Outils Mathématiques pour l'Ingénieur

...

École Nationale Supérieure de Géologie

• • •

première année

Présentation du module

Composition du cours

Partie	AF	Cours	TD	Intervenants
Tenseurs	AF2	2	1	A. Giraud
${\mathcal F}$ ourier ${\mathcal L}$ aplace	AF1	2	2	B. Marx
Trait. du Signal	AF4	5	4	B. Marx
Analyse Numérique	AF3	5	5	L. Cheng, L. Scholtès, A.J. Tinet

Supports

- polycopiés (distribués en cours)
- présentations (Arche / sites persos / ...)

Évaluation

- Examen final (documents autorisés)
- Comptes rendus de TD / Rapports
- Quizz

Présentation

Qui suis-je?

- Benoît MARX (depuis 1977)
- Ingénieur et docteur en automatique (ECN 2000 et Grenoble-INP 2003)
- Maître de conférences à l'Université de Lorraine (depuis 2004)

Que fais-je?

- Enseignant
 - en automatique, traitement du signal, math appli
 - à l'ENSG, ENSEM, ENSGSI, . . .
- Chercheur
 - estimation, diagnostic et contrôle tolérant de systèmes non linéaires
 - au Centre de Recherche en Automatique de Nancy (CRAN)

Où suis-je?

- bureau : ENSEM, 100 couloir bleu
- e-mail : benoit.marx@univ-lorraine.fr
- pages pro : www.cran.univ-lorraine.fr/benoit.marx

Outils Mathématiques pour l'Ingénieur

Séries et Transformation de Fourier Transformation de Laplace

Benoît Marx

Centre de Recherche en Automatique de Nancy (CRAN) Ecole Nationale Supérieure de Géologie (ENSG)

disponible en ligne : www.cran.univ-lorraine.fr/benoit.marx

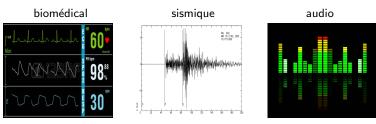
contact : benoit.marx@univ-lorraine.fr

Plan du cours

- Séries de Fourier
 - Préliminaires
 - Développement en exponentielles de fonctions 2π -périodiques
 - Conditions de convergence de Dirichlet
 - Théorème de Parseval
 - Développement en sin-cos de fonctions 2π -périodiques
 - Extension aux fonctions T-périodiques
- Transformée de Fourier
 - Définition de \mathcal{F} et \mathcal{F}^{-1}
 - Propriétés de la TF
 - TF de fonctions périodiques
 - Théorème de Parseval
 - TF de fonctions discrètes
- Transformée de Laplace
 - Définition de \mathcal{L} et \mathcal{L}^{-1}
 - Propriétés de la TL
 - Applications de la TL

Introduction

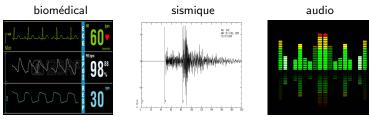
- Les séries et transformée de Fourier permettent :
 - d'écrire une fonction sous forme de somme de sinus et cosinus
 - de mettre en évidence des fréquences caractéristiques dans un signal



• de résoudre des équations différentielles (EDP)

Introduction

- Les séries et transformée de Fourier permettent :
 - d'écrire une fonction sous forme de somme de sinus et cosinus
 - de mettre en évidence des fréquences caractéristiques dans un signal



- de résoudre des équations différentielles (EDP)
- La transformée de Laplace permet :
 - de résoudre des équations différentielles
 - de représenter des systèmes linéaires dynamiques

Préliminaire : fonctions périodiques

 Le développement en séries de Fourier est possible pour les fonctions périodiques.

fonction T-périodique

Une fonction f(t) est dite périodique, s'il existe T tel que :

$$f(t+T)=f(t), \ \forall t$$

La période est le plus petit T vérifiant l'égalité ci-dessus.

Préliminaire : fonctions périodiques

 Le développement en séries de Fourier est possible pour les fonctions périodiques.

fonction T-périodique

Une fonction f(t) est dite périodique, s'il existe T tel que :

$$f(t+T)=f(t), \ \forall t$$

La période est le plus petit T vérifiant l'égalité ci-dessus.

- Quelques exemples évidents :
 - ightarrow la fonction $\cos(t)$ est 2π -périodique
 - \rightarrow la fonction $\sin(5t)$ est $\frac{2\pi}{5}$ -périodique
 - \rightarrow la fonction $exp\left(i\frac{2\pi}{T}t\right)$ est T-périodique
- Dans un premier temps, on s'intéressera exclusivement aux fonctions 2π -périodiques.

Préliminaire : produit hermitique

- Le développement en séries de Fourier peut s'interpréter comme une projection dans une base de fonctions
 - → il faut définir une base de fonction
 - → il faut pouvoir projeter (*un produit scalaire*) et mesurer (*une norme*)

Charles ... (1822 - 1901)

Préliminaire : produit hermitique

- Le développement en séries de Fourier peut s'interpréter comme une projection dans une base de fonctions
 - → il faut définir une base de fonction
 - → il faut pouvoir projeter (un produit scalaire) et mesurer (une norme)

La projection : forme hermitique

Soient deux fonctions f et g à valeurs dans \mathbb{C} , l'opérateur $< f, g> \in \mathbb{C}$ est une forme hermitique à droite si elle vérifie les propriétés suivantes :

$$< f_1 + f_2, g > = < f_1, g > + < f_2, g >$$
 $< \lambda f, g > = \lambda < f, g >$
 $< f, g_1 + g_2 > = < f, g_1 > + < f, g_2 >$
 $< f, \lambda g > = \overline{\lambda} < f, g >$

Exemple:
$$\langle f(t), g(t) \rangle = \int_a^b f(t) \overline{g(t)} dt$$

Préliminaire : produit hermitique (suite)

Forme hermitique symétrique

Une forme hermitique est symétrique si elle vérifie

$$\overline{\langle f,g\rangle} = \langle g,f\rangle$$

Forme hermitique symétrique définie positive

Une forme hermitique symétrique est définie positive si elle vérifie

$$\langle f, f \rangle > 0, \quad \forall f \neq 0$$

Préliminaire : produit hermitique (suite)

Forme hermitique symétrique

Une forme hermitique est symétrique si elle vérifie

$$\overline{\langle f,g\rangle} = \langle g,f\rangle$$

Forme hermitique symétrique définie positive

Une forme hermitique symétrique est définie positive si elle vérifie

$$\langle f, f \rangle > 0, \quad \forall f \neq 0$$

La mesure : norme

Une forme hermitique symétrique, définie positive permet de construire une norme, notée ||f||, définie par : $||f|| = \sqrt{\langle f, f \rangle}$, vérifiant

$$\begin{aligned} ||f|| &> 0, \quad \forall f \neq 0 \\ ||\lambda f|| &= |\lambda|||f||, \quad \forall \lambda \in \mathbb{C} \\ ||f + g|| &\leq ||f|| + ||g|| \end{aligned}$$

