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ABSTRACT

We address the reconstruction of a 3D image from a set of incom-
plete X-ray tomographic data. In the case where the image is com-
posed of one or several objects lying in a uniform background, we
define a sparse parameterization by considering the active voxels,
i.e., the voxels that do not lay inside the background. Estimation of
the active voxel densities is performed using the maximum a pos-
teriori (MAP) estimator. In order to implement sparse parameter
estimation, we design an original multiresolution scheme, which
handles coarse to fine resolution images. This scheme affords au-
tomatic selection of active voxels at each resolution level, and pro-
vides a drastic decrease of the computation time. We finally show
the performance of our method on synthetic data.

1. INTRODUCTION

This work deals with the reconstruction of a 3D image from a set
of limited X-ray tomographic data. We focus on the case where
the image is composed of one or several small size, non uniform
objects lying in a uniform background. Without loss of generality,
we assign non negative values to the objects and the value 0 to the
background. The density function writes:

f(x, y, z)


= 0 if (x, y, z) lays inside the background,
> 0 otherwise.

(1)

Such images are often encountered in nondestructive evaluation
(NDE) applications, where the objects represent air faults included
in a homogeneous metallic material [1, 2].

In the case where the number or angles of projection are lim-
ited, classic reconstruction methods aim to discretize the volume
f(x, y, z) into a set of cubic voxels f = [f1, . . . , fn]t (t denotes
vector transposition), and then estimate their values from the X-ray
data using the regularization theory, e.g., MAP estimation [1, 3].
Although this approach provides accurate reconstructions, it ap-
pears to be consuming, both in memory storage and computation
time for high resolution images.

When the image contains a uniform background, we propose
to perform an automatic detection of the voxels that lay inside the
background, and then only estimate the values of the other voxels.
This sparse model is simple, and affords a drastic reduction of the
number of parameters, and thus of the reconstruction time. MAP
estimation of the voxel densities is performed using iterative local
minimization algorithms, for which the final solution and the re-
construction time largely depend on the initial solution. In order to
provide an accurate initial solution, and thus to enhance the quality
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Figure 1: Line projection parameterization: θ = (θ, ϕ) ∈
[0, 2π)× [0, π). All detectors t lay in a single horizontal plane.

and time of reconstruction, we design a multiresolution scheme,
in which the voxel resolution is gradually improved [2, 3]. This
scheme includes, at each resolution level r:

1. Detection of the active voxels, from the reconstruction at
level r − 1;

2. Initial estimation of the voxel densities at level r;
3. MAP estimation of the voxel densities at level r.

In the following, we specify the modeling of the data, and
the monoresolution reconstruction method (all voxels are active).
Then, we introduce sparse parameterization of non negative im-
ages, and the corresponding reconstruction method, relying on the
multiresolution scheme. We finally evaluate our reconstruction
method on a set of limited synthetic data.

2. PROBLEM STATEMENT

2.1. Measurement modeling

The X-ray transform of a 3D image f(x, y, z) is defined by its line
integrals:

pθ(t) =

Z

Lθ,t

f(x, y, z) dl, (2)

where Lθ,t stands for the projection ray at angle θ = (θ, ϕ) and
detector position t ∈ � 2 (see Figure 1). The parallel projection
pk of the image at a fixed angle θ = θk (k = 1, . . . , m) is a
vector of size T ×1, yielded by the set of projection values pθk

(t)
for T discrete values of t, and the global projection vector p =
[pt

1, . . . ,p
t
m]t, corresponding to a set of m projection angles, is

the result of the concatenation of all vectors pk .
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Let us discretize image f(x, y, z) into a set of cubic voxels of
density f = [f1, . . . , fn]t. The X-ray operator rereads p = Af ,
where A is a M × n projection matrix, M = m T is the number
of detector pixels, and n is the number of voxels.

Finally, the measurement model can be written as d = Af+n,
where d stands for the X-ray data, f is the unknown image param-
eter vector, and the noise n accounts for both errors of modeling
and measurement. For the sake of simplicity, n is assumed to be
independent identically distributed (i.i.d.), white and Gaussian.

2.2. Monoresolution reconstruction

The monoresolution approach amounts to directly estimate the voxel
densities bf given the data d. When the number or angles of projec-
tion are limited, this inverse problem is ill-posed due to the lack of
data. We then use the regularization theory, and the Bayesian in-
ference framework. We define the MAP estimate, as the minimizer
of the compound energy:

bf = arg min
f∈ � n

+

˘
J (f) = ‖d−Af‖2 + λD(f) + µU(f)

¯
. (3)

Criterion J (f) is formed of a fidelity to data term, and two reg-
ularization terms, accounting for the homogeneity of voxel val-
ues, and the knowledge of the background value, respectively. The
latter energies are defined by D(f) =

P
i∼j

φ(fi − fj), where
∼ denotes the 6-neighborhood relationship between voxels, and
U(f) =

Pn

i=1 fi. Function φ is selected in order to favor piece-
wise homogeneous regions. We choose the Huber function, which
is quadratic at the origin and linear at infinity:

φ(t) =


t2/T 2 if |t| < T,

2|t|/T − 1 otherwise.
(4)

As criterion J (f) is convex on
� n

+, and its gradient is Lipschitz, it
has a unique local minimum which is equal to its global minimum.
We then perform the optimization stage using a local gradient de-
scent algorithm, projected on the set of constraints

� n
+ [4].

