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Abstract—The approximation of a signal using a limited not fulfilled, there is no guarantee that the exact solutiohs

number of dictionary elements is stated as an LO-constrairgeor the approximate problem are close to those of the consttaine
an LO-penalized least-square problem. We first give the workg L2-LO problem.

assumptions and then propose the heuristic Single Best Reule-

ment (SBR) algorithm for the penalized problem. It is inspired by The second strategy directly considers the constrained L2-

the Single Most Likely Replacement (SMLR) algorithm, initially |0 problem, but only a limited number of the candidate sup-
proposed in the context of Bernoulli-Gaussian deconvolugin. ports are explored. The most classical algorithms (Matghin

Then, we extend the SBR algorithm to a continuation version . . .
estimating a whole solution path, i.e, a series of solutions Pursuit [1], Orthogonal Matching Pursuit [8] and Orthogbna

depending on the level of sparsity. The continuation algothm, up ~ Least Squares [9, 10]) share a common feature: the support is
to a slight adaptation, also provides an estimate of a soluth path  gradually increased by one element to ensure the leastesqua

of the LO-constrained problem. The effectiveness of this gmoach  cost decrease. This feature is also their limitation as sefal
is illustrated on a sparse signal deconvolution problem. detection of a support element can never be compensated by

l. INTRODUCTION its further deletion.

The goal of sparse approximation is to represent an ob_-!n this paper, we develop an algorithm which allows the ad-
servation by a linear combination of a limited number dfition or deletion of an element of the current support. Qur a
given signals. The signals are chosen from a set containff@ach is based on the LO-penalized least-square forronlati
elementary signals, often referred to as a dictionary. dglpi (I brief, the penalized L2-LO formulationhin, J (2 A) =
dictionaries include the Fourier dictionary, the wavelat-d 1Y — A|* + Allz]o. Contrarily to the algorithms dedicated
tionary, the Gabor dictionary [1]. Sparse approximation cd® the constrained L2-LO problem, for > 0, a decrease of

be formulated as an LO-constrained least-square problem<bfZ; A) is possible when deleting one element from the sup-
the form ming ||y — Az|? subject to||z]o < k, where A port of . This happens when the decrease of the penalization

stands for the given dictionary arjfz||o is the number of term,i.e., \, is larger than the increase of the least-square term.

nonzero entries ofe, often referred to as the LO-norm of The penalized L2-L0 problem is closely related to maximum
. This problem will be callecconstrained L2-LOThe main a posteriori estimation using a Bernoulli-Gaussian model as
difficulty when minimizing the least-square error with th@-L prior for a sparse signal [11]. Indeed, the Bayesian foritiaia
norm constraint is to find the support of Indeed, once the of the Bernoulli-Gaussian signal restoration yields a fized
support is known, the amplitude estimation reduces to alsimgriterion involving the LO-norm of the sparse signal. Toveol
unconstrained least-square optimization problem. this problem, the deterministic Single Most Likely Replace
Searching for the support af results in a discrete problemment (SMLR) algorithm has proved to be effective [12, 13].
which, except for very specific cases, is known to be NFSMLR is an iterative algorithm increasing or reducing the
hard [2]. Therefore, the optimal solution is generally waibv current support by one element at a time. Inspired by this
able unless an exhaustive search is performed. There are dlgorithm, we introduce our Single Best Replacement (SBR)
main heuristic strategies to solve this problem sub-ogtima algorithm dedicated to the penalized L2-LO problem (Sec-
The first strategy is based on a continuous approxim@en Ill). Then, we extend the SBR algorithm in a continuatio
tion of the LO-norm, leading to a continuous minimizatiowversion estimating a whole solution paitg., for any level
problem. Among the convex approximations, the L1-norm [3Jf sparsityA (Section 1V). The continuation algorithm, up to
has received considerable attention because optimal atd & slight adaptation, also provides an estimated solutidh pa
algorithms are available to compute the solution path of tlier the constrained L2-LO problem, which may differ from
L2-L1 problem [4,5]. Moreover, some conditions [6, 7] werghat of the penalized problem, since the LO-norm is not a
found under which these solutions share the same supporteasvex function. Finally, simulation results on a spargmai
those of the L2-LO problem. However, if these conditions a@econvolution problem are shown and analyzed in Section V.



