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Abstract

We report on three-dimensional image reconstruction frdimi¢ed set of computed tomography projec-
tions. We focus on configurations with very limited angle igw and on applications in which the image to
be reconstructed is composed of one or several localizedtspying in a known background. We propose
an original method based on the detection of the localizgelcblvoxels and on a sparse modeling of the
image. Reconstruction is done by computing the maxinauposteriori estimator of the image parame-
ters. To implement image reconstruction, we adopt a midtiggrategy in which coarse-to-fine resoluted
images are successively reconstructed. This strategydae®detection of localized object voxels as well
as accurate initial solutions at each resolution level.hE@atimization stage is carried out by using an it-
erative deterministic descent algorithm. We propose aergient single-site update algorithm that consists
of successive constrained optimizations with respect owarxel at a time. We show the performance of
the multigrid method on simulated data corresponding td afdénited angle cone-beam projections of a
synthetic image. The results are accurate, while both mgstorage and numerical time of computation

are dramatically reduced compared to the monogrid reaset&in method.

Keywords: X-ray tomography, 3D image reconstruction, aalyrdetection and localization, anomaly reconstruction,
positive image modeling, sparse image modeling, maxiraymosteriorireconstruction, single-site update algorithm,

multigrid reconstruction.



. INTRODUCTION

This paper deals with the tomographic reconstruction ofeetfdimensional (3D) image com-
posed of one or several localized objects laying in a knovakdpaund. Such images are encoun-
tered in nondestructive evaluation (NDE) of materials aggreésent a volume that may contain
anomalies€.qg.,air faults inside a metal). NDE is used for the online insjpecdf aerospace com-
ponents, fuel rods, and steel pipes in nuclear power statlarthis context, several modalities are
available, including eddy current, X-ray, or microwave gimay techniques [1-5]. The problem
of image reconstruction from X-ray measurements is knowhet@ difficult problem, because
the number and the angles of projection are often limited,tdithe geometric constraints of the
radiograph acquisition. In the case where the backgrouadkisown material, we can assume
that the attenuation function inside the 3D volume regds v, z) = fs(x,y,2) — fu(x,y, 2),
where fg stands for the attenuation function of the background refiat is, the nonnegative at-
tenuation function corresponding to a perfect, fault-iresgerial), andf;, is an unknown function

characterizing the presence of a localized fault at loogtioy, z),

# 0 if (z,y, z) lays inside the localized object area,
fL('ru Y, Z) .
= (0 otherwise.

In the following, function f, is chosen nonnegative. This choice is motivated by the NDE
application, in which air and void faults are of negligiblgeauation [ (z,y,z) = 0, hence
fu(z,y,2z) = fe(z,y,z) > 0]. By a slight abuse of words, we will refer to the region where
fu(z,y,z) = 0 as thebackground area (that is, the fault-free area), by contrast to tbealized
object area. The reconstruction problem aims at estimating the maptehaationf (z, y, z) from

the computed tomography (CT) measurements. Becaussknown, the estimation of;, (z, y, 2)
over the whole 3D volume affords both detection of localipbfects and quantitative estimation
of their position and size.

Voxel-based methods consist of discretizing the entireim@ of interest into a set of voxels
(i.e., parallelepipedic volume elements) and then directly esiimy the voxel values from the
data. When the projection data are limited in number and/angles, the number of unknowns is
often largely greater than the number of data. As the reoactsin of an acceptable image is not
guaranteed, regularization is necessary. A classicatehsito model some prior information on
the sought image and then use the Bayesian inference fratkeMiarkov random fields utilizing

intervoxel differences are a natural choice because tivey faecewise homogeneous images. The
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attenuation image is then usually reconstructed in the maxia posteriori(MAP) sense [6, 7].

In NDE applications, attenuation images are generally aseg of a large number of back-
ground voxels, in comparison with the localized object Iex€onsequently, the attenuation im-
agefL(z,y, z) has many zero-valued voxels. One can then take accountsdrbivledge to reg-
ularize the reconstruction problem. A possible regulaiozais to restrict the image to be binary,
hence reducing image reconstruction to the binary detectithe localized object voxels. Binary
image reconstruction has been applied to vascular cras®isal images in angiography [5, 8]
and, more recently, to the NDE of materials [9]. Howeveraynreconstruction poses severe al-
gorithmic difficulties, in terms of optimization of criteriover discrete domains. In order to afford
a nonbinary reconstruction of the attenuation functioe, ke of a positive, continuous valued
image model has been addressed, allowing annealing of thgeimalues [10, 11]. A natural
choice for suctpositive prior distribution is a Gamma distribution, or a mixture of independent
Gamma distributions. Contrarily to Markov random fieldsdé priors are "pointwisef.€., they
do not take into account the interactions between neighgoroxels). The related distribution
is parametrized by the variances of each Gamma distributionthis paper, we consider at the
same time the assumptions of piecewise homogeneity antiitgsfollowing [12]. We utilize a
Markov model defined from a combination of two types of endtgyctions: one involves neigh-
boring voxels and favors image smoothness and the otheieapplsingle voxels and draws their
value towards zero. The computation of the MAP reconstouadtnage involves the optimization
of ann-dimensional criterion under positivity constraints, \e stands for the number of vox-
els. We focus on convex criteria that can be optimized usetgrdhinistic descent algorithms. In
particular, we distinguish classical descent algorithha tvork on the whole set of parameters
together [12] and single-site update strategies that weveliccessive optimizations with respect
to one voxel at a time [13-15].

Despite their simplicity, voxel-based methods encoureitations for high-resoluted images;
when the volume is described by a large number of voxelseitenstruction requires a large
amount of memory space and is highly limited in speed of cagargce. In contrast, alternative
image models based on deformable contours have enjoyeiiecaisle interest because they rely
on a low number of parameters and do not need a volume dizatieta. This approach is well
suited to describe compact objects [16—20], but it suffessfseveral restrictions. Actually, the
attenuation function must be uniform inside the objects #mednumber of objects embedded

inside the image has to be known as well. The use of implicitmars described by a level set
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of a higher dimensional function can alleviate the latteritation, as the number of objects is
no longer needed [21]. Nevertheless, implicit represariatof contours are computationally
expensive because they require the computation and uptattilb discrete image volume. The
combination of both voxel and explicit contour-based medeefo a unified mixed approach has
been investigated in the literature. This approach, wherifigpms joint estimation of the localized
object contours and the voxel values, yields promisingltegar the reconstruction of textured
objects and background despite its relative complexity 223.