3. SPARSE IMAGE RECONSTRUCTION

3.1. Sparse parameterization

In this section, we focus on a sparse modeling of the image, relying
on the prior knowledge of the voxels that lay inside the background
(fi = 0). A decision rule for such background detection will be
discussed in Section 3.2.

Let V ⊂ {1, . . . , n} be the set of indices of the active vox-
els, i.e., the voxels that do not lay in the background (fi > 0
for all i ∈ V), and v be their number. Setting aside the back-
ground voxels, the image parameterization reduces to vector fv =
{fi, i ∈ V} ∈ � v

+ extracted from f . Up to a reordering of the
voxels, the complete image parameterization writes f = [f t

v,0t]t,
where 0 is the null vector of length n − v (background voxels).
Criterion J (f) rereads:

J (f) = JV(fv) ≡ ‖d−Avfv‖2 +λDV (fv)+µUV (fv), (5)

where Av is the new projection matrix, extracted from A, of size
M × v. We also have DV (fv) = D(f) and UV(fv) = U(f) =P

i∈V
fi. We choose to minimize JV (fv) over

� v
+:

bfv = arg min
fv∈ � v

+

JV(fv), (6)

Figure 2: Multiresolution scheme. At each resolution level r, ev-
ery voxel is divided into 8 identical sub-voxels of same density.

in order to approximate the minimizer bf of J by [bf t
v,0t]t. In the

same way as criterion (3), functional JV is convex, and its gradient
is Lipschitz. Consequently, we can utilize a first order projected
gradient algorithm to estimate bfv .

We now have to define a criterion for deciding which voxels
are active and which ones belong to the background. We answer to
this question in the following, by using a multiresolution strategy.

3.2. Multiresolution scheme

We now design a multiresolution scheme, which yields successive
sparse models for coarse to fine images, parameterized by f (1) ∈
� v1

+ , f (2) ∈ � v2

+ , . . . , f (R) ∈ � vR
+ , where R is the number of res-

olution levels. Considering all active and background voxels put
together, the R images are composed of n, 8 n, 82 n, . . . , 8R−1 n
voxels, respectively. In other words, at a fixed level r > 1, each
voxel of the image parameterized by f (r−1) is divided into 8 sub-
voxels (see Figure 2). Successive estimation of bf (1),bf (2), etc. con-
sists in minimizing appropriate energiesJV1

(f (1)), JV2
(f (2)), etc.,

using the method presented above. In the following, we define
a rule for recursive detection of the sets of active voxels Vr ⊂
{1, . . . , 8r−1 n}, and construction of respective energiesJVr (f (r)).

We consider a fixed level r > 1, and assume the knowledge
of Vr−1 and bf (r−1) = { bf (r−1)

k , k ∈ Vr−1}. For each voxel i ∈˘
1, . . . , 8r−1 n

¯
, let k ∈

˘
1, . . . , 8r−2 n

¯
be the father of i, that

is the larger voxel which contains i.

• If k /∈ Vr−1, then i is set as a background voxel at level r.

• Else if bf (r−1)
k = 0, then i is set as a background voxel at

level r.

• Else, i is set active at level r, and bf (r)
i (0) = bf (r−1)

k .

This simple rule allows us to define Vr and the initial solution
bf (r)(0) to the estimation of bf (r), from solution bf (r−1). Both vec-
tors bf (r−1) ∈ � vr−1

+ and bf (r)(0) ∈ � vr
+ describe the same image

at resolution levels r − 1 and r.
At the first level r = 1, we set V1 = {1, . . . , n} (all voxels are

active), where n is an arbitrary number of voxels, and we define
bf (1)(0) as the n voxel backprojection of the data d.

Table 1 summarizes the successive parameterization of the im-
age at levels 1, . . . , R, and the estimation of solutions bf (r) from
vectors bf (r)(0). At resolution level r, the cost function JVr (f (r))
is formulated using (5), and minimized by the local projected gra-
dient descent algorithm. Hyperparameters are set to λr = λr−1/4,
µr = µr−1/8, and Tr = Tr−1, in order to guarantee that
JVr

`bf (r)(0)
´

= JVr−1

`bf (r−1)
´
. As each minimization of JVr

involves a descent algorithm, we have, for all r > 1,JVr

`bf (r)
´

6

JVr−1

`bf (r−1)
´
. Therefore, the multiresolution scheme yields a



Perform backprojection bf (1)(0) of the data d on a grid on n
voxels. Set V1 = {1, . . . , n} (all voxels are active).