Il. PROBLEM STATEMENT The notationA(x) denotes the support cf, therefore, the

constraint{x|.A(x) C A} indicates that only the columns;

_ ) of A such that € A are taken into account. In the following,
Given an observation vectgy € R™, we want to select a these columns:; will be referred to as thective columns

few columnsa; from a dictionaryA = [a1,- -+ ,an] € R™*"™  and A will be referred to as thactive set

to approximatey by y = Az, wherexz € IR™ describes the

selection and the weights of the columas The quality of Working assumptions and remarks

approximation relies on a tradeoff between the approxonati
residual ||y — Ax||?> and the level of sparsity of, i.e., the We assume that matriA satisfies the unique representation

LO-norm of . property (URP), which is stronger than the full rank assump-
tion [16].

A. Subset selection

B. L2-LO optimization . . . -
Definition 1. A matrix A of sizem x n (m < n) satisfies the

Sparse signal approximation can be expressed in termsy®p if any selection ofn columns ofA forms a family of
minimization problems: linearly independent vectors. By extension, a matiof size

— the constrained L2-L0 prob|em whose goa| is to appro)(lin Xn (m > n) will be referred to as URP if it is full rank.
matey at best by using ho more thancolumns:

Lemma 1. Given a subse#d of {1,...,n} whose cardinality
X.(k) = argmin{&(x) = ||y — Az|?}; (L2LOC) is smaller thanmin(m,n) and provided thatA satisfies the
ll2llo<k ’ URP, the constrained least-square probléh) has a unique

— the penalized L2-LO problem: minimizer, denoted by:

X,(\) = argmin {7 (2, \) = £(x) + M|z[o}. (L2LOP) Ta= argmin E(z). ©)
seR" {z|A(z)C A}

Here, \ is a hyperparameter controlling the tradeoff between Proof: Let us denote byA 4 the matrix formed of all
the approximation residual and the level of sparsity. the active columns ofA and by z the corresponding vector

Both problems are addressed whatever the sizelpfn extracted frome. Then, (1) is equivalent to the unconstrained
can be either smaller or larger than The notationsY.(k) minimization of |y — A 4z||? with respect toz. Due to the
and X,(\) designate the sets of minimizers of (L2LOCURP, the columns ofd 4 form an independent family of
and (L2LOP). Both are subsets @™ and not necessarily vectors, thus the unconstrained minimization|gf— A 42|
singletons. Moreover, it can be shown [14] that the depecelerwith respect toz yields a unique minimizer. O
of the setX,(\) with respect toh (A > 0) is piecewise  The values ofA and A being given, let us now consider
constant, with a finite number of intervals. Denoting byhe minimization problem (2). The search for a minimizer
Ay (i = 1,...,I) the critical \-values at which the contentof 7 (x;\) on the domain{z|A(z) C .A} would require to
of X,(\) is changing, sorted by increasing order wkh=0 compute7 (z_4.; \) for all the subsetsd’ C A. This is why
and \} = 400, the setsX,(\) are constant on each opervectorz 4 cannot be guaranteed to be an optimizer to (2). In
interval (A7, A, ;). the following, we will denote by

Remark 1. The solution pathsJyenX.(k) and Ux>oX,(A) \) 2 ) =& A 4
generally do not coincide, although the penalized solugiath JaQ) = T(@a; ) = Ea+ M@ alo. @
is included in the constrained solution path. The nonequivghe penalized cost function evaluatedaat.

lence between both is a consequence of the non-convexity of ) S

the LO-norm [15]. ForA # {A}, ..., A}}, it can be shown that Reémark 2. The non uniqueness of the minimizerg(b2L0C)

technical proofs, we refer the reader to [14]. and A’ of {1,...,n} may yield the same least-square errors
€4 = &y. However, it can be shown [14] that the minimizers

C. Notion of active set and related optimization problems of (L2LOC) and (L2LOP) necessarily take the form 4, and

Given a subsetd of {1,...,n}, we define two minimization De€cause the number of possible subsétof {1,....,n} is
problems which are sub-problems of (L2LOC) and (L2Lop)finite, the SetSXc(k_) and &,(\) are of finite cardinality,
provided thatk < min(m,n) and thatA > 0, respectively.
— the minimization of€(x) over the suppori:
A= \An(/li?CA}g(m>. 1) I1l. SBR ALGORITHM FOR L2LOP AT FIXED A
B In this section, we develop a heuristic algorithm to estemat

— for a given-value (A > 0), the minimization of7(z; A)  the solution of (L2LOP) for a fixed hyperparameter valie
over the suppor#: This algorithm is inspired by the SMLR algorithm [11-13].
, . Let us first recall its principle and the corresponding Bégyes
{mu{r(lml?gA} J (@ A). @) background.



