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ABSTRACT

We study the 3D reconstruction of a binary scene from X-ray to-
mographic data. In the special case of a compact and uniform ob-
ject lying in a uniform background, the scene is entirely defined by
the object surface. Then, we select parametric surface models, and
we directly estimate their parameters from the data. After showing
the ability of spherical harmonics and first order splines (polyhe-
dra) to recover complex shapes, we develop an original method to
estimate their parameters without using a voxel representation of
the scene (object and background). Reconstructions are based on
the optimization of regularized criteria, which account for the sur-
faces local smoothness. We use local optimization schemes, and
we put the stress on their algorithmic aspects. We finally show the
performance of the method on a set of incomplete synthetic data.

1. INTRODUCTION

The present work is about 3D shape reconstruction from X-ray to-
mographic data. We consider a scene composed of a compact and
uniform object lying in a uniform background. Under those as-
sumptions, we model the object by its closed surface C*, which is
entirely included in the zone of interest. Such situations are en-
countered in nondestructive testing (NDT) applications, in which
C* represents an air fault included in a metal area [1]. In those ap-
plications, the absorption coefficients and the density values of the
materials are generally known. Without loss of generality, we can
then assign the values 1 and 0 to those regions. And the density
function of the scene writes:

1 if (z,y, 2) lays inside C*,
0 otherwise.

flz,y,2) = { (1)
Voxel based approaches, which discretize the scene by a set of bi-
nary cubic elements, and then estimate their values, have been ex-
tensively used in tomographic image reconstruction [1]. However,
a surface based approach appears more appropriate in our context,
since it naturally takes advantage of the object compacity assump-
tion [2, 3, 4]. More precisely, the aim of this approach is to directly
reconstruct C* by means of a deformable closed surface. In the fol-
lowing, we consider a parametric model Cx, where x belongs to a
subset of R¥. Reconstruction of C* reduces to the estimation of
x from the data: the reconstructed surface is then C = Cg, where
x stands for the parameter estimate. This approach appears espe-
cially adequate when the number of data is limited, since it affords
a drastic reduction of the scene parameterization. Such situations
often arise in NDT applications, in which both number and angles
of projections are limited due to physical acquisition constraints.
The paper is organized as follows. Section 2 states the data
modeling and specifies the surface reconstruction framework. \We
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Fig. 1. Line projection parameters; 8 = (6, ¢) € [0, 2x] x [0, 7].

use the regularization theory, and we define the maximum a pos-
teriori (MAP) estimator of parameters x by accounting for prior
information on the local smoothness of Cx. In Section 3, we dis-
cuss the choice of the parametric model, and we study the specific
case of global harmonics and local splines. Section 4 investigates
the reconstruction of first order splines, i.e., polyhedra, by estima-
tion of their vertices coordinates. Optimization of the posterior
energy is done by accurate local schemes, based on the exact cal-
culation of the surface projection and its derivatives with respect to
(w.r.t.) the parameters. We finally illustrate the polyhedral method
performance on a set of synthetic data in Section 5.

2. PROBLEM STATEMENT

2.1. Measurement modeling

The X-ray transform of function f(z,y, 2) is defined by its line
integrals. Using equation (1), a projection of the scene writes:

o) = [ @

where Ly ¢ stands for the projection ray. It depends on the spher-
ical angles @ = (6, ) and the detector position t, illustrated on
Figure 1. To summarize the projection modeling, we append all
scalar projection data in a vector d. Then, we model the direct
problem by use of the projection operator A:

d = A(C*) +n, @)
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Fig. 2. 2D case: evaluation of a closed polygon projection. (a) Approximate numerical calculation by discretization of the scene into
pixels.  (b) Exact analytic calculation, based on intersections between the projection ray and the polygon edges.

where the noise n accounts for the uncertainty of the scene mod-
eling and the data acquisition errors. In particular, a more realistic
model would involve band projections instead of line projections
[4]. For the sake of simplicity, n is assumed identically indepen-
dently distributed, white and Gaussian.

2.2. Surfacereconstruction scheme

Given a surface parameterization Cx(x € R¥), the reconstruction
problem requires the estimation of x from the data. In NDT ap-
plications, this problem is ill-posed because of the scarcity of the
data. Indeed, both number and angles of projections are limited.
We then use the regularization theory and the Bayesian inference
framework. The MAP estimate, denoted by X, is obtained by min-
imization of the compound energy:

% = argmin {7 (x) = [|[d = A(Cx)|I* + AR(x)}. (4)

Criterion J is the sum of a fidelity to data term and a regularization
term that enforces the local smoothness of Cx. The specification
of functional R clearly depends on the parameterization Cx, but it
is generally related to its local curvature [4].