Préliminaire : base de fonctions

• Définissons le produit scalaire et la norme d'une fonction 2π -périodique

$$\langle f, g \rangle = \int_0^{2\pi} f(t)\overline{g(t)}dt$$
 et $||f|| = \sqrt{\langle f, f \rangle}$

Préliminaire : base de fonctions

• Définissons le produit scalaire et la norme d'une fonction 2π -périodique

$$\langle f,g \rangle = \int_0^{2\pi} f(t)\overline{g(t)}dt$$
 et $||f|| = \sqrt{\langle f,f \rangle}$

• Définissons une famille de fonctions de base

$$u_n(t) = \frac{e^{int}}{\sqrt{2\pi}}, \forall n \in \mathbb{Z}$$

Préliminaire : base de fonctions

• Définissons le produit scalaire et la norme d'une fonction 2π -périodique

$$\langle f,g \rangle = \int_0^{2\pi} f(t)\overline{g(t)}dt$$
 et $||f|| = \sqrt{\langle f,f \rangle}$

• Définissons une famille de fonctions de base

$$u_n(t) = \frac{e^{int}}{\sqrt{2\pi}}, \forall n \in \mathbb{Z}$$

• On peut montrer que cette famille de fonctions est orthonormée, c-à-d

$$\langle u_n(t), u_m(t) \rangle = \begin{cases} 1, & n = m \\ 0, & n \neq m \end{cases}$$

Développement en exp de fonctions 2π -périodiques

• On a défini une famille de fonctions orthonormées :

$$u_n(t) = \frac{e^{int}}{\sqrt{2\pi}}$$

Développement en exp de fonctions 2π -périodiques

• On a défini une famille de fonctions orthonormées :

$$u_n(t)=\frac{e^{int}}{\sqrt{2\pi}}$$

• On peut écrire le développement de f(t) dans cette base

$$\tilde{f}(t) = \sum_{n \in \mathbb{Z}} c_n u_n(t)$$

• Les coordonnées de f(t) dans la base sont obtenues par projection

$$c_n = \langle f(t), u_n(t) \rangle$$

Développement de Fourier généralisé

$$ilde{f}(t) = \sum_{n=-\infty}^{+\infty} c_n rac{e^{int}}{\sqrt{2\pi}} \quad ext{avec} \quad c_n = rac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(t) e^{-int} dt$$

Développement en exp de fonctions 2π -périodiques

• On a défini une famille de fonctions orthonormées :

$$u_n(t) = \frac{e^{int}}{\sqrt{2\pi}}$$

• On peut écrire le développement de f(t) dans cette base

$$\tilde{f}(t) = \sum_{n \in \mathbb{Z}} c_n u_n(t)$$

• Les coordonnées de f(t) dans la base sont obtenues par projection

$$c_n = \langle f(t), u_n(t) \rangle$$

Développement de Fourier généralisé

$$ilde{f}(t) = \sum_{n=-\infty}^{+\infty} c_n rac{e^{int}}{\sqrt{2\pi}} \quad ext{avec} \quad c_n = rac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(t) e^{-int} dt$$

• Exemple : développement de f(t), fonction 2π -périodique, définie par f(t)=-1 sur $[0\ \pi[$ et f(t)=1 sur $[\pi\ 2\pi[$.

Conditions de convergence de Dirichlet

• On ne s'est pas posé la question de la convergence de la série $\sum c_n u_n(t)$ vers f(t)

Conditions de convergence de Dirichlet

- On ne s'est pas posé la question de la convergence de la série $\sum c_n u_n(t)$ vers f(t)
- ... mais Dirichlet si.

Johann Peter Gustav Lejeune ...(1805 - 1859)

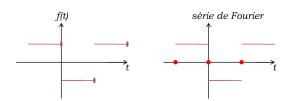
Conditions de convergence de Dirichlet

- On ne s'est pas posé la question de la convergence de la série $\sum c_n u_n(t)$ vers f(t)
- ... mais Dirichlet si.

Théorème de Dirichlet

Soit f(t) une fonction 2π -périodique, telle que f(t) et sa dérivée f'(t) soient continues par morceaux sur l'intervalle $[0\ 2\pi]$.

$$\sum_{n\in\mathbb{Z}}c_nu_n(t)=\begin{cases}f(t),&\text{si }f(t)\text{ est continue en }t\\\frac{f(t-)+f(t+)}{2},&\text{si }t\text{ est un point de discontinuit\'e de }f(t)\end{cases}$$



Théorème de Parseval

• Le théorème de Parseval fait le lien entre l'énergie d'une fonction sur une période et celle de la série d'exponentielles.

Théorème de Parseval

 Le théorème de Parseval fait le lien entre l'énergie d'une fonction sur une période et celle de la série d'exponentielles.

Théorème de Parseval

Soit une fonction 2π -périodique f(t) telle que f(t) et sa dérivée sont continues par morceaux. Les coefficients de Fourier généralisés, notés c_n , vérifient

$$\int_0^{2\pi} |f(t)|^2 dt = \sum_{n=-\infty}^{+\infty} |c_n|^2$$

Théorème de Parseval

 Le théorème de Parseval fait le lien entre l'énergie d'une fonction sur une période et celle de la série d'exponentielles.

Théorème de Parseval

Soit une fonction 2π -périodique f(t) telle que f(t) et sa dérivée sont continues par morceaux. Les coefficients de Fourier généralisés, notés c_n , vérifient

$$\int_0^{2\pi} |f(t)|^2 dt = \sum_{n=-\infty}^{+\infty} |c_n|^2$$

• Exemple : Utiliser le développement de Fourier généralisé de f(t), fonction 2π -périodique définie ci-dessous, pour prouver $\sum_{n\in\mathbb{N}^*} \frac{1}{n^2} = \frac{\pi^2}{6}$.

$$f(t) = \begin{cases} 1, & t \in [0 \ \pi[\\ 0, & t \in [\pi \ 2\pi[\\ \end{cases}]$$

Développement en séries de Fourier sin-cos de fonctions 2π -périodiques

Jean-Baptiste (dit Joseph) ... (1768 - 1830)