For r = 1, . . . , R,

Estimate bf (r) = arg min � vr
+
JVr (f (r)) from bf (r)(0).

If r < R,

Define Vr+1, by discretizing the non null voxels of bf (r).
Compute bf (r+1)(0) from solution bf (r).

Table 1: Multiresolution algorithm for voxel reconstruction.

sequence of solutions that correspond to decreases of the values of

criterion J (f), where f ∈ � 8R−1 n
+ here stands for the complete

image parameterization at the finest resolution level.

4. SIMULATION RESULTS

We illustrate and compare both monoresolution and multiresolu-
tion methods on a set of synthetic data. This simulation involves
m = 9 noisy projections of a binary object, plotted on Figure 3.
The angles of projection, specified on Table 2, are limited, as all
angles ϕk are lower than π/4. The signal to noise ratio, defined
as SNR = 10 log vp/vn, where vp and vn are the empirical vari-
ances of the projection signal and the noise, is set to 10 dB.

Monoresolution reconstruction involves an image composed
of n = 643 voxels. The estimate bf , plotted on Figure 4, is obtained
with the projected gradient descent algorithm (15 iterations), and
with the data backprojection as initial solution bf(0). Hyperparam-
eters µ and T are set to µ = λ/3, and T = 1/5, and λ is selected
such that ‖d − Abf(0)‖2 = 0.9J

`bf(0)
´
. Although the quality

of reconstruction is acceptable, the reconstructed image contains
many close to zero, however non zero valued voxels. The global
time of reconstruction amounts to 4397 seconds (CPU time), and
would become enormous for larger values of n (see Figure 6 (b)).

Multiresolution results are obtained using three levels of res-
olution, corresponding to n = 163 , 323 and 643 active and back-
ground voxels (see Figure 5). The number of active voxels is
v1 = 163 = 4096, v2 = 5512, and v3 = 32656 for each res-
olution level; v2 and v3 represent 16.8% and 12.5% of the total
number of voxels n. At level r = 1, hyperparameters are set as
described in the previous paragraph. Their selection is automatic
for r = 2 and 3, as λr = λr−1/4, µr = µr−1/8, and Tr = 1/5.
The global time of reconstruction amounts to 852 seconds. As r
increases, the number vr of active parameters remains low, and the
initial solution bf (r)(0) is close to the local minimizer bf (r) of JVr .
Consequently, the number of iterations needed for convergence of
the gradient descent algorithm is very limited, and the reduction of
the reconstruction time is drastic (see Figure 6).

k 1 2 3 4 5 6 7 8 9
θk π/4 3π/4 −π/4 5π/4 −π/2 π/2 0 π 0
ϕk ϕ ϕ ϕ ϕ π/4 π/4 π/4 π/4 0

Table 2: Values of projection angles. Angle ϕ = arccos(
√

3/3).
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Figure 3: Simulation data: 9 limited angle projections of a
mushroom-shape binary object. SNR is set to 10 dB. (a) Binary
synthetic object and projection geometry, (b) The 9 projection
images, of size 64× 64, put together in a 3× 3 "matrix". The first
row corresponds to the first three projection images, etc.

Figure 4: Monoresolution result bf , formed of n = 643 voxels. Es-
timation of bf is done by performing 15 iterations of the projected
gradient algorithm, and with the backprojection of the data as ini-
tial solution. The time of reconstruction is 4397 seconds (CPU).
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Figure 5: Multiresolution reconstructions on three levels. (a)
Data backprojection bf (1)(0), computed on a grid of n = 4096

voxels. (b,c,d) Reconstructions bf (1),bf (2),bf (3), corresponding
to p3 (active and background) voxels, where p = 16, 32, and 64.

5. CONCLUSIONS

We have presented an original method for reducing the number of
parameters involved in 3D image reconstruction from X-ray data.
Our method relies on a sparse description of the image, and a mul-
tiresolution technique, in order to reconstruct a sequence of coarse
to fine sparse images. The multiresolution scheme affords an au-
tomatic detection of the background voxels, as well as a good ini-
tial estimate of the active voxels at each resolution level. There-
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Figure 6: Quality of reconstructions. (a) Plot of criterion val-
ues J (f) for the multiresolution reconstruction, on three levels
r = 1, 2, 3. At each level, the projected gradient descent algorithm
is utilized, with 10 iterations (r = 1) and 8 iterations (r = 2, 3).
(b) Plot of the average CPU time per iteration of the gradient algo-
rithm, in mono and multiresolution cases. p = 3

√
n = 16, 32, 64

is the image resolution, CPU time is expressed in seconds.

fore, MAP estimation of the active voxel densities necessitates a
very low number of iterations of the local optimization algorithm,
and a reduced amount of CPU time. The method can be trivially
extended to the case where the background is not uniform, but
known. Such images can be encountered in NDE applications,
where the background corresponds to known materials, and one
wants to reconstruct air faults. We can expect that the multiresolu-
tion strategy will bring drastic amelioration, since faults are gen-
erally of small size, relative to the entire structure.
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