Another natural, yet simple strategy to decrease the pdraatgon of the image volume is
to detect a region of interest (ROI) inside the image in whighlocalized objects are embedded.
One can thus generate an irregular image grid in which thelsao not have the same size and/or
shape and are distributed more densely in the vicinity oR@%, that is in the regions containing
significant details [24]. For an image composed of localinbfects, several researchers have
attempted to detect a ROI inside the image. A hypothesistesipproach has been used to
detect the presence of uniform anomalies inside the voluora X-ray data, and to determine
their position by using a multigrid framework [2, 25]. In [9he image is assumed binary and a
necessary condition for the reconstruction of backgroumcls is provided, based on marginal
a posterioriprobabilities. This test is very fast to compute, affordihg predetection of a set of
background voxels and thus the formation of a ROl embeddiedpicalized objects. Computing a
ROI prior to image reconstruction is advantageous sincanbge parametrization is dramatically
reduced. One may also design a more highly resoluted dizatien of the volume inside the ROI,
when the ROI domain is small.

In medical imaging, the reconstruction of the volume emleelddside a ROI from X-ray pro-
jections has been extensively studied. Wavelet image septations are very popular because
they afford reconstruction of the interior of a ROI at a fiesalution level and reconstruction of
the rest of the image at a coarser level. These local tombgraqethods result in a drastic re-
duction of the radiation exposure delivered to the patietlise the reconstruction can be done
from the projection rays that intersect the ROI and from asgpaampling of the projections away
from the ROI [26—29]. Nevertheless, wavelet-based recoasbns rely on a complete set of
projection angles. Setting aside the ROI reconstructiablpm, multigrid algorithms, affording
successive reconstruction of coarse-to-fine "completagis, have enjoyed considerable success
in CT applications because they yield more accurate rengigins within a very limited time

of computation. Basic multigrid implementations aim ataestructing a sequence of coarse-to-



fine images and at using the reconstruction at a given griel Eevcompute the initial solution
at the finer level [30, 31]. Multigrid models have been exemhtb nonlinear inverse problems
(e.g.,diffusion optical tomography which involves the reconstion of a positive image from
nonlinear measurements) [6, 32—34]. The related multeggdrithms are based on coarse-to-fine
image updates and on fine-to-coarse updates as well, asgdadithe so-called V-cycle scheme.
The computation of the MAP reconstruction image at eachluéea level requires a dynamical
adjustment of the cost functions at different levels duéntorionlinearity of the inverse problem.
In emission tomography, more elaborate Bayesian fornaratrelying on Markov random fields
and on a multigrid pyramidal representation have also beerstigated, allowing hyperparameter
estimation at any resolution level using the reconstruictedje at a coarser level [35, 36].

In this paper, we propose a method that performs the detegfithe ROl embedding the lo-
calized objects in conjunction with the reconstructionted tocalized object voxels. The image
model relies on a sparse description of the voluffie y, =), taking account of the localized ob-
ject voxels only. This description is highly parsimoniowshuse the localized object regions are
generally of small size relative to the rest of the volumeerEifiore, the sparse model permits an
efficient exploration of the specific regions containing lingalized objects. The detection of the
ROI domain (or similarly, of the complementary set of backgrd voxels) is a key problem. We
propose a solution to this problem using a multigrid stratednich affords successive reconstruc-
tions of coarse-to-fine positive images and recursive tieteof the background voxels as well.
At each level, positive image reconstruction will be catroait by using a single-site update (SSU)
optimization algorithm with provable convergence.

The rest of the paper is organized as follows. Section Ibohices the 3D image reconstruc-
tion problem. We specify the monogrid image discretizatiod parametrization in both complete
and sparse cases. Then, we formulate the image reconstryctiblem as an ill-posed inverse
problem. In Section Ill, we develop the monogrid positiveage reconstruction method, provid-
ing the MAP estimator of the complete image voxels. Regedaion is composed of two terms
related to both annealing and local homogeneity assungtidio compute the MAP solution,
we will discuss the choice of a deterministic descent atboriand will propose an iterative SSU
algorithm. Section IV provides an extension of this methmdparse image reconstruction. Lo-
calized object regions are detected using a multigridegsatiffording successive reconstruction
of coarse-to-fine images. Finally, Section V exhibits nuoarsimulations performed on a set of

limited angle projections of a synthetic 3D image formedvad small localized objects laying in



a uniform background and located together along the doweaif the projection rays. We show
the ability of the method to provide an accurate identifaratf the object locations as well as the

discrimination between the two objects.

[I. PROBLEM STATEMENT

In Section |, we assumed that the attenuation function ie@ferm f(z,y, z) = fs(x,y, 2) —
fu(z,y, z), where fg is the known attenuation of the fault-free volume, afadis an unknown
nonnegative function associated to the localized objeftsc[y, z) # 0 if and only if (x,y, 2)
lays inside the localized object area]. Under this asswmnpthe reconstruction problem consists
of estimating the nonnegative imagg(x, y, z) from a set of noisy projections gf. Because of
the linearity of the X-ray projection operator, this prablés equivalent to the reconstruction of
fi,» given its own projections, estimated up to the precommnatf the projections offg. In
the following, we focus on the tomographic reconstructiory;g which will be renamedf for
convenience. We refer to the region wheie, y, z) = 0 as the background area, by contrast to
the localized object area.

In this section, we first introduce discrete parametrizegiof the 3D attenuation image and then
give a formulation of the direct model, relating the X-rayaserements to the image parameters.
This formulation will allow us to solve the image reconstian problem by directly estimating

the image parameters from the data.

A. Imagediscretization: complete and spar se parametrizations

The volume of interest is discretized into a seh.afoxels of identical size, where the voxel de-
nomination stands for the parallelepipedic volume elem&né discrete attenuation image is then
represented by vectgf = [fi, ..., f,]' € R". Inthe following, we refer to this parametrization
as thecomplete parametrization.

Let us assume that we have a detection rule for the locatitimedéackground voxels{ = 0).
We denote by3 C {1, ..., n} the set of the background voxel indexes, anddby {1,...,n}\ B
the complementary set of voxels. These voxels, referred tctave voxels, are candidates to
belong to the localized object regiorie(, f; > 0). Active voxels are represented by a vecfpr

extracted from the global image vectpr Denoting bya the number of active voxels, and up to a
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FIG. 1: Cone-beam projection parametrization. The voluimaterest is represented by a parallelepipedic
domain. A projection linés, t) is formed by a source positicnc R? located below the volume of interest,
and a detector positioh € R? laying on the horizontal detector plane, above the volumieprjections
are defined with respect to the same horizontal plane. A gaajih image is obtained from a single source

positionsy, and a collection of X-ray projections sy, t) onto the detector plane.

rearrangement of the voxels, the complete image pararagtnierereads = [f:; 0']*, where0 is

the null vector of lengt — a.

B. Projection modeling
The X-ray projection operator computes the line projectioha given imagé¢ (z, vy, z),

p(s,t) = flz,y, 2) dl,
(s,t)

where(s, t) is the projection line passing through the source and thecttat positionss andt,

respectively; see Fig. 1.



