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Abstract—The approximation of a signal using a limited
number of dictionary elements is stated as an L0-constrained or
an L0-penalized least-square problem. We first give the working
assumptions and then propose the heuristic Single Best Replace-
ment (SBR) algorithm for the penalized problem. It is inspired by
the Single Most Likely Replacement (SMLR) algorithm, initially
proposed in the context of Bernoulli-Gaussian deconvolution.
Then, we extend the SBR algorithm to a continuation version
estimating a whole solution path, i.e., a series of solutions
depending on the level of sparsity. The continuation algorithm, up
to a slight adaptation, also provides an estimate of a solution path
of the L0-constrained problem. The effectiveness of this approach
is illustrated on a sparse signal deconvolution problem.

I. I NTRODUCTION

The goal of sparse approximation is to represent an ob-
servation by a linear combination of a limited number of
given signals. The signals are chosen from a set containing
elementary signals, often referred to as a dictionary. Typical
dictionaries include the Fourier dictionary, the wavelet dic-
tionary, the Gabor dictionary [1]. Sparse approximation can
be formulated as an L0-constrained least-square problem of
the form minx ‖y − Ax‖2 subject to‖x‖0 6 k, whereA

stands for the given dictionary and‖x‖0 is the number of
nonzero entries ofx, often referred to as the L0-norm of
x. This problem will be calledconstrained L2-L0. The main
difficulty when minimizing the least-square error with the L0-
norm constraint is to find the support ofx. Indeed, once the
support is known, the amplitude estimation reduces to a simple
unconstrained least-square optimization problem.

Searching for the support ofx results in a discrete problem
which, except for very specific cases, is known to be NP-
hard [2]. Therefore, the optimal solution is generally unavail-
able unless an exhaustive search is performed. There are two
main heuristic strategies to solve this problem sub-optimally.

The first strategy is based on a continuous approxima-
tion of the L0-norm, leading to a continuous minimization
problem. Among the convex approximations, the L1-norm [3]
has received considerable attention because optimal and fast
algorithms are available to compute the solution path of the
L2-L1 problem [4, 5]. Moreover, some conditions [6, 7] were
found under which these solutions share the same supports as
those of the L2-L0 problem. However, if these conditions are

not fulfilled, there is no guarantee that the exact solutionsof
the approximate problem are close to those of the constrained
L2-L0 problem.

The second strategy directly considers the constrained L2-
L0 problem, but only a limited number of the candidate sup-
ports are explored. The most classical algorithms (Matching
Pursuit [1], Orthogonal Matching Pursuit [8] and Orthogonal
Least Squares [9, 10]) share a common feature: the support is
gradually increased by one element to ensure the least-square
cost decrease. This feature is also their limitation as a false
detection of a support element can never be compensated by
its further deletion.

In this paper, we develop an algorithm which allows the ad-
dition or deletion of an element of the current support. Our ap-
proach is based on the L0-penalized least-square formulation
(in brief, the penalized L2-L0 formulation)minx J (x; λ) =
‖y −Ax‖2 + λ‖x‖0. Contrarily to the algorithms dedicated
to the constrained L2-L0 problem, forλ > 0, a decrease of
J (x; λ) is possible when deleting one element from the sup-
port of x. This happens when the decrease of the penalization
term,i.e.,λ, is larger than the increase of the least-square term.

The penalized L2-L0 problem is closely related to maximum
a posteriori estimation using a Bernoulli-Gaussian model as
prior for a sparse signal [11]. Indeed, the Bayesian formulation
of the Bernoulli-Gaussian signal restoration yields a penalized
criterion involving the L0-norm of the sparse signal. To solve
this problem, the deterministic Single Most Likely Replace-
ment (SMLR) algorithm has proved to be effective [12, 13].
SMLR is an iterative algorithm increasing or reducing the
current support by one element at a time. Inspired by this
algorithm, we introduce our Single Best Replacement (SBR)
algorithm dedicated to the penalized L2-L0 problem (Sec-
tion III). Then, we extend the SBR algorithm in a continuation
version estimating a whole solution path,i.e., for any level
of sparsityλ (Section IV). The continuation algorithm, up to
a slight adaptation, also provides an estimated solution path
for the constrained L2-L0 problem, which may differ from
that of the penalized problem, since the L0-norm is not a
convex function. Finally, simulation results on a sparse signal
deconvolution problem are shown and analyzed in Section V.