Développement en séries de Fourier sin-cos de fonctions 2π -périodiques

- On étudie les fonctions f(t) à valeurs dans $\mathbb R$
- On peut remarquer que les coefficients de Fourier généralisés vérifient :

$$c_{-n} = \overline{c_n}$$

Développement en séries de Fourier sin-cos de fonctions 2π -périodiques

- On étudie les fonctions f(t) à valeurs dans $\mathbb R$
- On peut remarquer que les coefficients de Fourier généralisés vérifient :

$$c_{-n} = \overline{c_n}$$

En posant

$$c_0 = \frac{\sqrt{2\pi}}{2}a_0$$
 , $c_n = \frac{\sqrt{2\pi}}{2}(a_n - ib_n)$, $c_{-n} = \frac{\sqrt{2\pi}}{2}(a_n + ib_n)$

ullet on obtient le développement de f(t) en cosinus et sinus

Développement en séries de Fourier sin-cos de fonctions 2π -périodiques

$$ilde{f}(t) = rac{a_0}{2} + \sum_{n \geq 1} (a_n cos(nt) + b_n sin(nt))$$
 $a_0 = rac{1}{\pi} \int_0^{2\pi} f(t) dt, \quad a_n = rac{1}{\pi} \int_0^{2\pi} f(t) cos(nt) dt, \quad b_n = rac{1}{\pi} \int_0^{2\pi} f(t) sin(nt) dt$

Développement en sin-cos de fonctions 2π -périodiques

 On peut écrire le théorème de Parseval avec les coefficients du développement en sin-cos

Théorème de Parseval

$$\int_0^{2\pi} |f(t)|^2 dt = \frac{\pi}{2} a_0^2 + \pi \sum_{n \ge 1} (a_n^2 + b_n^2)$$

Développement en sin-cos de fonctions 2π -périodiques

• On peut écrire le théorème de Parseval avec les coefficients du développement en *sin-cos*

Théorème de Parseval

$$\int_0^{2\pi} |f(t)|^2 dt = \frac{\pi}{2} a_0^2 + \pi \sum_{n>1} (a_n^2 + b_n^2)$$

- Quelques remarques
 - Si f(t) est paire, alors $b_n = 0$ et $\tilde{f}(t) = \frac{a_0}{2} + \sum_{n \ge 1} a_n cos(nt)$ \rightarrow une fonction paire se développe en cosinus uniquement
 - Si f(t) est impaire, alors $a_0 = a_n = 0$ et $\tilde{f}(t) = \sum_{n \ge 1} b_n \sin(nt)$ \rightarrow une fonction impaire se développe en sinus uniquement
 - les conditions de convergence de la série en cos-sin sont celles de la série en exp
 - \rightarrow pour $f(t) \in \mathcal{C}_m^1$, la série converge vers $(f(t^-) + f(t^+))/2$

$$f(t) = egin{cases} t, & t \in \llbracket 0 \ \pi
bracket \\ 2\pi - t, & t \in \llbracket \pi \ 2\pi
bracket \end{cases}$$

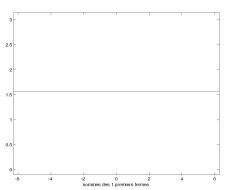
• Exemple : déterminer le développement en \cos - \sin de la fonction 2π -périodique définie par

$$f(t) = \begin{cases} t, & t \in [0 \ \pi[\\ 2\pi - t, & t \in [\pi \ 2\pi[\\ \end{bmatrix}] \end{cases}$$

• on trouve : $\tilde{f}(t) = \frac{\pi}{2} + \sum_{n \geq 1} 2 \frac{(-1)^n - 1}{\pi n^2} cos(nt)$

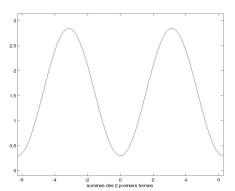
$$f(t) = \begin{cases} t, & t \in [0 \ \pi[\\ 2\pi - t, & t \in [\pi \ 2\pi[\\ \end{bmatrix}] \end{cases}$$

- ullet on trouve : $ilde{f}(t)=rac{\pi}{2}+\sum_{n\geq 1}2rac{(-1)^n-1}{\pi n^2}cos(nt)$
- En considérant le premier terme



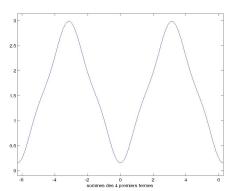
$$f(t) = \begin{cases} t, & t \in [0 \ \pi[\\ 2\pi - t, & t \in [\pi \ 2\pi[\\ \end{bmatrix}] \end{cases}$$

- on trouve : $\tilde{f}(t) = \frac{\pi}{2} + \sum_{n \geq 1} 2 \frac{(-1)^n 1}{\pi n^2} cos(nt)$
- En considérant les 2 premiers termes



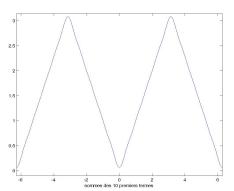
$$f(t) = \begin{cases} t, & t \in [0 \ \pi[\\ 2\pi - t, & t \in [\pi \ 2\pi[\\ \end{bmatrix}] \end{cases}$$

- on trouve : $\tilde{f}(t) = \frac{\pi}{2} + \sum_{n \geq 1} 2 \frac{(-1)^n 1}{\pi n^2} cos(nt)$
- En considérant les 4 premiers termes



$$f(t) = \begin{cases} t, & t \in [0 \ \pi[\\ 2\pi - t, & t \in [\pi \ 2\pi[\\ \end{bmatrix}] \end{cases}$$

- ullet on trouve : $ilde{f}(t)=rac{\pi}{2}+\sum_{n\geq 1}2rac{(-1)^n-1}{\pi n^2}cos(nt)$
- En considérant les 10 premiers termes

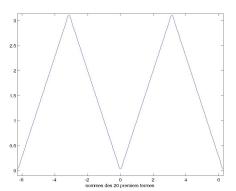


Exemple de développement en sin-cos

• Exemple : déterminer le développement en \cos - \sin de la fonction 2π -périodique définie par

$$f(t) = \begin{cases} t, & t \in [0 \ \pi[\\ 2\pi - t, & t \in [\pi \ 2\pi[\\ \end{bmatrix}] \end{cases}$$

- ullet on trouve : $ilde{f}(t)=rac{\pi}{2}+\sum_{n\geq 1}2rac{(-1)^n-1}{\pi n^2}cos(nt)$
- En considérant les 20 premiers termes

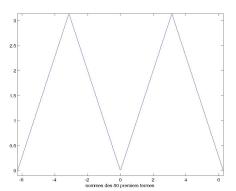


Exemple de développement en sin-cos

• Exemple : déterminer le développement en \cos - \sin de la fonction 2π -périodique définie par

$$f(t) = \begin{cases} t, & t \in [0 \ \pi[\\ 2\pi - t, & t \in [\pi \ 2\pi[\\ \end{bmatrix}] \end{cases}$$