Let us fix a source positioa = s, (k = 1,...,m). The corresponding cone-beam projection
of the volume is a two-dimensional radiograph image obthimeputting together the projection
valuesp(sy, t) for n discrete values of in the detector plane. This projection image is then
represented by vectgw, of sizen; x 1. Finally, the global projection vector yielded by all soesc
sy is the result of the concatenation of vectpgs p = [p!, .. ., p,]*. This single vector represents
the collection of alkn radiograph images.

For imagesf(z,y, z) that are discretized into a set of voxefs= [fi,..., f,.|', the X-ray
projection operator rereags= H f, whereH is aM x n projection matrix, only depending on
the geometry of X-ray projection acquisitioh! = m n; stands for the global number of detector
pixels, andn is the number of voxels.

For a sparse image modelifd, ..., n} = A U B, the projection model rereags= H, f,,
whereH,, is the new projection matrix, of sizZ& x a. Matrix H, is extracted fromH by keeping

only the columng such that € A.

C. Direct and inverse problems

We model the X-ray data as the noisy projectiahs: p + n of the sought image, where the
noisen takes account of both errors of projection modeling and oreasent. Actually, there
are many sources of error, including the photon countingrgyithe electronic errors occurring
while recording data with a CCD camera, the influence of th&efiwidth of the projection beam
as well as the diffusion of the X-rays along all spatial dil@ts. Some of these phenomena can
be easily modeled using probability density functions [3it it is rather difficult to tackle all of
them together without making any simplifying assumption.

Let us consider the photon counting errors alone. The Poisgalel is the most appropriate to
describe that the measurements are related to a countinggs {0, 38]. According to Beer law,
the noisy projections are related to the photon counts ifdf@ving way:

T(Sk,t
d(sg,t) = —log [%} :
wherer(s;) is the photon emission rate of ti¢h source and (s, t) is the counting rate of the
detectort. The photon count(sg,t) is then modeled by a Poisson distributed random variable
with mean and variance(s;) exp(—p(sk, t)). When the photon counting rates are high at each

radiograph pixel and of same magnitude, which is often tke @aNDE applications, it is possible



to use an independent identically distributed (i.i.d.) &walissian moded = p + n instead of
the Poisson model. Note that for low counting rates, theddoisnodel can also be approximated
in a precise manner by an additive and Gaussian distributlayse variance is not constant and
depends on the projection measuremel(és, t), according to [38, 39].

In the following, we will assume that the noisy projectiorad:
d:Hf+n:Hafa+n7

where the noise vector is additive, i.i.d. and Gaussian.eHire Gaussian assumption is not
the result of a statistical hypothesis on the observatioorer It is mainly chosen for simplicity
reasons. The reconstruction method presented in this gapdve straightforwardly extended to
the case where the variance of the Gaussian noise is noacbn#tis well known that when the
projections are limited in number and in angles, the invpreblem, which consists of estimating
f from the datad, is very ill-posed [40]. In 3D problems, the numbeof unknowns is generally
greater than the number of data. To reduce the range of p@ssilnitions and to obtain a realistic
image, it is necessary to regularize the solution by intobaiy some prior assumptions on the
sought image. In the following, we will enforce positivity the voxel values and assume that
a fair amount of voxels are zero valued. The latter assumgstiates that the background voxels
usually are preponderant in the image. At the same timeepise smooth reconstructions will

be favored, in which neighboring voxels tend to have homegean values.

[II. MONOGRID RECONSTRUCTION
A. MAP egtimation of the attenuation image

In this section, we consider the complete modelfng [fi, ..., f,|* of the attenuation image.
We perform voxel estimation in the MAP sense, by minimizingdR?, a penalized cost function

of the form,
J(f)=|d—HF|>+XD(f)+n Y _ fi (1)
i=1
where

D(f)= > o(fi—f).

Z7.772NJ
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= quadratic
= = hyperbolic

FIG. 2: Plot of the hyperbolic function(t) = 2T (x/tQ +712% — T), together with the quadratic function

t2. ¢ is quadratic at the origin and behave<2@3t| when|t| is large.

In this formulation,~ denotes the six-neighborhood relationship between voxelsels: and
are neighborg and only if they share a common facé.: R — R, is a convex and even potential
function, which isC! and increasing o ...

The compound energy ( f) is composed of a fidelity-to-data term and of two penalizatio
terms, which favor piecewise homogeneous images and zdued/ voxels, respectively [12].
In order to favor the presence of sharp edges in the recatstrumage, function is chosen
guadratic at the origin and linear at infinity. We select thipdrbolic function (see Fig. 2) defined
by

8(t) = 2T (m - T) . @)

WhenT is large,¢ has a quadratic behavior and the regularization favorssaveothed images,
whereas for low values df, sharp edges are more likely to appear. The second pemnatizatm
is equal to the sum of the voxel values. Because the miniroizaif 7 is performed ovelR",
this term is minimal when all voxels are set to 0. Conseqyeitdl role is to favor the detection
of background voxels, whereas removing this term wouldaaflee estimation of positive valued

voxels.

B. Optimization algorithm: single-site update strategy

Proposition 1. For the ¢ function defined i2), criterion 7 is a strictly convex function of on

R’} provided that\ > 0 and that at least one projection ray intersects the volumatefest.
Note that the latter condition is always true in practice.
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Proof. Straightforwardly, criterion7 is convex onR’; as a sum of convex terms. In addition, it

can be shown that a criterion of the form
C
ld—HFIP+X1) o(vif), (3)
c=1
wherewv, aren x 1 vectors, is strictly convex oRR™ under the following conditions [41]:

e )\ > 0andg is strictly convex orR;

e KerH N KerV = {0}, where Ker.) denotes the null space of an operator dnds the

matrix of sizeC' x n whose rows are formed by vectas§, v, . . ., vE.

Let us apply this result to the criteriaff defined in (1). In the case where = 0, J(f)
rereads (3), wherg is strictly convex and vectors. are replaced by the vectous;, defined such

thatwj; f are the finite differenceg — f; involved in the sunD(f). One can easily check that:

e KerV isthe set of constant images, thus KN Ker V' is the set of constant images whose

projection is equal to@;

e the projectionH f of a constant image is equal @if and only if f = 0. The reason is
that the elements ol are all nonnegative and th&f # 0, since at least one projection
ray intersects the volume of interest. As all the voxels sltiae same valudd f = 0 only
whenf = 0.

As a consequence, criteridid — H f||> + A\D( f) is strictly convex oriR™ and thus orR”;.. In the

case where: #£ 0, J is strictly convex as the sum of convex and strictly convemte O

SinceR’} is a convex set, the strict convexity gfimplies that7 has a unique global minimizer
on R" which can be obtained using an iterative local optimizatgorithm. In [42], we chose
the projected gradient algorithm, which is a constraineal@nof the classical gradient descent
algorithm [43]. However, this algorithm is known to be verlpwe Following [13], here we
rather choose an SSU strategy, which consists of succassimizations of the criterion with
respect to one voxel at a time. However, the scalar subprobfeninimizing 7 with respect to
a single voxelf; admits no closed-form solution. Resorting to a half-quadfarmulation of the
optimization problem [44, 45] provides an elegant solutioth provable convergence.

