate.

Fig. 7 (b) illustrates the behavior of the monogrid reconstruction method in terms of compu-

tation time. For a fixed number of iterations, the method suffers from a drastic increase of the

computation time when the grid resolution is fine. For the simulations of Figs. 5, 6, and 7 (a),

the average overall CPU time amounts to 1856 s for the323 voxel reconstructions (50 iterations

of SSU), and to 2254 s for the643 voxel reconstruction (10 iterations of SSU). Moreover, when

performed on a fine resoluted grid, the method necessitates the storage of a huge number of voxel

values, and the projection matrixH, of sizeM × n =
{
(7 × 1282) × (643)

}
cannot be stored.

Although the SSU algorithm is implemented in such a way that the projection vectorp = Hf is

sequentially updated, we still need to recompute each matrix columnH•i when a voxeli is visited.

On the contrary, sparse image representations enable the storage ofH when the number of active

voxels is very limited, or at least that of a sparse imagefa representing the discretization of the

volume onto finer grids.

C. Multigrid reconstruction

The multigrid reconstruction method alleviates the previous drawbacks by drastically reduc-

ing the image parametrization. We now exhibit the reconstructions obtained using the multigrid

method by focusing on the sensitivity of the method to the twohyperparametersλ1 andµ1 and to

the given number of resolution levels. In the following, we aim at reconstructing a final fine reso-

luted image of643 voxels given, at the coarsest resolution level, a complete image parametrization

f (1) formed of163 voxels. The multigrid algorithm thus includesR = 3 resolution levels.

Let us recall that hyperparametersλ1 andµ1 are empirically chosen at the coarsest level, and

that (10) is the necessary and sufficient condition for the "image continuity" between two con-

secutive levels. Similarly to the monogrid case, parameters Tr are all set to0.01 and we perform
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(a) Data backprojection Central slice, of size32 × 32
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(c) λ = 0, µ = 0.02 Central slice

FIG. 5: Monogrid reconstruction formed of323 voxels with 50 iterations of the SSU algorithm. (a) Data

backprojection computed on the323 voxel grid; for clarity, only 11 parallel slices are represented. (b-

c) Monogrid reconstructions computed with (a) as initial solution and with a single penalization term (λ =

0, µ 6= 0), favoring annealing of the voxels. The null image is reconstructed whenµ is set to larger values

(e.g.,µ = 0.5). The 2D images shown on the right column are the slices of thereconstructed images

along the plane(x = 0.5). The bold circles represent the shape of the unknown localized objects.
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(c) λ = 0.1, µ = 0.01 Central slice

FIG. 6: Monogrid reconstruction formed of323 voxels with 50 iterations of the SSU algorithm. The two

penalization terms are utilized:λ, µ 6= 0. The value ofµ is set to0.01, T is set to0.01, andλ is tuned to

several values. (a-c) Monogrid reconstructions computed with the data backprojection as initial solution.
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FIG. 7: (a) Monogrid reconstruction formed of643 voxels with 10 iterations of the SSU algorithm. Only

1096 voxels, that is 0.05 % of the643 voxels are not equal to 0. (b) Numerical time of computation for the

monogrid reconstruction algorithm, expressed in seconds.Evaluation is done with respect to the resolution

of the 3D image: successive reconstructions are done on grids of83, 163, 323, and643 voxels, respectively.

At each resolution,λ andµ are empirically chosen, and 50 iterations of SSU are performed. For the643

voxel grid, the numerical time is estimated based on the CPU time measured for 10 iterations of SSU.

50 iterations of the SSU algorithm at levelr = 1. We also perform 50 iterations per level when

r > 1 in order to compute the sparse imagesf̂ (2) andf̂ (3). An increase of this number is generally

possible within a reasonable computation time, provided that a large number of background voxels

are detected at levelr = 1.
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FIG. 8: Multigrid reconstruction on three levels, use of onepenalization term only favoring the annealing

of voxels:λr = 0, µr 6= 0. 50 iterations of the SSU algorithm are performed per resolution level.