3. CLOSED SURFACE PARAMETRIC MODELING

Closed surface models have been extensively used in image seg-
mentation and computer vision applications, with the development
of active surfaces, but more rarely in image reconstruction. In this
field, the pioneering works involve very simple parametric shapes
depending on a few number of parameters [2, 3]. Examples of such
coarse models for a closed surface are ellipsoids and super ellip-
soids, specified by less than 10 parameters. Although such general
models retrieve the global spatial frequencies of a surface, the va-
riety of generated shapes is limited. One then needs to define more
complex models to reconstruct highly nonconvex surfaces. Among
them, we distinguish local and global ones, in the sense that each
parameter does or does not only control a local portion of the con-
tour. Classical examples of local shapes are Bezier and spline sur-
faces. Such parameterizations generate efficiently smooth surfaces
with local high frequency features. In the following, we start by
a description of global harmonic surfaces, which yield a simple
procedure to reconstruct coarse surfaces.

3.1. Harmonic surfaces

Among global surfaces, we select spherical harmonic develop-
ments (see [5] for their use in image segmentation), since they
yield non intersected surfaces under specific assumptions. Using
spherical angles associated to a fixed coordinate system (see Fig-
ure 1 for definition of spherical angles), we define surface Cx by

M(6) = O+ p(8) wo, 6 € [0,21] x [0,7],  (5)

where O stands for the surface center. Then, we consider the har-
monic development of function p(8), truncated at the L-th order:

p(8) = > D« p(8), (6)

1=0 |k|<I

where p are the spherical harmonic functions, linked to Legendre
polynomials. We practically select a low order L, and we simply
estimate x = {zf, |k| < 1 < L} in the least square sense. In-
cluding the linear constraint "V@, p(@) > 0" is of interest, since it
leads to star-shaped, thus unintersected surfaces. The practical dif-
ficulty relies on the projection calculation, which is approximate.
Such approximation can be done either by computing the exact
projections of a spline approximation of the surface, or by a dis-
cretization of the scene volume into binary voxels [6] (see Figure
2). We favor the first one, which is simple and offers a limited
parameterization of the approximated scene.

In practice, spherical harmonics are modeled w.r.t. a system
of inertia axes estimated from the data, prior to the surface re-
construction stage. Such estimation is done by a moment based
method [7].

3.2. Local surfaces

Local parametric surfaces can efficiently model inhomogeneous
closed shapes. Among them, we favor splines and we estimate
the position of their control points x = {Vi,...,V,} [4]. The
interest of this model rests on the exact computation of its projec-
tions LA(Cx). The spline order is linked to the degree of locality of
the control points, and then to the order of derivability of the sur-
face w.r.t. its arc lengths. For example, a first order spline, i.e., a
polyhedron is piecewise affine. Points V; are identical to the poly-
hedron vertices, and they only control their connected faces. In the
following, we choose first order splines because both calculations



of their projections .A(Cx) and their derivatives V.A(Cx) are very
straightforward. Indeed, those operations are based on the evalua-
tion and the derivation of the intersection between a projection ray
and a face of the polyhedron, as pointed out on Figure 2 (b).

4. FIRST ORDER SPLINESRECONSTRUCTION

Polygons and polyhedra have been used in several ways for recon-
struction purposes. First, Milanfar et al. studied the reconstruc-
tion of a polygon by a moment based approach [7]. Although it
affords an exact reconstruction when enough projections are avail-
able, this approach is not suited to the case of noisy and limited
data, and it can only reconstruct polygons with very few vertices
(n < 5). Later, researchers have proposed a regularized approach
to reconstruct polygons with a great number of vertices [4, 8]. 3D
extensions have been developed in several manners [6, 9, 10]. In
[6], the authors use an approximate calculation of the model pro-
jections based on a voxel representation of the scene (see Figure
2 (a)), whereas in [9, 10], we have favored direct computation of
projections, in order to limit the scene parameterization.

4.1. Polyhedron modeing

Manipulation of polyhedra is complex since a polyhedron not only
depends on its vertices Vi, . .. , V,,, but also on the composition of
its faces. With fixed triangular faces, the shape is controlled by
x = {Vi,...,Va} € R3". Bayesian estimation is done in the
MAP sense by minimization of criterion

76 = A=A+ B w0, @)

where the regularization term penalizes high values of the local
curvatures k; (x) of Cx at its vertices V;. In practice, the choice of
A is empirical: low values tend to yield self intersected shapes,
whereas high values preserve local regularity. Exact local cur-
vatures of polyhedra are actually undefined since the surface is
not twice differentiable w.r.t. its arc lengths. However, we can
define approximate curvatures. Possible bases to this definition
are the distance from V; to the center of gravity of its neighbors,
the solid angle at V;, or a combination of both. For sake of sim-
plicity, we choose the solid angle A;(x) and we define x; (x) =
1+ cos(A4;(x)/2).