Let us consider Geman and Reynolds’s augmented criterion

K(f.b) = ||d— Hf|]*> +\D(f,b) + qui,

12



whereD(f,b) = > iy i (fi = f5)? + ¢(bij)], and the auxiliary function) is defined as the
opposite of the concave conjugatedf,/7) [46]. Because(,/) is concave, it is, in turn, the
concave conjugate ofv, and functions) and¢ satisfy

W (b) = —min (bf* — o(f)),

feR

O(f) = min (bf* + ¥ (b)). @

The augmented criterion depends on the original vegtdiut also on a set of auxiliary variables
b= {b; > 0,i~ j}. From the definition (4) of, it follows that:
(f, 3) = arg min kC, (5)
FERY b
Wherefis defined as the minimizer ¢f overR’;. As a consequence, the minimization©fvith

respect tq f, b) provides an indirect means to minimize

In [45], it is shown that under the following hypotheses:
1. ¢ is convex onR,

2. ¢iseven,

3. ¢(,/") is concave ok

criterion K is convex in(f, b). Clearly, the hyperbolic function defined by (2) fulfills the above
conditions. The convexity ok guarantees that a local descent algorithm provides thealjlob
minimizer of K and thus the minimizer qff. In particular, the SSU algorithm, which performs
successive updates of scalar varialfleandb;;, is well suited to solve (5), af is quadratic inf
and the dependence kfwith respect td reduces to the separable te@wj ¥(bi;), in which the
auxiliary variables are decoupled. In other words, theascalibproblem of minimizingdC with
respect to a single voxgl or a single auxiliary variablé;; can be straightforwardly solved. We
refer the reader to [45] for a detailed study of convergericeeoSSU algorithm for minimization
of Geman and Reynolds’s augmented criterion.

Formally, the optimization ok with respect to a single vox¢] reads
[H'd], — [H'Hf], + X3, bii(f; — fi) — u/2}

[HtH] it + A ij‘ bij

fi:max{(), fi+ ; (6)

13



TABLE I: SSU reconstruction algorithm for monogrid imageaastruction.

Set initial solutionf (0).

Fork=1,..., K,
[Basic SSU loop]
For all voxeli € {1,...,n},
[Perform optimization of (f, b) with respect to single voxel f;]
Updatef; using (6), in which variables;; are computed using (7).
End For.

Setf(k) ={f1,---, fn}-

End For.

and the optimization ok with respect to a single auxiliary variablg leads to the simple calcu-
lation

S'fi=fi)

oy BLF T

bij —
1 otherwise

(7)

The latter result is a basic result of the duality theory [45re, let us stress that the knowledge of
1) is not necessary to compute (6) and (7). A more detailed igiger of the SSU algorithm can
be found in [14, 15] in the case of image deblurring. Our atpar is a simple extension of Brette

and Idier’s algorithm [14] to the image reconstruction pgeol, including positivity constraints.

C. Implementation of the SSU algorithm

The SSU algorithm is finally summarized in Table I. In thedoling paragraphs, we discuss
the main difficulties of the implementation, namely, therate and the recomputation of large
data arrays. Finally, we will discuss the choice of the patams involved in the monogrid recon-

struction method (initial solution, hyperparameters).
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1. Data structure for storage of image and projection magdsic

The implementation of the SSU algorithm raises severalrdtguoic difficulties, as the projec-
tion matrix H, of sizeM x n, is of enormous dimensions. Typical valuesidfandn can reach
10* to 10° depending on the number of projections and the desiredutisiolof the reconstructed
image (see Section V). AlthougH is sparse, the number of matrix elements, which are not equal
to zero, remains huge, which makes it not possible to skbren a workstation, even in a sparse
description. Similarly, matrixH, of sizen x n, cannot be stored and its computation would
be burdensome. In the following, we propose a data stru¢hatavoids the memory storage
of huge arrays and, based on this structure, we derive amithlgothat restricts the number of
recomputations of the matrix elemeri; for each radiograph pixeél and for each image voxel
1. The recomputation off;; is numerically expensive when performed many times, bex#us
requires one to compute the length of the intersection baveeline (the projection ray) and a
parallelepipedic volume (the voxel).

Our data structure relies on four buffer arrays:

e buff backproj, of sizen. Stores the data backprojectidfi‘d.

e buf f _Ht H, of sizen. Stores the diagonal elements of matFiX H: [H'H]|; = _, H}.
e buff _p, of sizeM. Stores the projection vectpr= H f.

e buff Hi, of sizeM. Stores the current column of mati. We also denote this column

vector byH,;. It is formed of the collection of all valuesHy;, k = 1,..., M}.

The first two buffers are computed prior to any SSU of voxdisjrtcontent remains unchanged
during the SSU iterations. The other two are recomputed doh ezoxel updatebuf f _Hi is
entirely recomputed when a new voxel is visited, whereasf _p is updated with a limited
computation cost.

a. Update of a voxel The update of théth voxel relies on the implementation of (6). It
is based on a direct combination of the four buffers, and dho¢shecessitate the storage of the

auxiliary variables,;,
e compute buffebuf f _Hi ,
e computed H'H f]; = [H'p|; = >, Hy; pr usingbuf f _H andbuf f _p,
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e directly computed_, ,; b;;(f; — fi) and)_;_; bi; using (7),
e apply (6) to updatg;.

b. Update of projections When theith voxel is updated, let us denote fiyand f! its former
and new values, wherg is computed using (6). Denotintf; = f/ — f;, the new image vector

readsf’ = f + 0f, whered f =1[0,...,0,4f;,0,...,0]". Hence, the new projection vector reads
p=Hf =p+0op, wheredp=HJSf =4f; H,;. (8)

As vector H,; is stored in bufferouf f _Hi , the update ofp is straightforward and does not
necessitate any other computation.

c. Memory storage and computation costhe overall memory storage of the SSU algorithm
amounts t@ M +3n scalar elements related to the four buffers and the imagengcThis storage
is largely inferior to the size of matricdd and H'H .

When a voxel; is updated, the corresponding colunkd; is recomputed. During an SSU
iteration, this computation cost is then equivalent to angle computation ofZ . Similarly, when
avoxeli is updated, the recomputation[df’ H f]; = [H'p]; amounts to one dot product between
vectorsp andH,;, which are already stored. The cost of computation of at&8H ' H f|; during
an SSU iteration is then equivalent to one matrix-vectodpob (H'p), where the matrix and the
vector are both already stored.

In conclusion, wherHH cannot be stored because of its size, one iteration of thegfgidithm
requires only one computation &, and other matrix and scalar computations. This cost is very
limited in comparison to other algorithms that work git f) and on all the voxels together. For
the steepest descent algorithm, each iteration requiredackprojection computatiodd’p) to
computeV 7 (f) and several projection computatiord ) to compute7 (f) during the line-
search procedure.