II. PROBLEM STATEMENT

A. Subset selection

Given an observation vectory ∈ Rm, we want to select a
few columnsai from a dictionaryA = [a1, · · · , an] ∈ Rm×n

to approximatey by ŷ = Ax̂, wherex̂ ∈ Rn describes the
selection and the weights of the columnsai. The quality of
approximation relies on a tradeoff between the approximation
residual‖y − Ax‖2 and the level of sparsity ofx, i.e., the
L0-norm of x.

B. L2-L0 optimization

Sparse signal approximation can be expressed in terms of
minimization problems:

— the constrained L2-L0 problem whose goal is to approxi-
matey at best by using no more thank columns:

Xc(k) = arg min
‖x‖06k

{E(x) = ‖y −Ax‖2}; (L2L0C)

— the penalized L2-L0 problem:

Xp(λ) = arg min
x∈Rn

{J (x, λ) = E(x) + λ‖x‖0}. (L2L0P)

Here,λ is a hyperparameter controlling the tradeoff between
the approximation residual and the level of sparsity.

Both problems are addressed whatever the size ofA: m
can be either smaller or larger thann. The notationsXc(k)
and Xp(λ) designate the sets of minimizers of (L2L0C)
and (L2L0P). Both are subsets ofRn and not necessarily
singletons. Moreover, it can be shown [14] that the dependence
of the setXp(λ) with respect toλ (λ > 0) is piecewise
constant, with a finite number of intervals. Denoting by
λ⋆

i (i = 1, . . . , I) the critical λ-values at which the content
of Xp(λ) is changing, sorted by increasing order withλ⋆

1 = 0
and λ⋆

I = +∞, the setsXp(λ) are constant on each open
interval (λ⋆

i , λ
⋆
i+1).

Remark 1. The solution paths∪k∈NXc(k) and ∪λ>0Xp(λ)
generally do not coincide, although the penalized solutionpath
is included in the constrained solution path. The nonequiva-
lence between both is a consequence of the non-convexity of
the L0-norm [15]. Forλ 6= {λ⋆

1, . . . , λ
⋆
I}, it can be shown that

there existsk such thatXp(λ) = Xc(k). For more details and
technical proofs, we refer the reader to [14].

C. Notion of active set and related optimization problems

Given a subsetA of {1, . . . , n}, we define two minimization
problems which are sub-problems of (L2L0C) and (L2L0P):

— the minimization ofE(x) over the supportA:

EA = min
{x|A(x)⊆A}

E(x); (1)

— for a givenλ-value (λ > 0), the minimization ofJ (x; λ)
over the supportA:

min
{x|A(x)⊆A}

J (x; λ). (2)

The notationA(x) denotes the support ofx, therefore, the
constraint{x|A(x) ⊆ A} indicates that only the columnsai

of A such thati ∈ A are taken into account. In the following,
these columnsai will be referred to as theactive columns
andA will be referred to as theactive set.

D. Working assumptions and remarks

We assume that matrixA satisfies the unique representation
property (URP), which is stronger than the full rank assump-
tion [16].

Definition 1. A matrix A of sizem×n (m 6 n) satisfies the
URP if any selection ofm columns ofA forms a family of
linearly independent vectors. By extension, a matrixA of size
m× n (m > n) will be referred to as URP if it is full rank.