30



0 50 100 150
8

10

12

14

16

18

20

22

24

Iterations

C
os

t f
un

ct
io

n

Multilevel optimization

r=1 r=2 r=3

FIG. 9: Decrease of the cost function for the multigrid reconstruction of Fig. 8. Values of criterion

Jr[f
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1. Regularization based on voxel annealing only

Fig. 8 displays the results obtained withR = 3 levels. The coarsest grid reconstruction, formed

of 163 voxels, is estimated from the data backprojection computedon the163 voxel grid and using

the annealing regularization only (λ1 = 0, µ1 = 0.05). The multigrid algorithm efficiently dis-

criminates both localized objects while affording a drastic reduction of the image parametrization

at each resolution level. In particular, only 440 (i.e., 0.17 %) of the643 voxels are active at the

finest level. For this reason also, the voxel values are more accurately reconstructed than in the

monogrid case, because the indetermination of the limited angle reconstruction problem is partly

alleviated by the image sparsity. However, the automatic rule µr = µ1/8
r−1 for selecting the

annealing parameters generates a lot of nonnull voxels at fine resolution levels. Obviously, the

value ofµr is tiny when the number of resolution levels is large, thus inactivating the annealing

regularization. The same behavior is noticeable when the number of resolution levels is larger than

R = 3.

Fig. 9 illustrates the behavior of the multigrid algorithm by showing the decrease of the cost

functionJr[f
(r)(k)] with respect tor andk for the images reconstructed in Fig. 8. Although the
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first optimization stage may require a large number of iterations to ensure the convergence of series

J1[f
(1)(k)], the following optimization stages can often be carried outwithin a very few number

of iterations, because initial solutions are accurate enough. Moreover, the latter stages are less

consuming in terms of computation time per iteration due to the image sparsity. For the results

shown in Fig. 8, the global time of reconstruction amounts to305 s, that is 266, 15, and 24 s for

each resolution level, respectively.

In Section V C 2, we utilize smoothness prior information in order to prevent the false detection

of background voxels, on which the finer sparse image parametrizations depend.

2. Regularization based on smoothness and voxel annealing

We obtain more accurate results using both smoothness and annealing regularizations. Obvi-

ously, the automatic ruleλr+1 = λr/4, µr+1 = µr/8 implies that the annealing term of criterion

Jr is negligible with respect to the smoothness term for the finer grids. Moreover, we need to

overestimate parameterλ1 at the coarsest level to keep it active at finer levels. Both penalizations

are clearly inclined to be inactive if the numberR of resolutions is set to a large value. Figure 10

displays the results obtained forR = 3 levels. The value ofµ1 is set to0.05 as in the simula-

tion of Fig. 8, whileλ1 is empirically selected and overestimated (λ1 = 0.2). This choice yields

accurate results at the finest resolution level as the 2D central slice of the last reconstructed im-

age displays a clear discrimination of the localized objects and accurate estimation of their size

along both vertical and horizontal directions. The use of smoothness regularization avoids the

appearance of isolated voxels, but on the other hand, it doesnot favor the detection of background

voxels between both localized objects. For the results shown in Fig. 10, the number of active

voxels isa1 = 163 = 4096, a2 = 312, anda3 = 856 at each resolution level;a2 anda3 represent

only 0.95 % and 0.33 % of the total number of voxels (i.e., 323 and643). The global time of

reconstruction amounts to 321 s, that is 257, 19, and 45 s for each resolution level, respectively.

D. Discussion

The difficulty of separation in the depth direction is the main problem raised by limited angle

data. It is however possible to improve the regularization to add specific prior compensating for

the lack of information in the depth direction.
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FIG. 10: Multigrid reconstruction on three resolution levels, use of two penalization terms:λr, µr 6= 0. 50

iterations of the SSU algorithm are performed per resolution level, andT is set to0.01.

In the presented method, the smoothness termD(f ) =
∑

i∼j φ(fi − fj) is chosen isotropic, in
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the sense that the neighborhood relationi ∼ j is defined along the horizontal and vertical directions

together (x-, y-, andz-axes). Each interior voxelfi is thus involved into six termsφ(fi − fj). An

interesting alternative to favor the discrimination of objects along the depth directionz is to use an

anisotropic version in which the smoothness term does not have the same weight in the horizontal

directionsx andy and in the vertical direction. This can be achieved by adapting the value ofT

or λ, depending on the direction. In the following, we focus on the extreme case where only the

horizontal interactions(fi, fj) are considered (i.e.,λ = 0 for vertical interactions). Each interior

voxel fi is now involved into four termsφ(fi − fj) corresponding to itsx andy neighbors. The

monogrid and multigrid algorithms can be straightforwardly extended to the anisotropic case. In

the monogrid case, the algorithms presented in Tables I and II are still valid as well as the update

equations (6) and (7). The auxiliary variablesbij are now defined for horizontal interactionsi ∼ j

only. The multigrid algorithm of Table III can be extended ina similar fashion, while the rule (9)

for recursive selection of the hyperparameters from one grid level to another is unchanged.