The detailed implementation of the SSU algorithm with leditnemory storage is finally sum-

marized in Table Il.

2. Practical settings of optimization parameters

In practice, we compute the data backprojectidid in order to provide the initial solution

f£(0). The maximum number of iterations is fixed relative to the banof voxels and we termi-
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TABLE II: SSU algorithm: implementation and memory storage

Compute and store buffer arragsf f _backpr oj andbuf f _Ht H, of sizen.
Set the initial solutionf to be the data backprojectiobyf f _backpr oj ).
Computep = H f, and store the result inuf f _p.
Fork=1,...,K, [SSU loops]
For all voxeli € {1,...,n},
Compute buffebuf f _Hi , representing the column vectéf,;.
ComputeH' H f); by usingbuf f _H andbuf f _p.
Update voxelf; by using (6), in whichb;; are directly computed using (7).
Update projection vectgp by using (8) and buffebuf f _Hi .
End For.

End For.

nate the descent algorithmJdf|[f (k)] — J[f(k + 1)] < e for some arbitrary threshold Hyper-
parameters\, 1, and7" are selected empirically. Generally, we first 3et 0 and then assign a
value tou by performing a few executions of the descent algorithmsBetting favors annealing
of the background voxels. If necessary, a similar setting ohn be done in order to preserve the
image smoothness. Paraméters set relative to the range of attenuation valueg.(7' = 0.01
when the image values are expected to vary between 0 and Weudg a low value of " tends to
reduce the speed of convergence of the algorithm, as fun¢tand, hence, criterioy become

almost nondifferentiable.

IV. SPARSE AND MULTIGRID IMAGE RECONSTRUCTION

In this section, we design an original reconstruction metiat offers significant reduction of
the image parametrization in conjunction with the detectbbackground voxels. The joint de-
tection and reconstruction method relies on the combinatidhe sparse image model introduced

in Section Il with a multigrid strategy.
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A. Sparseimage reconstruction

We first assume that we have a detection rule for the locafiaotive and background voxels.
Given this segmentatiof4, B) of the set of voxels, the discrete image is now parametrigettidy
active voxelsf, belonging taA4, and up to a rearrangement of the voxels, we hfwve [f:, 0']".
Sparse image reconstruction then reduces to the congtraenim@mization of the cost function
J(f) = J(f.;0) with respect tof, € R4. CriterionJ rereads

T (f4;0) = ||d — Hofu|”> + AD(f4; 0 +/~Lqu

where

D(f;;0)=D(f)= > o(fi—f)

As criterion J is strictly convex onR'}, its restriction7 (f,; 0) overRR¢ is also strictly convex.
Therefore, the constrained optimization of the lattereciatin overRy can be carried out by the
SSU algorithm to compute the minimizgﬁ;. In the same way as in Section Il B, we define the

Geman and Reynolds’s augmented criterion by
K(farb) = ||d — Hoful* + AD(fa, b +quz,

whereD(f,,b) = > i, (i (fi— f5)? + 1 (bi;)] takes account of the neighboring voxglsj) such
thati € Aandyj € {1,...,n}. The minimization ofiC with respect tof; andb;; reads (6) and (7),
respectively. In these equation,has to be replaced by 0 in cases where vgxesl not active.
The algorithm presented in Table Il is still valid for the ilementation of fast SSU.

In the following, the sparse image representation will beaded by{fa, A, B} or simply by
f. when no ambiguity is possible. We will distinguish the SStatesf, (k) from the final image

reconstructionf, = f.(K) resulting from the SSU algorithm.

B. Multigrid strategy

An essential prerequisite for the reduction of the imagamatrization is the detection of the
background voxels. In Section lll, we designed our monoggmbnstruction method in order to
favor background voxel detection. We now take advantagéisfoxel detection and perform

sparse image reconstruction using a multigrid strategytittid image reconstruction consists of
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FIG. 3: Change of resolution: partition of a voxel into eighibvoxels.

e sequential reconstruction of sparse coarse-to-fine resbimagesfV, f2, ..., ().

e determination, at each resolution levelof the image segmentatio(nATH,BHl) at the

next finer resolution level + 1 given the current sparse reconstruct((fi’”), A, BT).

In the following, we will denote by:, = #.A, the number of active voxels at resolution level

We now specify each step of the multigrid reconstructioresué.

1. Multigrid image modeling

The coarsest imagg") is a complete parametrization of the volumg & n voxels, A, =
{1,...,n} andB; = () whereas finerimageg?, ..., f® are sparse. These images are obtained
by discretizing the volume of interest on grids®f, 82n, . . ., 8%~1n voxels respectively, as each

voxel is subdivided into eight subvoxels from one resolutmthe next finer resolution; see Fig. 3.

2. Detection of background voxels

At a given resolution level < R, let us assume that the image estin"(aﬁé), A.,B,) has been
computed, where complementary sdtsand B, form a segmentation of the set of voxel indexes

{1,2,...,8" In}. Atlevelr + 1, we defined, ., andB,,, as follows:

o enumerate the zero-valued voxels at leveB, = B, U {j € A,, f." = 0},
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e defineB, ., by subdividing all voxels oB3, into eight subvoxels,

e defineA, ., by subdividing all positive voxels ofl, into eight subvoxels.

3. Interpolation and initial condition

The initial estimatef"+1(0) at levelr + 1 is computed using the zero-order interpolation of
imagef(” on the next finer grid. Given an active voxek A, this interpolation assigns the
voxel valueﬁ(” to the eight subvoxels af This simple rule ensures continuity between both
consecutive images: imagéf(’“), A, B, } and{ f"+(0), A, 11, B,11 }, although sampled upon

two consecutive grids are identical representations o theme.

4. Projection matrices

Let us denote by (") the projection matrix at level. H) is a matrix of sizeV/ x a,, whose
(k,7)th element is equal to the length of the intersection betweehth projection ray and théh
active voxel. At the next finer resolution levé " 1) is of sizeM x a,. 1, and by construction of
FD(0), it follows that H D £+ (0) = H® f0),

5. Optimization scheme

Multigrid image reconstruction involves sequential mirgation of R criteria,

FO = argmin { Z[£] = T (£7):0)}

FMergr

given the initial estimatgf ™) (0). For the sake of simplicity, the dependenceffon { A, B, } is
implicit as well as the rearrangemepft™”); 0) of the8"~'n voxels. Here, criterioly/ is associated
with the complete parametrization at level

For all resolution levels, optimization is carried out gsihe local SSU algorithm described
in Section Ill and extended in Section IV A to sparse imagemstruction. Observe that the
image parametrization is complete at the coarsest resolldgvel ¢ = 1), hence, reducing the

optimization scheme to the monogrid reconstruction atgori
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6. Hyperparameter setting

For all resolution levels, hyperparameters u,., T, are selected recursively in order to satisfy
vre{l,...,R=1}, o [fUD0)] = 7 [F7]. 9)

This condition states that imagegs” and £+ (0) yield the same cost as they are identical

representations of the volume.