- on trouve : $\widetilde{f}(t)=rac{\pi}{2}+\sum_{n\geq 1}2rac{(-1)^n-1}{\pi n^2}cos(nt)$
- En considérant les 50 premiers termes

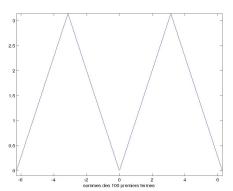


Exemple de développement en sin-cos

• Exemple : déterminer le développement en \cos - \sin de la fonction 2π -périodique définie par

$$f(t) = \begin{cases} t, & t \in [0 \ \pi[\\ 2\pi - t, & t \in [\pi \ 2\pi[\\ \end{bmatrix}] \end{cases}$$

- on trouve : $\tilde{f}(t) = \frac{\pi}{2} + \sum_{n \geq 1} 2 \frac{(-1)^n 1}{\pi n^2} cos(nt)$
- En considérant les 100 premiers termes



• En choisissant :

```
ightarrow les fonctions de base : u_n(t) = \frac{e^{i2\pi nt/T}}{\sqrt{T}}

ightarrow le p.h.s.d.p. : < f(t), g(t) >= \int_0^T f(t) \overline{g(t)} dt

ightarrow la norme : ||f(t)|| = \sqrt{< f(t), f(t)} >
```

- En choisissant :
 - ightarrow les fonctions de base : $u_n(t) = \frac{e^{i2\pi nt/T}}{\sqrt{T}}$ ightarrow le p.h.s.d.p. : $< f(t), g(t) >= \int_0^T f(t)\overline{g(t)}dt$ ightarrow la norme : $||f(t)|| = \sqrt{< f(t), f(t) >}$
- \bullet on étend le développement en exponentielles de f(t)

Développement en exp de f(t) T-périodique

Pour f(t), une fonction T-périodique on a :

$$\tilde{f}(t) = \sum_{n \in \mathbb{Z}} c_n \frac{e^{i2\pi nt/T}}{\sqrt{T}} \quad \text{avec} \quad c_n = \int_0^T f(t) \frac{e^{-i2\pi nt/T}}{\sqrt{T}} dt$$

Les conditions de convergences sont celles de Dirichlet.

• En posant $a_0 = \frac{c_0\sqrt{T}}{2}$ et $c_n = \frac{\sqrt{T}}{2}(a_n - ib_n)$ et $c_{-n} = \frac{\sqrt{T}}{2}(a_n + ib_n)$

Développement en sin-cos de f(t) T-périodique

$$\tilde{f}(t) = \frac{a_0}{2} + \sum_{n \ge 1} \left(a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right) \right)$$

$$a_0 = \frac{2}{T} \int_0^T f(t) dt \quad , \quad a_n = \frac{2}{T} \int_0^T f(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

• En posant $a_0=\frac{c_0\sqrt{T}}{2}$ et $c_n=\frac{\sqrt{T}}{2}(a_n-ib_n)$ et $c_{-n}=\frac{\sqrt{T}}{2}(a_n+ib_n)$

Développement en sin-cos de f(t) T-périodique

$$\begin{split} \tilde{f}(t) &= \frac{a_0}{2} + \sum_{n \geq 1} \left(a_n cos\left(\frac{2\pi nt}{T}\right) + b_n sin\left(\frac{2\pi nt}{T}\right) \right) \\ a_0 &= \frac{2}{T} \int_0^T f(t) dt \quad , \quad a_n &= \frac{2}{T} \int_0^T f(t) cos\left(\frac{2\pi nt}{T}\right) dt \\ b_n &= \frac{2}{T} \int_0^T f(t) sin\left(\frac{2\pi nt}{T}\right) dt \end{split}$$

- On a toujours
 - une fonction paire se développe en cosinus $(+a_0/2)$ uniquement
 - une fonction impaire se développe en sinus uniquement
 - les conditions de convergence de Dirichlet : $f(t) \in \mathcal{C}_m^1$



Josiah Willard ... (1839 - 1903)

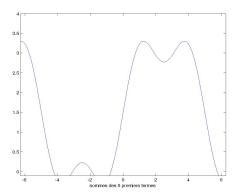
- Il y a un problème de convergence lorsque la fonction est discontinue
- ullet On considère la fonction f(t), 10-périodique définie par :

$$f(t) = \begin{cases} 3, & t \in [0 \ 5[\\ 0, & t \in [5 \ 10[\end{cases}] \end{cases}$$

- Il y a un problème de convergence lorsque la fonction est discontinue
- ullet On considère la fonction f(t), 10-périodique définie par :

$$f(t) = \begin{cases} 3, & t \in [0 \ 5[\\ 0, & t \in [5 \ 10[\end{cases}]$$

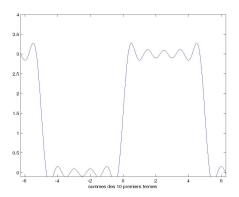
En considérant les 5 premiers termes



- Il y a un problème de convergence lorsque la fonction est discontinue
- ullet On considère la fonction f(t), 10-périodique définie par :

$$f(t) = \begin{cases} 3, & t \in [0 \ 5[\\ 0, & t \in [5 \ 10[\end{cases}]$$

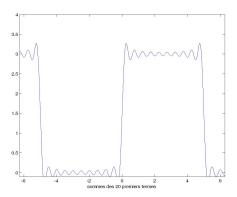
En considérant les 10 premiers termes



- Il y a un problème de convergence lorsque la fonction est discontinue
- ullet On considère la fonction f(t), 10-périodique définie par :

$$f(t) = \begin{cases} 3, & t \in [0 \ 5[\\ 0, & t \in [5 \ 10[\end{cases}] \end{cases}$$

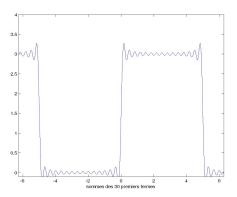
En considérant les 20 premiers termes



- Il y a un problème de convergence lorsque la fonction est discontinue
- ullet On considère la fonction f(t), 10-périodique définie par :

$$f(t) = \begin{cases} 3, & t \in [0 \ 5[\\ 0, & t \in [5 \ 10[\end{cases}] \end{cases}$$