Lemma 1. Given a subsetA of {1, . . . , n} whose cardinality
is smaller thanmin(m, n) and provided thatA satisfies the
URP, the constrained least-square problem(1) has a unique
minimizer, denoted by:

xA = arg min
{x|A(x)⊆A}

E(x). (3)

Proof: Let us denote byAA the matrix formed of all
the active columns ofA and byz the corresponding vector
extracted fromx. Then, (1) is equivalent to the unconstrained
minimization of ‖y −AAz‖2 with respect toz. Due to the
URP, the columns ofAA form an independent family of
vectors, thus the unconstrained minimization of‖y−AAz‖2

with respect toz yields a unique minimizer.
The values ofλ andA being given, let us now consider

the minimization problem (2). The search for a minimizer
of J (x; λ) on the domain{x|A(x) ⊆ A} would require to
computeJ (xA′ ; λ) for all the subsetsA′ ⊆ A. This is why
vectorxA cannot be guaranteed to be an optimizer to (2). In
the following, we will denote by

JA(λ) , J (xA; λ) = EA + λ‖xA‖0. (4)

the penalized cost function evaluated atxA.

Remark 2. The non uniqueness of the minimizers of(L2L0C)
and (L2L0P) is due to the fact that two distinct subsetsA
andA′ of {1, . . . , n} may yield the same least-square errors
EA = E ′A. However, it can be shown [14] that the minimizers
of (L2L0C) and (L2L0P) necessarily take the formxA, and
because the number of possible subsetsA of {1, . . . , n} is
finite, the setsXc(k) and Xp(λ) are of finite cardinality,
provided thatk 6 min(m, n) and thatλ > 0, respectively.

III. SBR ALGORITHM FOR L2L0P AT FIXED λ

In this section, we develop a heuristic algorithm to estimate
the solution of (L2L0P) for a fixed hyperparameter valueλ.
This algorithm is inspired by the SMLR algorithm [11–13].
Let us first recall its principle and the corresponding Bayesian
background.



A. SMLR algorithm

A sparse signalx can be modeled as a Bernoulli-Gaussian
random vector; each sample ofx readsxi = qiri, where the
Bernoulli random variableqi ∼ B(ρ) is coding the presence
(qi = 1) or absence (qi = 0) of signal at locationi andρ is the
probability of presence of signal at locationi. The amplitude
ri is a Gaussian random variable whose distribution isri|qi ∼
N (0, qiσ

2
x). Note that the set of locationsi such thatqi = 1

coincides with the notion of active set introduced in Section II.
For inverse problems of the formy = Ax+n, whereA is

the observation matrix andn stands for the observation noise,
sparse signal approximation can be done by first, maximizing
the posterior likelihood of q = [q1, . . . , qn]T and then, by
deducing the amplitudesr given the knowledge ofq [12, 13].
In [13], it is shown that provided that the noisen is Gaussian
and independent fromx, the posterior log-likelihood of q

reads:

L(q|y) ∝ −yT B−1
q y − log |Bq| − 2 log

(

1

ρ
− 1

)

‖q‖0 (5)

up to an additional constant, whereBq is a matrix depending
on A andq, and symbol∝ indicates proportionality.

The SMLR algorithm is a coordinate-wise ascent algorithm
to maximizeL(q|y) with respect toq. At each iteration, all
possible single replacements ofq (set qi = 1 − qi while
keeping the otherqj , j 6= i unchanged) are tested, then the
“most likely” replacement is chosen,i.e., the one yielding the
largest increase ofL(q|y). This task is repeated iteratively
until no single replacement can increaseL(q|y) anymore.

Interestingly, the form of theposterior likelihood (5) shares
similarities with the (L2L0P) cost function in that the last
term involves the L0-norm ofq. This similarity motivates the
development of our proposed algorithm, referred to as Single
Best Replacement (SBR) to distinguish it from SMLR and
to remove the statistical connotation which is not necessarily
appropriate in the L2-L0 minimization context.

B. SBR algorithm

SBR is an iterative search algorithm to solve (L2L0P) for
fixed λ. At each iteration, then possible single replacements
are tested, then the best one is chosen, allowingx to be
updated. The word replacement includes two cases: either one
single non-active sample (qi = 0) is selected to become active
or one single active sample (qi = 1) is selected to become
non-active. For convenience, we define

A • i ,

{

A ∪ {i} if i /∈ A,

A\{i} otherwise.
(6)

to refer to the addition (∪) or deletion (\) of an index i
into/from an active setA.