A. SMLR algorithm although strictly speaking, the current iterate is the vect 4

A sparse signak can be modeled as a BernouIIi—Gaussiaﬁe”Ved fromA.
random vector; each sample ofreadsz; = ¢;r;, where the  Let us assume that the current active seis given. For
Bernoulli random variable; ~ B(p) is coding the presenceall indicesi € {1,...,n}, we compute the minimizes 4
(¢: = 1) or absenceq; = 0) of signal at locationi andp is the of £(x) whose support is included i e i, and we keep in
probability of presence of signal at locationThe amplitude memory the value of74.;()\). Once all the possible single
r; is a Gaussian random variable whose distributionfig; ~  replacements have been tested, we search for the best one:
N(0,¢;02). Note that the set of locationssuch thatg; = 1 .
coincides with the notion of active set introduced in Settio = argimm Taei(A). (@)

For inverse problems of the formp= Ax +n, whereA is . )
the observation matrix ana stands for the observation noise!f J4s1(}) is strictly lower than7,(}), we updated andz:
sparse signal approximation can be done by first, maximizify <~ A ¢ ! andz.a — @4 This task is repeated until none
the posterior likelihood of ¢ = [q1,...,¢.]” and then, by OF the single replacementd o i yield a decrease afla()).
deducing the amplitudes given the knowledge of [12, 13]. Prior to any iteration, the SBR algorithm necessitates to

In [13], it is shown that provided that the noiseis Gaussian define an initial active se.g., the empty active set. SBR
and independent frore, the posterior log-likelihood of ¢ terminates after a finite number of iterations, becauseether

reads: exists a finite number2(*) of possibilities for.4, and SBR is
a descent algorithm.

1
Tnp-—1
L(qly) < —y" By 'y — log|Bgq| — 210g<; - 1) lallo ®) ¢, Implementation and practical issues

At a given iterationk, SBR explores the supportsAy e i

rall:e {1,...,n} and computes the corresponding costs
E A,ei ANA J4,4:(A). Therefore, one SBR iteration requires
rt?:tla resolution ofn least-square problems of the form (1).

up to an additional constant, whek, is a matrix depending fo
on A andgq, and symbokx indicates proportionality.
The SMLR algorithm is a coordinate-wise ascent algorith

to maximize L(q|y) with respect tog. At each iteration, all This computation can be very expensive wheris large,

possible single replacements gf (setg; = 1 — ¢; while sincen linear systems have to be solved, each normal matrix
keeping the otheg;,j # i unchanged) are tested, then thé " y '

B ; i . ; S readingAﬁAA where A 4 denotes the matrix made of the
most likely” replacement is chosene., the one yielding the .
) . ] : . active columns ofA. Instead, we use a fast strategy based on
largest increase of.(gly). This task is repeated iteratively L . T 1
4 : . the block matrix inversion lemma [17] to updatd , A 4)
until no single replacement can increagy|y) anymore. when A is modified. Similar ideas appeared in [12] and in [8]
Interestingly, the form of th@osteriorlikelihood (5) shares ' bp

similarities with the (L2LOP) cost function in that the Ias{or speeding up SMLR and OMP/OLS, respectively.
term involves the LO-norm of. This similarity motivates the IV. CONTINUATION ALGORITHM

development of our proposed algorithm, referred to as 8ingl The SBR algorithm works for a fixed-value. In this

Best Replacement_ (.SBR) to dlst|_ngwsh_ It from SML_R angection, we propose an extension of SBR which estimates a

to remove the statistical connotation which is not necégsar.g | +ion path” {z,(\)|A > 01, i.e., a sequence of estimates

appropriate in the L2-L0 minimization context. x,(N\) for any sparsity level\. In other words, for all),

. xp,(A) is an estimate of an element of the s&i(\) defined

B. SBR algorithm in (L2LOP). The extended algorithm is named “Continuation
SBR is an iterative search algorithm to solve (L2LOP) fogingle Best Replacement” (CSBR), as only a finite number

fixed A. At each iteration, the: possible single replacementsof \-values are required to estimate a whole solution path.