Proposition 2. The condition

)\T—i-l = )\7«/4, Mr41 = ,LLT/S, T7«+1 = Tr- (10)
is sufficient to guarante®).

Proof. By construction off ") (0), each voxel of £ A, B,) is subdivided into eight subvox-
els of same value. The smoothness termypf; [ £ (0)] is thus equal to four times that of
T, [f(’“)} , While the annealing term of,.,1 [ £ (0)] is equal to eight times that ¢f, [f(’“)}. As
the data-fidelity term is unchanged, (10) is a sufficient dordfor (9). O

From Proposition 2, it follows thak, = A\, /4"!, p, = /871, andT, = T, forall r =
2, ..., R. Hyperparameters can thus be easily computed at any |lexezi their value at either the

coarsest or the finest level.

Remark 1. Let us denote by the criterion associated with the complete parametrizatibthe
finest resolution leveR, and byI” the zero-order interpolation operator, which maps an image
{£):0} at levelr onto an image{ £*); 0} at the finest leveR. Condition(9) guarantees the

decrease of the sequence of reconstructed im@fé@, A, BT} in the sense of criterioy,
I(FP;0) < T |HL (F0)] << T [H(F00)].

In other words, the solutioff®) obtained at the finest level is more accurate than the zedevor

interpolation of any coarser level solution.

The overall multigrid reconstruction algorithm is summaead in Table IlI.
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TABLE IlI: Multigrid algorithm for sparse image reconstiian.

Perform backprojectiotf(l)(o) of the datad on a grid ofn voxels.
SetA; = {1,...,n}, By =0, anda; = n (all voxels are active).

Input Ay, pq, 7.

Forr=1,..., R,

Computef ") = arg Min ) e gar T [£@)] from £)(0).

If r <R,
Define A, .1 by sampling each nonnull voxel qAﬁ") into eight subvoxels.
DefineB, 1 by sampling all voxels o3, and all null voxels off(") into eight subvoxels.
Seta, 1 = #Ar41.
Seth 11 = A\ /4, prg1 = /8.
Computef("+1)(0) using zero-order interpolation gf").

End If.

End For.

V. SIMULATION RESULTS
A. Datasmulation

The following simulation involves: = 7 limited angle projections of a binary synthetic image,
designed according to the geometry of Fig. 1. The synthetage is composed of two localized
spherical objects laying in a uniform background. The umkmattenuation function is thus de-
fined by

N 1 if (x,y, 2) lays inside one of the two spherical objects,
[ (2,y,2) = _
0 otherwise
The volume of interest is the culfe,y,z) € [0,1]3, and both spherical objects are of same

size and are located along the vertical direction. Theiterelocations arg0.5,0.5,0.5) and
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TABLE IV: Location of the seven X-ray sources. All sources = (xx,y, 2x) are located inside the
horizontal plandz = —13) and around central locatiofny = (0.5,0.5, —13). Sourcesss,...,s7 lay on a
circle of centers; and of radius equal to 3.75. Projection andigsare defined as the angles between the
vertical direction(0, 0, 1) and the vector formed by, and the average locatio8.5, 0.5, 1) in the detector

plane. Projection angles are roughly equat 1d.

k 1 2 3 4 5 6 7
zr | 0.50 0.50 —2.75 —2.75 0.50 3.75 3.75
yr | 0.50 |—=3.25 —1.38 2.38 4.25 2.38 |—-1.38
0 | 0 0.79 0.79 0.79 0.79 0.79 0.79

(0.5,0.5,0.69), respectively, and their radius is equal to 0.031; see Fi@)4 The projection
geometry is defined as follows. The seven sourges= (zy, yx, 2x) are all located inside the
horizontal plangz = —13) and around central locatien = (0.5, 0.5, —13). All six other sources
lay on a circle of centes; and of radius equal to 3.75, according to the geometry ofIFigjable IV
displays the exact values of the source coordinates. Thelseam projections are all computed on
a same horizontal plane of equation= 1). This plane is discretized by a seti® x 128 square
pixels partitioning the rectangular domdifx, y) € [—0.30,1.11] x [—0.30, 1.11]}. The simulated
data are generated by computing #xact line projections[52] of analogic imaggé (zx, y, z) and

by adding an i.i.d. Gaussian noise to the projections. Tdwesito noise ratio is defined by SNR

10 logv,/v,, Wherew, is the spatial variance of the projection signal andis the ensemble
variance of the noise. It is set to10 dB. The seven simulated radiographs are displayed in
Fig. 4 (b).

The difficulty of the image reconstruction problem lies ie thmited nature of the data. Specif-
ically, all projection rays are close to the vertical difenthence complicating the discrimination
of objects that are vertically aligned. The synthetic imaf€ig. 4 (a) has been chosen in order
to evaluate the capability of the reconstruction methodisaraninate two close tiny objects, in
a difficult case where the radiograph images do not qualétiprovide a clear discrimination
between the two. In a more classical geometry of acquisititima limited number of projections
but with equidistributed angles, it is generally possiblétcalize the objects in a qualitative fash-

ion using standard algorithms.(.,filtered backprojection). In the following, we evaluate lbot
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FIG. 4: Binary image to be reconstructed and seven noisyegtions (SNR= —10 dB).  (a) The binary
image is formed of two localized spherical objects of sarae,stentered at location®.5,0.5,0.5) and
(0.5,0.5,0.69), and of radius 0.031. (b) The seven simulated radiographgpuated from noisy cone-
beam projections of image (a) onto the plane= 1). Radiographs are gray level images formed of

128 x 128 pixels. The darker gray levels correspond to the largereslu
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monogrid and multigrid reconstruction methods by disaug#ie accuracy of the detection of the
localized objects and the quality of the reconstructed enagerms of attenuation values and size

of the reconstructed objects.

B. Monogrid reconstruction

We first perform the monogrid reconstruction algorithm onria @f 322 voxels yielded by
a uniform sampling of the volume of intere$t 1]>. All displayed reconstructions are obtained
with the data backprojection [Fig. 5 (a)] as initial solutiand by performing only 50 iterations
of the SSU algorithm, since the optimization task is nunaiyexpensive. The results displayed
in Fig. 5 are obtained with = 0 and with two different values gf. For convenience, the two-
dimensional (2D) central slice [plane of equation= 0.5)] of each reconstructed image is also
shown, together with the slice of the two unknown spheribgcis (bold circles in black or white).
These results are promising, as they correctly localizéweobjects that are not, however, fully
discriminated. Selecting a large value otlearly enhances the image sparsity, as the annealing
of voxels is favored. However, the values of the localizegedbvoxels are underestimated in
comparison to their expected valug (= 1), since the penalization term involved in criterion
J(f) is predominant with respect to the fidelity-to-data termpanticular, a large value @f such
asp = 0.5 yields the null imagef = 0.