4.2. Optimization schemes

Whatever the definition of curvatures, criterion 7 is usually non-
convex and multimodal since the projection operator is nonlinear
(it may also be non differentiable) and the fidelity to data term
ld — A(x)||* is itself generally nonconvex. To obtain accurate re-
sults in a reasonable computational time, we select local determin-
istic algorithms with high quality initializations. We practically
use a prior harmonic reconstruction to yield the initial solution.
Simple local algorithms are gradient descent techniques on x,
and block coordinate descent techniques, which iteratively esti-
mate the vertices V; while the position of all other vertices remain
fixed (Gauss-Seidel based approaches). The second are of interest,
since they afford a test of self intersection of the polyhedron by up-
dating its projections [10]. However, their numerical burden turn
out to be important, and we favor gradient techniques on x con-
trary to the 2D case. All local algorithms need the calculation of

Evaluate ¢;, ¢}, the exterior properties of V;, V.
Extract local polyhedra Co; and Cp;.

Decompose Ca; as the union of tetrahedra U7,.
Compute exact projections A(Ca;) = > A(T7).
Decompose Cj; and compute A(Cp; ).

Dop =p +¢; A(Cs;) — €5 A(Ca;).

Table 1. Update of the polyhedral projections p when a single
vertex V; is moved from positions V; to V.

VJ, and then VA, which is related to the projection update pro-
cedure (see Table 1). When a single vertice (say V;) is moved to a
new position V}' =V, + 4V, we simply extract two local polyhe-
draCs; and ng formed by V; (respectively V) and its neighbors,
and then compute their exact projections. Such extraction is the
basic idea of updating the polyhedron projections. The update al-
gorithm depends on the exterior properties of V; and V;, described
by parameters £; and &; = +1. Namely, ¢; is set to 1 if and only
if (V;G;,N;) < 0, where G is the center of gravity of the neigh-
bors of V; and IN; is the approximate exterior normal vector to
Cx at Vj. Projections of local polyhedra are evaluated analytically
by their decomposition into a set of tetrahedra, whose projections
have a direct analytic expression.

5. SSIMULATION RESULTS

Simulations are done on a set of synthetic data, composed of 9
limited angled projections of a complex surface C*, whose signal
to noise ratio is equal to 20 dB (see Figure 3). The difficulty lays
in the non convexity of C* and the large variety of its curvatures.
Convex initializations do not lead to accurate results since they
only retrieve the low frequency characteristics of C*. We then use
a prior spherical harmonic reconstruction as an initial solution.

The first stage of its reconstruction is the estimation of the
axes of inertia of C* from the data, which provide the spherical
harmonic modeling. The reconstructed harmonic surface is repre-
sented on Figure 3 (c) and corresponds to order L = 3 (k = 16
parameters). The computational complexity is related to the poly-
hedral approximation of the harmonic surface. Indeed, approxi-
mation of complex shapes requires a large number of vertices, and
their projection evaluation become numerically expensive. Such
argument clearly appears as a limitation of the harmonic method.

The polyhedron finally reconstructed with this harmonic sur-
face as an initialization is plotted on Figure 3 (d). It is composed
of n = 95 vertices and 186 triangular faces, and A is selected em-
pirically in order to avoid self intersected shapes while preserving
the polyhedron smoothness. This reconstruction is very close to
the real object, which is a significant proof of the ability of the first
order spline model to reconstruct complex shapes.

6. CONCLUSIONS

We have addressed the problem of closed surface reconstruction
from X-ray tomographic data and we have studied the reconstruc-
tion of several parametric shapes. Global models, such as har-
monic surfaces may not be efficient to retrieve complex shapes,
whereas local ones, as splines, appear accurate to model shapes
with inhomogeneous features. However, we have shown the inter-
est of spherical harmonics since they yield star-shaped, and then



(a) Real object C* and projection geometry

(c) Harmonic reconstruction

(b) Synthetic data

(d) Polyhedral reconstruction (n = 95, A = 2)

Fig. 3. Simulation results. The harmonic model depends on 16 parameters, and polyhedron (d) is obtained with (c) as an initialization.

unintersected surfaces. We use harmonic surfaces to provide ac-
curate initializations of the more sophisticated polyhedral model.
The overall performance of the polyhedral approach has been pre-
sented in a difficult case where both number and angles of projec-
tions are limited. The reconstruction result is satisfactory, although
strongly related to the initial solution.
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