Remark 3. For a given active setA, the corresponding least-
square solution is the vectorxA defined in(3). Therefore, for
the SBR algorithm and its further extensions below, with a
slight abuse of words, we will considerA as a current iterate,

although strictly speaking, the current iterate is the vector xA

derived fromA.

Let us assume that the current active setA is given. For
all indices i ∈ {1, . . . , n}, we compute the minimizerxA•i

of E(x) whose support is included inA • i, and we keep in
memory the value ofJA•i(λ). Once all the possible single
replacements have been tested, we search for the best one:

l = arg min
i

JA•i(λ). (7)

If JA•l(λ) is strictly lower thanJA(λ), we updateA andx:
A ← A • l andxA ← xA•l. This task is repeated until none
of the single replacementsA • i yield a decrease ofJA(λ).

Prior to any iteration, the SBR algorithm necessitates to
define an initial active set,e.g., the empty active set. SBR
terminates after a finite number of iterations, because there
exists a finite number (2n) of possibilities forA, and SBR is
a descent algorithm.

C. Implementation and practical issues

At a given iterationk, SBR explores then supportsAk • i
for all i ∈ {1, . . . , n} and computes the corresponding costs
EAk•i and JAk•i(λ). Therefore, one SBR iteration requires
the resolution ofn least-square problems of the form (1).
This computation can be very expensive whenn is large,
sincen linear systems have to be solved, each normal matrix
readingAT

AAA where AA denotes the matrix made of the
active columns ofA. Instead, we use a fast strategy based on
the block matrix inversion lemma [17] to update(AT

AAA)−1

whenA is modified. Similar ideas appeared in [12] and in [8]
for speeding up SMLR and OMP/OLS, respectively.

IV. CONTINUATION ALGORITHM

The SBR algorithm works for a fixedλ-value. In this
section, we propose an extension of SBR which estimates a
“solution path”{xp(λ)|λ > 0}, i.e., a sequence of estimates
xp(λ) for any sparsity levelλ. In other words, for allλ,
xp(λ) is an estimate of an element of the setXp(λ) defined
in (L2L0P). The extended algorithm is named “Continuation
Single Best Replacement” (CSBR), as only a finite number
of λ-values are required to estimate a whole solution path.
Finally, up to a slight adaptation of CSBR, a solution path
{xc(k)|k > 0} of the constrained L2-L0 problem (L2L0C)
can be estimated.

A. CSBR algorithm

As mentioned in Section II, the dependence of the sets
Xp(λ) with respect toλ (λ > 0) is piecewise constant, with a
finite number of intervals(λ⋆

i , λ
⋆
i+1). Therefore, it is sufficient

to search for these critical valuesλ⋆
i for which the content

of Xp(λ) is changing. The CSBR algorithm is a heuristic
algorithm inspired by this piecewise constant property. The
structure of the algorithm is the following:

1) estimate iteratively the criticalλ-values (denoted by
λq, where q is the iteration index, to distinguish the
estimates with the exact critical valuesλ⋆

i );



2) for each value ofλq, run SBR to estimate the corre-
sponding active setAq.

We choose to start the algorithm atλ0 = +∞ (A0 is set to
the empty set) and then to gradually decrease theλ-value.

For a givenλ-valueλ = λq, let Aq be the output of SBR.
When SBR terminates, any replacement ofAq byAq •i yields
an increase of the costJAq

(λ):

∀i ∈ {1, . . . , n}, JAq•i(λ) > JAq
(λ). (8)

Because (8) holds forλ = λq, we search for the nextλ-
value λq+1 (λq+1 < λq) below which (8) does not hold
anymore.λq+1 is defined such that, whenλ < λq+1, at
least one indexi yields a decrease of the cost function,i.e.,
JAq•i(λ) < JAq

(λ).
It can be shown [14] that forλ < λq, such a decrease can

only occur when• is the union operation (• = ∪). Up to a
few manipulations of (8) and (4), the value ofλq+1 reads:

λq+1 = max
i/∈Aq

{EAq
− EAq∪i}, (9)

or λq+1 = 0 whenAq is the complete set{1, . . . , n}.
The CSBR algorithm stops whenλq+1 = 0. In this case,

the definition (9) implies that for alli /∈ Aq, EAq∪i = EAq
.