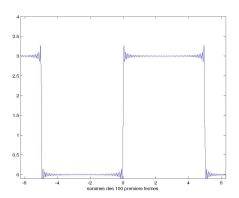
En considérant les 30 premiers termes



- Il y a un problème de convergence lorsque la fonction est discontinue
- ullet On considère la fonction f(t), 10-périodique définie par :

$$f(t) = \begin{cases} 3, & t \in [0 \ 5[\\ 0, & t \in [5 \ 10[\end{cases}]$$

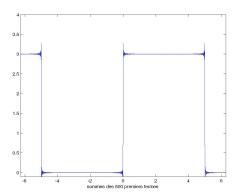
En considérant les 100 premiers termes



- Il y a un problème de convergence lorsque la fonction est discontinue
- On considère la fonction f(t), 10-périodique définie par :

$$f(t) = \begin{cases} 3, & t \in [0 \ 5[\\ 0, & t \in [5 \ 10[\end{cases}]$$

En considérant les 500 premiers termes



- On cherche à étendre les séries de Fourier aux fonctions non périodiques
- Pour cela on suppose qu'une fonction non périodique est périodique avec une période infinie

- On cherche à étendre les séries de Fourier aux fonctions non périodiques
- Pour cela on suppose qu'une fonction non périodique est périodique avec une période infinie
- Pour f(t) T-périodique on a

$$f(t) = \sum_{n \in \mathbb{Z}} \left(\int_{T} f(t) \frac{e^{-int2\pi/T}}{\sqrt{T}} dt \right) \underbrace{\frac{e^{i2\pi t n/T}}{\sqrt{T}}}_{u_{n}}$$

- On cherche à étendre les séries de Fourier aux fonctions non périodiques
- Pour cela on suppose qu'une fonction non périodique est périodique avec une période infinie
- Pour f(t) T-périodique on a

$$f(t) = \sum_{n \in \mathbb{Z}} \underbrace{\left(\int_{T} f(t) \frac{e^{-int2\pi/T}}{\sqrt{T}} dt\right)}_{c_{n}} \underbrace{\frac{e^{i2\pi t n/T}}{\sqrt{T}}}_{u_{n}}$$

• on pose $1/T=
u_0$ et $F(n
u_0)=\int_T f(t)e^{-i2\pi n
u_0t}dt$ $f(t)=\sum
u_0 F(n
u_0)e^{i2\pi t n
u_0}$

- On cherche à étendre les séries de Fourier aux fonctions non périodiques
- Pour cela on suppose qu'une fonction non périodique est périodique avec une période infinie
- Pour f(t) T-périodique on a

$$f(t) = \sum_{n \in \mathbb{Z}} \underbrace{\left(\int_{T} f(t) \frac{e^{-int2\pi/T}}{\sqrt{T}} dt\right)}_{c_{n}} \underbrace{\frac{e^{i2\pi t n/T}}{\sqrt{T}}}_{u_{n}}$$

• on pose $1/T = \nu_0$ et $F(n\nu_0) = \int_T f(t)e^{-i2\pi n\nu_0 t}dt$

$$f(t) = \sum_{n \in \mathbb{Z}} \nu_0 F(n\nu_0) e^{i2\pi t n\nu_0}$$

• Pour $T o \infty \Leftrightarrow
u_0 o 0$, f(t) est définie par une somme de Riemann :

$$f(t) = \int_{\mathbb{R}} F(\nu) e^{2i\pi\nu t} d\nu$$

• Avec $\nu = n\nu_0$, on a:

$$F(\nu) = \int_{\mathbb{R}} f(t) e^{-2i\pi\nu t} dt$$

Définition de la transformée de Fourier

Transformation de Fourier

Soit f(t) absolument intégrable sur \mathbb{R} , telle que $f(t) \in \mathcal{C}_m^1$. La transformée de f(t) est définie par :

$$F(\nu) = \mathcal{F}(f(t)) = \int_{-\infty}^{+\infty} f(t)e^{-i2\pi\nu t}dt$$

Définition de la transformée de Fourier

Transformation de Fourier

Soit f(t) absolument intégrable sur \mathbb{R} , telle que $f(t) \in \mathcal{C}_m^1$. La transformée de f(t) est définie par :

$$F(\nu) = \mathcal{F}(f(t)) = \int_{-\infty}^{+\infty} f(t) e^{-i2\pi\nu t} dt$$

• On définit également la transformée de Fourier inverse telle que :

$$F(\nu) = \mathcal{F}(f(t)) \Leftrightarrow f(t) = \mathcal{F}^{-1}(F(\nu))$$

Transformation inverse de Fourier

La transformée inverse de $F(\nu)$ est définie par :

$$f(t) = \mathcal{F}^{-1}(F(\nu)) = \int_{-\infty}^{+\infty} F(\nu) e^{i2\pi\nu t} d\nu$$

• La condition d'absolue intégrabilité est suffisante mais pas nécessaire

- La condition d'absolue intégrabilité est suffisante mais pas nécessaire
- Si f(t) est réelle et paire $\leftrightarrow F(\nu)$ est réelle et paire.
- Si f(t) est réelle et impaire $\leftrightarrow F(\nu)$ est imaginaire pure et impaire.

- La condition d'absolue intégrabilité est suffisante mais pas nécessaire
- Si f(t) est réelle et paire $\leftrightarrow F(\nu)$ est réelle et paire.
- Si f(t) est réelle et impaire $\leftrightarrow F(\nu)$ est imaginaire pure et impaire.
- Si f(t) est imaginaire et paire $\leftrightarrow F(\nu)$ est imaginaire et paire.
- Si f(t) est imaginaire et impaire $\leftrightarrow F(\nu)$ est réelle et impaire.

- La condition d'absolue intégrabilité est suffisante mais pas nécessaire
- Si f(t) est réelle et paire $\leftrightarrow F(\nu)$ est réelle et paire.
- Si f(t) est réelle et impaire $\leftrightarrow F(\nu)$ est imaginaire pure et impaire.
- Si f(t) est imaginaire et paire $\leftrightarrow F(\nu)$ est imaginaire et paire.
- Si f(t) est imaginaire et impaire $\leftrightarrow F(\nu)$ est réelle et impaire.
- Exemples : Calculer la TF des fonctions suivantes

$$f(t) = \begin{cases} t + T, & \text{si } -T \le t \le 0 \\ T - t, & \text{si } 0 \le t \le T \\ 0, & \text{sinon} \end{cases}$$

•
$$f(t) = \begin{cases} 1, & \text{si } 0 \le t \le T \\ 0, & \text{sinon} \end{cases}$$

• $f(t) = \delta(t - t_0)$ (impulsion de Dirac centrée en t_0)

- linéarité de \mathcal{F} : $\mathcal{F}(af(t) + bg(t)) = a\mathcal{F}(f(t)) + b\mathcal{F}(g(t))$
- linéarité de \mathcal{F}^{-1} : $\mathcal{F}^{-1}(aF(\nu)+bG(\nu))=a\mathcal{F}^{-1}(F(\nu))+b\mathcal{F}^{-1}(G(\nu))$