When the smoothness regularization is also taken into atdoe., A # 0), the threshold
parametef’ occurring in the hyperbolic function is setfo= 0.01. This selection is done relative
to the prior knowledge of the range of the voxel valugs:< [0,1]. Although a lower value
of T further favors the appearance of sharp edges in the imagegtthice leads to an "almost
nondifferentiable” criterion7(f), since¢(t) is equivalent t27'|t| whenT =~ 0. This choice
may thus slacken the decrease of sefigsf(k)], & > 0} during the optimization stage. The
reconstructed images obtained while using two hyperpaemare represented on Fig. 6. We first
setu to 0.01 and then tune the value af Large values of yield a homogeneous image as well
as a larger number of active voxels. Although increasingriege parametrization is desirable
in order to prevent false detection of the background voxkisuse of smoothness regularization

suffers from two drawbacks:

e the voxel values are underestimated. This behavior is airtolthe influence of an overes-

timated value ofi, as illustrated in Fig. 5;
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e the size of the localized objects is overestimated alongdinical direction.

Fig. 7 (a) shows a reconstruction obtained agt&voxel grid while performing only 10 iter-
ations of the SSU algorithm. For such fine grids, we need taaedhe number of iterations due
to the very large computation time. Despite the large nurobanknowns, the monogrid method
provides very accurate reconstructions when using theadingeterm only 4 = 0, x # 0). On
Fig. 7 (a), the two localized objects are clearly discriniaband their size and attenuation values
are correctly estimated. In conclusion, the finer grid \gdlte best results in terms of discrimina-
tion of tiny localized objects, in spite of the large numbeparameters to estimate.

Fig. 7 (b) illustrates the behavior of the monogrid recangion method in terms of compu-
tation time. For a fixed number of iterations, the methodessffrom a drastic increase of the
computation time when the grid resolution is fine. For thewations of Figs. 5, 6, and 7 (a),
the average overall CPU time amounts to 1856 s for3tievoxel reconstructions (50 iterations
of SSU), and to 2254 s for thgt® voxel reconstruction (10 iterations of SSU). Moreover, whe
performed on a fine resoluted grid, the method necessitatestdrage of a huge number of voxel
values, and the projection matr#f, of size M x n = {(7 x 128?) x (64%)} cannot be stored.
Although the SSU algorithm is implemented in such a way thatgrojection vectop = H f is
sequentially updated, we still need to recompute each x@ilumnH,; when a voxef is visited.
On the contrary, sparse image representations enableoitagetofH when the number of active
voxels is very limited, or at least that of a sparse imggeepresenting the discretization of the

volume onto finer grids.

C. Multigrid reconstruction

The multigrid reconstruction method alleviates the prasidrawbacks by drastically reduc-
ing the image parametrization. We now exhibit the recowrsitvas obtained using the multigrid
method by focusing on the sensitivity of the method to the typerparameters; andy; and to
the given number of resolution levels. In the following, wea @t reconstructing a final fine reso-
luted image of43 voxels given, at the coarsest resolution level, a compiesge parametrization
£ formed of162 voxels. The multigrid algorithm thus includés= 3 resolution levels.

Let us recall that hyperparametexsand; are empirically chosen at the coarsest level, and
that (10) is the necessary and sufficient condition for tinealje continuity” between two con-

secutive levels. Similarly to the monogrid case, paramsédigare all set td).01 and we perform
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FIG. 5: Monogrid reconstruction formed 823 voxels with 50 iterations of the SSU algorithm.

backprojection computed on 1323 voxel grid; for clarity, only 11 parallel slices are reprata.
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FIG. 6: Monogrid reconstruction formed 823 voxels with 50 iterations of the SSU algorithm. The two
penalization terms are utilized\, . # 0. The value ofu is set t00.01, 7" is set t00.01, and\ is tuned to
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FIG. 7: (a) Monogrid reconstruction formed 43 voxels with 10 iterations of the SSU algorithm. Only
1096 voxels, that is 0.05 % of tite> voxels are not equal to 0.  (b) Numerical time of computatiartiie
monogrid reconstruction algorithm, expressed in secolBdaluation is done with respect to the resolution
of the 3D image: successive reconstructions are done os gf&#, 163, 323, and64? voxels, respectively.
At each resolution) and . are empirically chosen, and 50 iterations of SSU are peddtnor the643

voxel grid, the numerical time is estimated based on the G measured for 10 iterations of SSU.

50 iterations of the SSU algorithm at level= 1. We also perform 50 iterations per level when
r > 1in order to compute the sparse imagf‘é@ andf(?’). An increase of this number is generally
possible within a reasonable computation time, providatidHarge number of background voxels

are detected at level= 1.
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Multilevel optimization
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FIG. 9: Decrease of the cost function for the multigrid restamction of Fig. 8. Values of criterion

T [f") (k)] as a function of: (k = 1,...,50) at levelsr = 1,2, 3.
1. Regularization based on voxel annealing only

Fig. 8 displays the results obtained with= 3 levels. The coarsest grid reconstruction, formed
of 163 voxels, is estimated from the data backprojection compaiteithe163 voxel grid and using
the annealing regularization only,( = 0, 1 = 0.05). The multigrid algorithm efficiently dis-
criminates both localized objects while affording a d@stiduction of the image parametrization
at each resolution level. In particular, only 44@(,0.17 %) of the64® voxels are active at the
finest level. For this reason also, the voxel values are mararately reconstructed than in the
monogrid case, because the indetermination of the limitgdieareconstruction problem is partly
alleviated by the image sparsity. However, the automatie m) = 1, /8" ! for selecting the
annealing parameters generates a lot of nonnull voxels atrdésolution levels. Obviously, the
value of . is tiny when the number of resolution levels is large, thuctivating the annealing
regularization. The same behavior is noticeable when th&xeu of resolution levels is larger than
R=3.

Fig. 9 illustrates the behavior of the multigrid algorithm $howing the decrease of the cost

function 7,[ £ (k)] with respect ta- andk for the images reconstructed in Fig. 8. Although the
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first optimization stage may require a large number of itenstto ensure the convergence of series
J[FV(k)], the following optimization stages can often be carriedwititin a very few number
of iterations, because initial solutions are accurate ghouMoreover, the latter stages are less
consuming in terms of computation time per iteration dueh®itnage sparsity. For the results
shown in Fig. 8, the global time of reconstruction amount8@6 s, that is 266, 15, and 24 s for
each resolution level, respectively.

In Section V C 2, we utilize smoothness prior information ider to prevent the false detection

of background voxels, on which the finer sparse image paraagbns depend.