are tested, then the best one is chosen, allow#ntp be Finally, up to a slight adaptation of CSBR, a solution path

updated. The word replacement includes two cases: eitteer qi.(k)|k > 0} of the constrained L2-LO problem (L2LOC)

single non-active sample,(= 0) is selected to become activecan be estimated.

or one single active sample;(= 1) is selected to become

non-active. For convenience, we define A. CSBR algorithm
AU} ifi¢ A As mgntioned in Section II., the dependence of th.e sets
Aei2 { ’ (6) Xp(A) with respect tox (A > 0) is piecewise constant, with a
A\{i} otherwise. finite number of intervalgA;, A7, ;). Therefore, it is sufficient

to search for these critical valueg for which the content
of X,()\) is changing. The CSBR algorithm is a heuristic
algorithm inspired by this piecewise constant propertye Th
Remark 3. For a given active set, the corresponding least- structure of the algorithm is the following:

square solution is the vectat 4 defined in(3). Therefore, for 1) estimate iteratively the criticah-values (denoted by
the SBR algorithm and its further extensions below, with a  \,, wheregq is the iteration index, to distinguish the
slight abuse of words, we will considgr as a current iterate, estimates with the exact critical valuas);

to refer to the additionl) or deletion {) of an indexi
into/from an active se.



2) for each value of\,, run SBR to estimate the corre-

sponding active setl,.
0.15
We choose to start the algorithm &§ = +oo (Ap is set to
the empty set) and then to gradually decrease)thalue. oLy 1
For a giveni-value A = A, let A, be the output of SBR. 005 ‘ N ‘ 1
When SBR terminates, any replacement4yfby A, ei yields oLl [ , : [ [
an increase of the cosfy, (A): @  oul ‘ ‘ ‘
Vi € {L e 7”}; quoz’()‘) = qu (A)- 8 -1}
Because (8) holds foA = A,, we search for the nexk- -0.15f
value Ag11 (Ag+1 < Ag) below which (8) does not hold o2l
anymore. A\, is defined such that, when < A\,4q, at o ‘ ‘ ‘ ‘ ‘
least one index yields a decrease of the cost functiom,, T 50 100 150 200 250 300

Ta,ei(A) < Ta, ().
It can be shown [14] that fok < )4, such a decrease can
only occur whene is the union operatione(= U). Up to a

few manipulations of (8) and (4), the value bf,; reads: 08f
0.6

Ag+1 = %Xi{g& —EA,Uits ()] ol

or Ag+1 = 0 when 4, is the complete sefl,...,n}. 02}
The CSBR algorithm stops whek,1 = 0. In this case, (b) ol

the definition (9) implies that for all ¢ Ay, E4,0i = Ea,.
Finally, and because of the definition aofs, in (3), x4, is
necessarily an unconstrained least-square estimate. oar

B. Adaptation of CSBR to the constrained L2-LO problem

We can straightforwardly adapt CSBR to provide an esti- 0 5 10 15 0
mation of a “solution path{z.(k)|k > 0} of the constrained
L2-LO minimization problem (L2LOC), up to a storage of the
intermediate SBR iterates.

Indeed, at the beginning of CSBR, the initial active set is
Ao = 0 and during the SBR iterations, the support of the
active set is only modified by one replacement (addition or
deletion) at a time. Therefore, the sequence of the SBRét®ra
provides at least one estimate whose LO-norm is equialftw
all k =0,..., K, whereK is the maximum of the LO-norms ©
of the SBR iterates explored while running CSBR. Estimating
a solution path{z.(k)|k = 0,..., K} can finally be done by
storing for each value of, the best SBR iterate 4 whose LO-
norm is equal ta, i.e., the iterate having: non-zero entries
and yielding the lowest residual erréyy. -0.25

-0.15

0.2

V. SIMULATION RESULTS

: : ; _ -ig. 1. Sparse signal deconvolution: data simulation. (&nown “true”
In this section, we focus on the Cons”ame_d L2 LQ prOBS:parse signae*, including ||z*||o = 19 impulses. (b) Impulse response
lem. We compare the adapted CSBR algorithm with twg (c) Observationy = h * 2* + n (the SNR is set to 20 dB).
other algorithms providing an estimation of a solution path
{z.(k)|k > 0}: Orthogonal Matching Pursuit (OMP) [8] and