- linéarité de \mathcal{F} : $\mathcal{F}(af(t) + bg(t)) = a\mathcal{F}(f(t)) + b\mathcal{F}(g(t))$
- linéarité de \mathcal{F}^{-1} : $\mathcal{F}^{-1}(aF(\nu)+bG(\nu))=a\mathcal{F}^{-1}(F(\nu))+b\mathcal{F}^{-1}(G(\nu))$
- dérivation en t: $\mathcal{F}\left(\frac{df^n(t)}{dt^n}\right) = (2i\pi\nu)^n F(\nu)$

- linéarité de \mathcal{F} : $\mathcal{F}(af(t) + bg(t)) = a\mathcal{F}(f(t)) + b\mathcal{F}(g(t))$
- linéarité de \mathcal{F}^{-1} : $\mathcal{F}^{-1}(aF(\nu)+bG(\nu))=a\mathcal{F}^{-1}(F(\nu))+b\mathcal{F}^{-1}(G(\nu))$
- dérivation en t: $\mathcal{F}\left(\frac{df^n(t)}{dt^n}\right) = (2i\pi\nu)^n F(\nu)$
- convolution : $\mathcal{F}(f * g) = F(\nu)G(\nu)$
- convolution : $\mathcal{F}(fg) = F(\nu) * G(\nu)$

- linéarité de \mathcal{F} : $\mathcal{F}(af(t) + bg(t)) = a\mathcal{F}(f(t)) + b\mathcal{F}(g(t))$
- linéarité de \mathcal{F}^{-1} : $\mathcal{F}^{-1}(aF(\nu)+bG(\nu))=a\mathcal{F}^{-1}(F(\nu))+b\mathcal{F}^{-1}(G(\nu))$
- dérivation en t: $\mathcal{F}\left(\frac{df^n(t)}{dt^n}\right) = (2i\pi\nu)^n F(\nu)$
- convolution : $\mathcal{F}(f * g) = F(\nu)G(\nu)$
- convolution : $\mathcal{F}(fg) = F(\nu) * G(\nu)$
- translation en t: $\mathcal{F}(f(t-t_0)) = e^{-2i\pi\nu t_0}F(\nu)$
- modulation : $\mathcal{F}(e^{i2\pi\nu_0 t}f(t)) = F(\nu \nu_0)$

- linéarité de \mathcal{F} : $\mathcal{F}(af(t) + bg(t)) = a\mathcal{F}(f(t)) + b\mathcal{F}(g(t))$
- linéarité de \mathcal{F}^{-1} : $\mathcal{F}^{-1}(aF(\nu)+bG(\nu))=a\mathcal{F}^{-1}(F(\nu))+b\mathcal{F}^{-1}(G(\nu))$
- dérivation en t: $\mathcal{F}\left(\frac{df^n(t)}{dt^n}\right) = (2i\pi\nu)^n F(\nu)$
- convolution : $\mathcal{F}(f * g) = F(\nu)G(\nu)$
- convolution : $\mathcal{F}(fg) = F(\nu) * G(\nu)$
- translation en t: $\mathcal{F}(f(t-t_0)) = e^{-2i\pi\nu t_0}F(\nu)$
- modulation : $\mathcal{F}(e^{i2\pi\nu_0t}f(t)) = F(\nu \nu_0)$
- dilatation en t: $\mathcal{F}(f(kt)) = \frac{1}{k}F(\nu/k)$
- conjugaison : $\mathcal{F}\left(\overline{f(t)}\right) = \overline{F(-\nu)}$
- dérivation en ν : $\frac{dF^n(\nu)}{d\nu^n} = F((-2i\pi t)^n f(t))$

• On a vu (et pas encore oublié) qu'une fonction *T*-périodique s'écrit :

$$f(t) = \sum_{n \in \mathbb{Z}} c_n \frac{e^{2i\pi nt/T}}{\sqrt{T}}$$
 avec $c_n = \int_0^T f(t) \frac{e^{-2i\pi nt/T}}{\sqrt{T}} dt$

• On a vu (et pas encore oublié) qu'une fonction *T*-périodique s'écrit :

$$f(t) = \sum_{n \in \mathbb{Z}} c_n \frac{e^{2i\pi nt/T}}{\sqrt{T}}$$
 avec $c_n = \int_0^T f(t) \frac{e^{-2i\pi nt/T}}{\sqrt{T}} dt$

• On peut montrer que :

$$\mathcal{F}^{-1}(\delta(\nu-\nu_0)) = e^{2i\pi\nu_0 t} \Leftrightarrow \mathcal{F}\left(e^{2i\pi\nu_0 t}\right) = \delta(\nu-\nu_0)$$

ullet On a vu (et pas encore oublié) qu'une fonction ${\mathcal T}$ -périodique s'écrit :

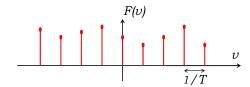
$$f(t) = \sum_{n \in \mathbb{Z}} c_n \frac{e^{2i\pi nt/T}}{\sqrt{T}}$$
 avec $c_n = \int_0^T f(t) \frac{e^{-2i\pi nt/T}}{\sqrt{T}} dt$

On peut montrer que :

$$\mathcal{F}^{-1}(\delta(\nu-\nu_0)) = e^{2i\pi\nu_0 t} \Leftrightarrow \mathcal{F}\left(e^{2i\pi\nu_0 t}\right) = \delta(\nu-\nu_0)$$

• Par linéarité de la TF, $\mathcal{F}(f(t))$ s'écrit :

$$F(\nu) = \sum_{n \in \mathbb{Z}} \frac{c_n}{\sqrt{T}} \delta\left(\nu - \frac{n}{T}\right)$$



• On a vu (et pas encore oublié) qu'une fonction *T*-périodique s'écrit :

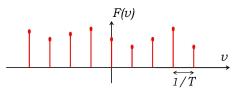
$$f(t) = \sum_{n \in \mathbb{Z}} c_n \frac{e^{2i\pi nt/T}}{\sqrt{T}}$$
 avec $c_n = \int_0^T f(t) \frac{e^{-2i\pi nt/T}}{\sqrt{T}} dt$

• On peut montrer que :

$$\mathcal{F}^{-1}(\delta(\nu-\nu_0)) = e^{2i\pi\nu_0 t} \Leftrightarrow \mathcal{F}\left(e^{2i\pi\nu_0 t}\right) = \delta(\nu-\nu_0)$$

• Par linéarité de la TF, $\mathcal{F}(f(t))$ s'écrit :

$$F(\nu) = \sum_{n \in \mathbb{Z}} \frac{c_n}{\sqrt{T}} \delta\left(\nu - \frac{n}{T}\right)$$



• Exemple : Montrer que la TF que $\mathcal{F}\left(\cos\left(\frac{2\pi t}{T}\right)\right) = \frac{\delta\left(\nu - \frac{1}{T}\right) + \delta\left(\nu + \frac{1}{T}\right)}{2}$

Théorème de Parseval

• Le théorème de Parseval établit un lien entre l'énergie d'une fonction f(t) et l'énergie de sa transformée de Fourier

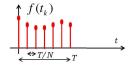
Théorème de Parseval

Soit f(t) une fonction à énergie finie et $F(\nu)$ sa transformée de Fourier. Les fonctions f(t) et $F(\nu)$ ont la même énergie

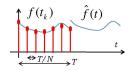
$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \int_{-\infty}^{+\infty} |F(\nu)|^2 d\nu$$

Transformée de Fourier discrète

• Une fonction discrète est connue aux instants $t_k = \frac{kT}{N}$ (k = 0, ..., N-1).