Finally, and because of the definition ofxAq
in (3), xAq

is
necessarily an unconstrained least-square estimate.

B. Adaptation of CSBR to the constrained L2-L0 problem

We can straightforwardly adapt CSBR to provide an esti-
mation of a “solution path”{xc(k)|k > 0} of the constrained
L2-L0 minimization problem (L2L0C), up to a storage of the
intermediate SBR iterates.

Indeed, at the beginning of CSBR, the initial active set is
A0 = ∅ and during the SBR iterations, the support of the
active set is only modified by one replacement (addition or
deletion) at a time. Therefore, the sequence of the SBR iterates
provides at least one estimate whose L0-norm is equal tok for
all k = 0, . . . , K, whereK is the maximum of the L0-norms
of the SBR iterates explored while running CSBR. Estimating
a solution path{xc(k)|k = 0, . . . , K} can finally be done by
storing for each value ofk, the best SBR iteratexA whose L0-
norm is equal tok, i.e., the iterate havingk non-zero entries
and yielding the lowest residual errorEA.

V. SIMULATION RESULTS

In this section, we focus on the constrained L2-L0 prob-
lem. We compare the adapted CSBR algorithm with two
other algorithms providing an estimation of a solution path
{xc(k)|k > 0}: Orthogonal Matching Pursuit (OMP) [8] and
Orthogonal Least Squares (OLS) [9, 10]. The comparison is
done on a sparse signal deconvolution problem [11].

A. Data simulation for sparse signal deconvolution

The deconvolution problem consists in the estimation of
a sparse signalx∗ from a convoluted and noisy observation
y = h ∗ x∗ + n, whereh is the impulse response yielding a
Toeplitz observation matrixA. The deconvolution problem is
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Fig. 1. Sparse signal deconvolution: data simulation. (a) unknown “true”
sparse signalx∗, including ‖x∗‖0 = 19 impulses. (b) Impulse response
h. (c) Observationy = h ∗ x∗ + n (the SNR is set to 20 dB).

particularly difficult when several impulses inx∗ are located
at neighboring locations (e.g., x∗

i and x∗
i+1 6= 0, or x∗

i and
x∗

i+2 6= 0), because the convolutionh ∗ x∗ results in a strong
overlap of the responses to successive impulses. The simulated
data designed in [11] are an illustration of such situation,in
which x∗ contains several close impulses (see Fig. 1 (a)).
Knowing x∗, the data generation consists of the computation
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(a) OLS output,k = 16 (b) OLS output,k = 17
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(c) CSBR output,k = 16 (d) CSBR output,k = 17

Fig. 2. OLS (a,b) and CSBR (c,d) recoveries ofx∗ for the observationy shown in Fig. 1 (c). The true signalx∗ and its recoveries are represented in (blue)
plus and (red) circles, respectively. Recoveriesxc(k) are represented for specifick-values (k = 16 and 17). For convenience, only zooms of the signals are
shown in an area where several impulses occur inx∗. (a,b) OLS consecutive recoveries. (c,d) CSBR recoveries.

of y = h∗x∗+n. The signal to noise ratio (SNR), defined by
SNR= 10 log10(vx/vn), wherevx andvn are the respective
variances of the noiseless signalx∗ and the noise processn,
is set to 20 dB. The signalsx∗, h and y = h ∗ x∗ + n are
shown in Fig. 1 (a,b,c).

The recoveriesxc(k) of x∗ with OLS and CSBR are
illustrated in Fig. 2. For each algorithm, two consecutive
outputs are shown, fork = 16 and 17. After iteration # 16
of OLS, the entryi = 162 has been included into the active
set. This impulse detection is false, sincex∗ contains two
impulses at entries 163 and 165 but none ati = 162. After
iteration # 17,i = 162 remains in the active set because OLS
only performs additions into the active set. As for CSBR, the
same false detection occurs inxc(16) but for the next output
xc(17), the entryi = 162 is deleted from the active set while
two other true entries are included.