Orthogonal Least Squares (OLS) [9,10]. The comparison is

done on a sparse signal deconvolution problem [11]. particularly difficult when several impulses i are located
) _ _ _ at neighboring locationse(g., z; andz;,, # 0, or z; and
A. Data simulation for sparse signal deconvolution 2%, # 0), because the convolutida z* results in a strong

The deconvolution problem consists in the estimation @fverlap of the responses to successive impulses. The sedula
a sparse signat* from a convoluted and noisy observatiordata designed in [11] are an illustration of such situatian,
y = h x 2™ + n, whereh is the impulse response yielding awhich =* contains several close impulses (see Fig. 1 (a)).
Toeplitz observation matrixd. The deconvolution problem is Knowing =*, the data generation consists of the computation
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(c) CSBR outputk = 16 (d) CSBR outputi = 17

Fig. 2. OLS (a,b) and CSBR (c,d) recoveriesagf for the observatiory shown in Fig. 1 (c). The true signa* and its recoveries are represented in (blue)
plus and (red) circles, respectively. Recoveregk) are represented for specificvalues & = 16 and 17). For convenience, only zooms of the signals are
shown in an area where several impulses occurfn (a,b) OLS consecutive recoveries. (c,d) CSBR recoveries.

of y = hxx*+n. The signal to noise ratio (SNR), defined byFor this reason, we design a collection of data sets at difter
SNR = 10 log;o(v./vs), Wherewv, andv,, are the respective noise levels and for each noise level, we generate a number
variances of the noiseless signal and the noise process, of observations)’ corresponding to random valueg* of =*

is set to 20 dB. The signals*, h andy = h * =* +n are and random noise realizatioms . The impulse responde is
shown in Fig. 1 (a,b,c). kept constant during the simulations (see Fig. 1 (b)).

The recoveriesz.(k) of x* with OLS and CSBR are We generate simulated data at 13 noise levels varying from
illustrated in Fig. 2. For each algorithm, two consecutiv@ to 60 dB. At each SNR, 5000 Monte Carlo experiences
outputs are shown, fok = 16 and 17. After iteration # 16 are carried out, in whiclk:* is sampled using the Bernoulli-
of OLS, the entryi = 162 has been included into the activeGaussian model introduced in Section Ill. The Bernoulli
set. This impulse detection is false, singé contains two parameter is set to 0.0%.€., about 5 % of the samples of
impulses at entries 163 and 165 but none at 162. After «* are not equal to zero) and the variance of the amplitudes
iteration # 17, = 162 remains in the active set because OL% set to 0.01. Each data generation yields a couple of signal
only performs additions into the active set. As for CSBR, the’* andy’ = h x x7* + n/.
same false detection occursin(16) but for the next output At a given SNR, we run the three algorithms for each
z.(17), the entryi = 162 is deleted from the active set whileobservationy’. OMP and OLS are run until the iteration
two other true entries are included. k = ||z?*|jo, since we want to compare the-th output
x.(k) with the sparse signat’* to be recovered. Similarly,
the execution of CSBR is stopped when an itetdiehas a

The following simulations aim at evaluating the averaggardinality greater thak + 3 and we select the best solution
performance and the robustness of OMP, OLS and CSBR. Ti&/ingk components exactly. For each algorithm, the solution
notion of robustness is related to: x.(k) is said successful ifc.(k) and 27* share exactly the

1) the level of noise embedded in the data; same support. The rates of successful approximations are

2) the relative locations of the impulses . evaluated for each algorithm and for each SNR (see Fig. 3).

B. Comparative study and robustness analysis



because the LO penalization term allows the addition and/or
i deletion of indices into/from the solution support resgti
—#— CSBR in the so-called SBR algorithm. Then, this algorithm was
%oF ng; | extended to a continuation version yielding an estimatibn o

a whole solution path of the penalized problem. Up to a

aor ‘ ‘ 1 slight adaptation, this algorithm also provides a solufiaith
estimate of the constrained problem.
30t 1 For particular dictionaries, namely, orthogonal dictines,
the simple and fast OMP algorithm provides an optimal
20} : | solution path. However, in more difficult problems such as
sparse signal deconvolution, the proposed algorithm pago
significantly better than OMP and OLS at the price of an
increased computational burden. In such cases, the chbice o
the algorithm depends on the desired quality of approxionati

0 10 20 30 40 50 60 and on the available time.
SNR/dB

60

rate of success/%
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