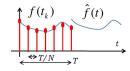


- Une fonction discrète est connue aux instants $t_k = \frac{kT}{N}$ (k=0,...,N-1).
- II existe $\hat{f}(t)$, T-périodique, t.q. $f(t_k) = \hat{f}(t_k)$ (k=0,...,N-1).



- Une fonction discrète est connue aux instants $t_k = \frac{kT}{N}$ (k=0,...,N-1).
- II existe $\hat{f}(t)$, T-périodique, t.q. $f(t_k) = \hat{f}(t_k)$ (k=0,...,N-1).
- La TF de $\hat{f}(t)$ est donnée par

$$\hat{f}(t) = \sum_{n \in \mathbb{Z}} c_n \frac{e^{2i\pi nt/T}}{\sqrt{T}} \quad \Rightarrow \quad \mathcal{F}(\hat{f}(t)) = \sum_{n \in \mathbb{Z}} \frac{c_n}{\sqrt{T}} \delta\left(\nu - \frac{n}{T}\right)$$

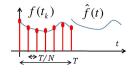


- Une fonction discrète est connue aux instants $t_k = \frac{kT}{N}$ (k=0,...,N-1).
- II existe $\hat{f}(t)$, T-périodique, t.q. $f(t_k) = \hat{f}(t_k)$ (k=0,...,N-1).
- La TF de $\hat{f}(t)$ est donnée par

$$\hat{f}(t) = \sum_{n \in \mathbb{Z}} c_n \frac{e^{2i\pi nt/T}}{\sqrt{T}} \quad \Rightarrow \quad \mathcal{F}(\hat{f}(t)) = \sum_{n \in \mathbb{Z}} \frac{c_n}{\sqrt{T}} \delta\left(\nu - \frac{n}{T}\right)$$

• les coefficient c_n peuvent se calculer par une somme de Riemann :

$$c_n = \frac{1}{\sqrt{T}} \int_0^T \hat{f}(t) e^{-2i\pi nt/T} dt = \frac{1}{\sqrt{T}} \sum_{k=0}^{N-1} \frac{T}{N} \hat{f}\left(\frac{kT}{N}\right) e^{-2i\pi nk/N}$$



- Une fonction discrète est connue aux instants $t_k = \frac{kT}{N}$ (k=0,...,N-1).
- II existe $\hat{f}(t)$, T-périodique, t.q. $f(t_k) = \hat{f}(t_k)$ (k=0,...,N-1).
- La TF de $\hat{f}(t)$ est donnée par

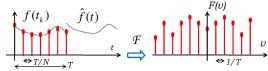
$$\hat{f}(t) = \sum_{n \in \mathbb{Z}} c_n \frac{e^{2i\pi nt/T}}{\sqrt{T}} \quad \Rightarrow \quad \mathcal{F}(\hat{f}(t)) = \sum_{n \in \mathbb{Z}} \frac{c_n}{\sqrt{T}} \delta\left(\nu - \frac{n}{T}\right)$$

• les coefficient c_n peuvent se calculer par une somme de Riemann :

$$c_n = \frac{1}{\sqrt{T}} \int_0^T \hat{f}(t) e^{-2i\pi nt/T} dt = \frac{1}{\sqrt{T}} \sum_{k=0}^{N-1} \frac{T}{N} \hat{f}\left(\frac{kT}{N}\right) e^{-2i\pi nk/N}$$

• On a donc finalement :

$$F(\nu) = \sum_{n \in \mathbb{Z}} \left(\frac{1}{N} \sum_{k=0}^{N-1} \hat{f}\left(\frac{kT}{N}\right) e^{-2i\pi nk/N} \right) \delta\left(\nu - \frac{n}{T}\right)$$



• Par hypothèse, on considère exclusivement des fonctions causales :

$$f(t) = 0, \forall t < 0$$

• Par hypothèse, on considère exclusivement des fonctions causales :

$$f(t)=0, \forall t<0$$

- On cherche à maintenir certaines propriétés de la TF, mais pour une classe de fonctions plus étendue
 - \rightarrow les fonctions (éventuellement à support ∞) qui croissent moins vite que e^{at} , pour a>0

Par hypothèse, on considère exclusivement des fonctions causales :

$$f(t) = 0, \forall t < 0$$

- On cherche à maintenir certaines propriétés de la TF, mais pour une classe de fonctions plus étendue
 → les fonctions (éventuellement à support ∞) qui croissent moins vite
 - ightarrow les fonctions (éventuellement à support ∞) qui croissent moins vite que e^{at} , pour a>0
- Pour forcer la convergence de l'intégrale définissant $\mathcal{F}(f(t))$, on pondère par $e^{-\alpha t}$, avec $\alpha > a > 0$

$$\mathcal{F}(f(t)e^{-\alpha t}) = \int_0^{+\infty} f(t)e^{-\alpha t}e^{-2i\pi\nu t}dt$$

Par hypothèse, on considère exclusivement des fonctions causales :

$$f(t) = 0, \forall t < 0$$

- On cherche à maintenir certaines propriétés de la TF, mais pour une classe de fonctions plus étendue
 → les fonctions (éventuellement à support ∞) qui croissent moins vite que e^{at}, pour a > 0
- Pour forcer la convergence de l'intégrale définissant $\mathcal{F}(f(t))$, on pondère par $e^{-\alpha t}$, avec $\alpha > a > 0$

$$\mathcal{F}(f(t)e^{-\alpha t}) = \int_0^{+\infty} f(t)e^{-\alpha t}e^{-2i\pi\nu t}dt$$

• En posant $p = \alpha + i2\pi\nu$, on a la transformée de Laplace

$$\mathcal{L}(f(t)) = F(p) = \int_0^{+\infty} f(t)e^{-pt}dt$$

Définition de la transformée de Laplace et de son inverse

Pierre Simon, Marquis de ... (1749 - 1827)

Définition de la transformée de Laplace et de son inverse

Transformée de Laplace

La transformée de Laplace de la fonction causale f(t) est donnée par

$$\mathcal{L}(f(t)) = F(p) = \int_0^\infty f(t)e^{-pt}dt$$

où p, appelé variable de Laplace, est tel que l'intégrale existe $(\Re(p) \geq a)$.