We performed a set of simulations in order to compare the isotropic and anisotropic algorithms,

based on the data of Fig. 4. Qualitatively, the monogrid reconstruction results obtained with the

anisotropic version are close to their isotropic counterparts, although for fixed values ofλ1 andµ1,

the range of the voxel values is more accurate in the anisotropic case. The voxel values are still

underestimated, but larger than in the isotropic case. The reason for this result is that for a given

value ofλ1, the number of terms involved inD(f ) is lower than in the isotropic case. Therefore,

the number of active voxels is reduced at each resolution level, and the voxel values are increased

in average. However, the anisotropic monogrid algorithm cannot clearly discriminate the localized

objects, similarly to the isotropic algorithm.

We performed multigrid reconstructions on three levels similarly to the isotropic case. The

anisotropic algorithm yields very accurate results in terms of discrimination and localization of

the objects. Whenλ1 is chosen very large (e.g.,λ1 = 2), the anisotropic results remain of good

quality while the isotropic version fails to discriminate the two objects. Let us stress that a large

value ofλ1 is a security, as the number of active voxels at each resolution level is important. On

the contrary, whenλ1 is set to a low value, the number of voxels that are detected as"background

voxels" is larger, with the possibility that true localizedobject voxels are excluded.

In conclusion, we believe that the anisotropic adaptation of the reconstruction algorithms is of

great interest to enhance the discrimination of objects along one specific direction. Not only the

localized objects are better discriminated, but the results are also very robust with respect to the
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smoothness parameter.

VI. CONCLUSION

We have proposed a simple method adapted to the 3D reconstruction of one or several localized

objects from a limited set of CT data. Both monogrid and multigrid approaches carry out the di-

rect estimation of the image voxels in the MAP sense by using smoothness and/or voxel annealing

assumptions. The annealing assumption permits the detection of a region of interest embedding

the localized objects areas. When the monogrid image reconstruction is performed, we construct

a sparse representation of the 3D volume, which partitions the image into a localized object region

and a background region. The multigrid image reconstruction relies on a monogrid reconstruction

done on a coarse image and a sequence of coarse-to-fine image reconstructions. These reconstruc-

tions involve, at each resolution level, the design of sparse image representations. We have shown

that the monogrid reconstruction method yields accurate discrimination and reconstruction of the

localized objects when the angles of projection are limited. The proposed regularization is also of

interest in other more classical geometries of acquisition, in situations where the number of pro-

jections is low or the noise level is important. The multigrid extension provides a drastic reduction

of the image parametrization at the finest levels as well as improved reconstructed images. In

the case of multigrid image reconstruction, we recommend touse both smoothness and annealing

regularizations and to overestimate the smoothness hyperparameter at the coarsest level in order to

avoid the false detection of the background voxels and ensure the robustness of the reconstruction.

The anisotropic extension presented in Section V D, in whichthe smoothness term does not have

the same weight in the depth direction in comparison to the other directions, gives very promising

discrimination results when the projection angles are limited.

At each resolution level, the MAP estimator of the voxels is computed by using a deterministic

descent algorithm based on successive constrained optimizations with respect to one voxel at a

time. We have shown on a set of simulations that the convergence of the algorithm is fast and that

it is capable of detecting a large number of zero-valued voxels.

Future works will consist in improving the proposed method,namely, the optimization algo-

rithm used for performing positive voxel estimation. First, replacing the set of constraintsRn
+ by

the box[0, 1]n is a trivial extension that may improve the accuracy of the estimation of the voxel

values by taking advantage of the prior knowledge of their range. Second, the use of an interior
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point approach based on the Lagrangian formulation of the constrained problem instead of the

proposed SSU algorithm, would possibly improve the algorithm efficiency (see, for instance [48]).

The minimization ofJ under the positivity constraint could also benefit from recent advances in

the field of variable selection based on the homotopy approach of [49]. In particular, the case

whenλ = 0 or whenφ is chosen quadratic clearly enters the "positive-lasso" case of [50, p. 421]

(see also [51] for a generalization including "Huber-like"penalty functions). Another strategy

to carry out the optimization problem relies on the its Bayesian formulation and on Monte Carlo

techniques for sampling the voxel values. This approach hasbeen recently introduced for positive

image reconstruction problems [11] and yields promising results.
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