B. Comparative study and robustness analysis

The following simulations aim at evaluating the average
performance and the robustness of OMP, OLS and CSBR. The
notion of robustness is related to:

1) the level of noise embedded in the data;
2) the relative locations of the impulses inx∗.

For this reason, we design a collection of data sets at different
noise levels and for each noise level, we generate a number
of observationsyj corresponding to random valuesxj∗ of x∗

and random noise realizationsnj . The impulse responseh is
kept constant during the simulations (see Fig. 1 (b)).

We generate simulated data at 13 noise levels varying from
0 to 60 dB. At each SNR, 5000 Monte Carlo experiences
are carried out, in whichx∗ is sampled using the Bernoulli-
Gaussian model introduced in Section III. The Bernoulli
parameter is set to 0.05 (i.e., about 5 % of the samples of
x∗ are not equal to zero) and the variance of the amplitudes
is set to 0.01. Each data generation yields a couple of signals
xj∗ andyj = h ∗ xj∗ + nj .

At a given SNR, we run the three algorithms for each
observationyj . OMP and OLS are run until the iteration
k = ‖xj∗‖0, since we want to compare thek-th output
xc(k) with the sparse signalxj∗ to be recovered. Similarly,
the execution of CSBR is stopped when an iterateAq has a
cardinality greater thank + 3 and we select the best solution
havingk components exactly. For each algorithm, the solution
xc(k) is said successful ifxc(k) and xj∗ share exactly the
same support. The rates of successful approximations are
evaluated for each algorithm and for each SNR (see Fig. 3).
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Fig. 3. Deconvolution problem: robustness of OMP, OLS and CSBR. The
rate of successful approximations is displayed as a function of the SNR for
each algorithm. The rates are evaluated from 5000 approximations, i.e., while
processing 5000 simulated observationsyj with each algorithm.

On average, the CSBR algorithm yields better results than
OMP and OLS in that successful approximations occur more
frequently. This is in coherence with our expectations because
CSBR allows both additions and deletions while OMP and
OLS do not. Once a wrong index is included into the active
set, neither OMP nor OLS can delete it in the further iterations,
thus disabling a successful approximation. For low levels of
noise, the rates of successful approximations are poor and
similar, as shown in Fig. 3. This rates need to be commented
because they do not represent the true behavior of the three
algorithms. They can mainly be justified by the binary criterion
used for successful approximation (i.e., the exact estimation
of the unknown support). A low rate does not necessarily
mean that the quality of approximation is poor in a qualitative
viewpoint. Actually, the CSBR algorithm performs better than
OMP and OLS even for low SNRs, although it rarely finds
the exact expected support. A comparison of the least-square
costs of the three estimatesxc(k) shows that for eachk-value
and for each SNR, OMP and OLS almost never find a better
solution than CSBR while the contrary is very often true.

The computation burden depends on the size of the data
and the number of iterations after which the algorithms are
stopped. For the simulations described above, the observation
matrix is of size320 × 300 and we ran the algorithms until
k = ‖xj∗‖0 for OMP and OLS, andk = ‖xj∗‖0+3 for CSBR.
On average,‖xj∗‖0 is equal to 15,i.e.,5 % of the 300 samples
of xj∗, and the average computation time of OMP, OLS and
CSBR amount to 14, 52, and 245 milliseconds, respectively.

VI. CONCLUSION

Our main contribution was to propose an iterative algorithm
to estimate a solution path of the L0-constrained least-square
problem. Rather than starting from the constrained formu-
lation, we addressed the L0-penalized least-square problem

because the L0 penalization term allows the addition and/or
deletion of indices into/from the solution support resulting
in the so-called SBR algorithm. Then, this algorithm was
extended to a continuation version yielding an estimation of
a whole solution path of the penalized problem. Up to a
slight adaptation, this algorithm also provides a solutionpath
estimate of the constrained problem.

For particular dictionaries, namely, orthogonal dictionaries,
the simple and fast OMP algorithm provides an optimal
solution path. However, in more difficult problems such as
sparse signal deconvolution, the proposed algorithm performs
significantly better than OMP and OLS at the price of an
increased computational burden. In such cases, the choice of
the algorithm depends on the desired quality of approximation
and on the available time.
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