2. Regularization based on smoothness and voxel annealing

We obtain more accurate results using both smoothness avgdlamy regularizations. Obvi-
ously, the automatic rule, ., = \,./4, u.+1 = u,-/8 implies that the annealing term of criterion
J, 1s negligible with respect to the smoothness term for ther fynels. Moreover, we need to
overestimate parameteayf at the coarsest level to keep it active at finer levels. Botlajigations
are clearly inclined to be inactive if the numbirof resolutions is set to a large value. Figure 10
displays the results obtained f&¢ = 3 levels. The value of; is set t00.05 as in the simula-
tion of Fig. 8, while\; is empirically selected and overestimated & 0.2). This choice yields
accurate results at the finest resolution level as the 2Draleslice of the last reconstructed im-
age displays a clear discrimination of the localized olsjestd accurate estimation of their size
along both vertical and horizontal directions. The use obathness regularization avoids the
appearance of isolated voxels, but on the other hand, itmiatefavor the detection of background
voxels between both localized objects. For the results showig. 10, the number of active
voxels isa; = 16% = 4096, a, = 312, andas = 856 at each resolution level;, andas represent
only 0.95 % and 0.33 % of the total number of voxdls.( 32® and643). The global time of

reconstruction amounts to 321 s, that is 257, 19, and 45 safdr eesolution level, respectively.

D. Discussion

The difficulty of separation in the depth direction is the mproblem raised by limited angle
data. It is however possible to improve the regularizatmadd specific prior compensating for

the lack of information in the depth direction.
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FIG. 10: Multigrid reconstruction on three resolution lsyeise of two penalization terms;., u, # 0. 50

iterations of the SSU algorithm are performed per resatugwvel, andl” is set t00.01.

In the presented method, the smoothness B(if) = >, ; ¢(fi — f;) is chosen isotropic, in
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the sense that the neighborhood relatien j is defined along the horizontal and vertical directions
together ¢-, y-, andz-axes). Each interior voxgf is thus involved into six termsg(f; — f;). An
interesting alternative to favor the discrimination of@tis along the depth directiaris to use an
anisotropic version in which the smoothness term does nat thee same weight in the horizontal
directionsz andy and in the vertical direction. This can be achieved by adgptie value off’

or \, depending on the direction. In the following, we focus oa éxtreme case where only the
horizontal interactionsf;, f;) are considered.e., A\ = 0 for vertical interactions). Each interior
voxel f; is now involved into four terms(f; — f;) corresponding to its andy neighbors. The
monogrid and multigrid algorithms can be straightforwgiretktended to the anisotropic case. In
the monogrid case, the algorithms presented in Tables |laare ktill valid as well as the update
equations (6) and (7). The auxiliary variablgsare now defined for horizontal interactions- j
only. The multigrid algorithm of Table Ill can be extendedaisimilar fashion, while the rule (9)
for recursive selection of the hyperparameters from orelguiel to another is unchanged.

We performed a set of simulations in order to compare thedpat and anisotropic algorithms,
based on the data of Fig. 4. Qualitatively, the monogrid metriction results obtained with the
anisotropic version are close to their isotropic counteggpalthough for fixed values of; andy,
the range of the voxel values is more accurate in the anictoase. The voxel values are still
underestimated, but larger than in the isotropic case. &agon for this result is that for a given
value of \;, the number of terms involved iP( f) is lower than in the isotropic case. Therefore,
the number of active voxels is reduced at each resolutiael,land the voxel values are increased
in average. However, the anisotropic monogrid algorithrmea clearly discriminate the localized
objects, similarly to the isotropic algorithm.

We performed multigrid reconstructions on three levelsilsity to the isotropic case. The
anisotropic algorithm yields very accurate results in ®whdiscrimination and localization of
the objects. When, is chosen very largee(g., A1 = 2), the anisotropic results remain of good
guality while the isotropic version fails to discriminatesttwo objects. Let us stress that a large
value of \; is a security, as the number of active voxels at each resollgvel is important. On
the contrary, when, is set to a low value, the number of voxels that are detectéblaakground
voxels" is larger, with the possibility that true localizebject voxels are excluded.

In conclusion, we believe that the anisotropic adaptaticth@ reconstruction algorithms is of
great interest to enhance the discrimination of objectsgaine specific direction. Not only the

localized objects are better discriminated, but the resar¢ also very robust with respect to the
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smoothness parameter.

VI. CONCLUSION

We have proposed a simple method adapted to the 3D recatistro€one or several localized
objects from a limited set of CT data. Both monogrid and nguilti approaches carry out the di-
rect estimation of the image voxels in the MAP sense by usimgoghness and/or voxel annealing
assumptions. The annealing assumption permits the dateatia region of interest embedding
the localized objects areas. When the monogrid image récmtion is performed, we construct
a sparse representation of the 3D volume, which partitib@shage into a localized object region
and a background region. The multigrid image reconstraatties on a monogrid reconstruction
done on a coarse image and a sequence of coarse-to-fine ietagstructions. These reconstruc-
tions involve, at each resolution level, the design of sparsage representations. We have shown
that the monogrid reconstruction method yields accuraterihination and reconstruction of the
localized objects when the angles of projection are limifgte proposed regularization is also of
interest in other more classical geometries of acquisiiiosituations where the number of pro-
jections is low or the noise level is important. The multibextension provides a drastic reduction
of the image parametrization at the finest levels as well ggawed reconstructed images. In
the case of multigrid image reconstruction, we recommengé&both smoothness and annealing
regularizations and to overestimate the smoothness hgraameter at the coarsest level in order to
avoid the false detection of the background voxels and ertherrobustness of the reconstruction.
The anisotropic extension presented in Section V D, in wkiiehsmoothness term does not have
the same weight in the depth direction in comparison to theradirections, gives very promising
discrimination results when the projection angles areténhi

At each resolution level, the MAP estimator of the voxelsdamputed by using a deterministic
descent algorithm based on successive constrained optionz with respect to one voxel at a
time. We have shown on a set of simulations that the conveegefithe algorithm is fast and that
it is capable of detecting a large number of zero-valued goxe

Future works will consist in improving the proposed methoamely, the optimization algo-
rithm used for performing positive voxel estimation. Firgplacing the set of constrainks; by
the box[0, 1]™ is a trivial extension that may improve the accuracy of theresdion of the voxel

values by taking advantage of the prior knowledge of theigea Second, the use of an interior
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point approach based on the Lagrangian formulation of thestcained problem instead of the
proposed SSU algorithm, would possibly improve the alpamiefficiency (see, for instance [48]).
The minimization of 7 under the positivity constraint could also benefit from réavances in

the field of variable selection based on the homotopy approf¢49]. In particular, the case
when\ = 0 or wheng is chosen quadratic clearly enters the "positive-lasssé cd [50, p. 421]

(see also [51] for a generalization including "Huber-lignalty functions). Another strategy
to carry out the optimization problem relies on the its Bageg$ormulation and on Monte Carlo
techniques for sampling the voxel values. This approactbbas recently introduced for positive

image reconstruction problems [11] and yields promisirsgiits.
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