Définition de la transformée de Laplace et de son inverse

Transformée de Laplace

La transformée de Laplace de la fonction causale f(t) est donnée par

$$\mathcal{L}(f(t)) = F(p) = \int_0^\infty f(t)e^{-pt}dt$$

où p, appelé variable de Laplace, est tel que l'intégrale existe $(\Re(p) \ge a)$.

• On définit également la transformée de Laplace inverse telle que :

$$F(p) = \mathcal{L}(f(t)) \Leftrightarrow f(t) = \mathcal{L}^{-1}(F(p))$$

Transformée inverse de Laplace

La transformée inverse de Laplace de la fonction F(p) est donnée par :

$$f(t) = \mathcal{L}^{-1}(F(p)) = \frac{1}{2i\pi} \int_{\alpha - i\infty}^{\alpha + i\infty} F(p)e^{pt}dp$$

où p, appelé variable de Laplace, est tel que l'intégrale existe ($\alpha \geq a$).

Quelques exemples de T.L.

• La T.L. de l'impulsion de Dirac est donnée par :

$$\mathcal{L}(\delta(t)) = 1$$

Quelques exemples de T.L.

• La T.L. de l'impulsion de Dirac est donnée par :

$$\mathcal{L}(\delta(t)) = 1$$

La T.L. de la fonction de Heavyside, définie par :

$$\Gamma(t) = \begin{cases} 1, & \text{si } t > 0 \\ 0, & \text{si } t < 0 \end{cases}$$

est donnée par :

$$\mathcal{L}(\Gamma(t)) = \frac{1}{p}$$

Quelques exemples de T.L.

• La T.L. de l'impulsion de Dirac est donnée par :

$$\mathcal{L}(\delta(t)) = 1$$

La T.L. de la fonction de Heavyside, définie par :

$$\Gamma(t) = \begin{cases} 1, & \text{si } t > 0 \\ 0, & \text{si } t < 0 \end{cases}$$

est donnée par :

$$\mathcal{L}(\Gamma(t)) = rac{1}{p}$$

• La T.L. de la fonction cosinus est donnée par :

$$\mathcal{L}(\cos(\omega t)) = \frac{p}{p^2 + \omega^2}$$

- Linéarité de \mathcal{L} : $\mathcal{L}(af(t) + bg(t)) = a\mathcal{L}(f(t)) + b\mathcal{L}(g(t))$
- Linéarité de \mathcal{L}^{-1} : $\mathcal{L}^{-1}(aF(p)+bG(p))=a\mathcal{L}^{-1}(F(p))+b\mathcal{L}^{-1}(G(p))$

- Linéarité de \mathcal{L} : $\mathcal{L}(af(t) + bg(t)) = a\mathcal{L}(f(t)) + b\mathcal{L}(g(t))$
- ullet Linéarité de \mathcal{L}^{-1} : $\mathcal{L}^{-1}(aF(p)+bG(p))=a\mathcal{L}^{-1}(F(p))+b\mathcal{L}^{-1}(G(p))$
- Dérivation en t: $\mathcal{L}\left(\frac{df(t)}{dt}\right) = p\mathcal{L}(f(t)) f(0)$
- intégration en t: $\mathcal{L}\left(\int_0^t f(\tau)d\tau\right) = \frac{\mathcal{L}(f(t))}{p}$

- Linéarité de \mathcal{L} : $\mathcal{L}(af(t) + bg(t)) = a\mathcal{L}(f(t)) + b\mathcal{L}(g(t))$
- Linéarité de \mathcal{L}^{-1} : $\mathcal{L}^{-1}(aF(p)+bG(p))=a\mathcal{L}^{-1}(F(p))+b\mathcal{L}^{-1}(G(p))$
- Dérivation en t: $\mathcal{L}\left(\frac{df(t)}{dt}\right) = p\mathcal{L}(f(t)) f(0)$
- ullet intégration en t : $\mathcal{L}\left(\int_0^t f(au)d au
 ight) = rac{\mathcal{L}(f(t))}{p}$
- ullet Théorème de la valeur initiale : $\lim_{t o 0} f(t) = \lim_{p o \infty} p F(p)$
- Théorème de la valeur finale : $\lim_{t\to\infty} f(t) = \lim_{p\to 0} pF(p)$

- Linéarité de \mathcal{L} : $\mathcal{L}(af(t) + bg(t)) = a\mathcal{L}(f(t)) + b\mathcal{L}(g(t))$
- Linéarité de \mathcal{L}^{-1} : $\mathcal{L}^{-1}(aF(p)+bG(p))=a\mathcal{L}^{-1}(F(p))+b\mathcal{L}^{-1}(G(p))$
- Dérivation en t: $\mathcal{L}\left(\frac{df(t)}{dt}\right) = p\mathcal{L}(f(t)) f(0)$
- ullet intégration en t : $\mathcal{L}\left(\int_0^t f(au)d au
 ight) = rac{\mathcal{L}(f(t))}{p}$
- ullet Théorème de la valeur initiale : $\lim_{t o 0} f(t) = \lim_{p o \infty} p F(p)$
- Théorème de la valeur finale : $\lim_{t\to\infty} f(t) = \lim_{p\to 0} pF(p)$
- Translation en t: $\mathcal{L}(f(t-t_0)) = e^{-pt_0}F(p)$
- Dilatation en t: $\mathcal{L}(f(kt)) = \frac{1}{k}F\left(\frac{p}{k}\right)$

- Linéarité de \mathcal{L} : $\mathcal{L}(af(t) + bg(t)) = a\mathcal{L}(f(t)) + b\mathcal{L}(g(t))$
- ullet Linéarité de \mathcal{L}^{-1} : $\mathcal{L}^{-1}(aF(p)+bG(p))=a\mathcal{L}^{-1}(F(p))+b\mathcal{L}^{-1}(G(p))$
- Dérivation en t: $\mathcal{L}\left(\frac{df(t)}{dt}\right) = p\mathcal{L}(f(t)) f(0)$
- ullet intégration en t : $\mathcal{L}\left(\int_0^t f(au)d au
 ight) = rac{\mathcal{L}(f(t))}{p}$
- ullet Théorème de la valeur initiale : $\lim_{t \to 0} f(t) = \lim_{p \to \infty} pF(p)$
- Théorème de la valeur finale : $\lim_{t\to\infty} f(t) = \lim_{p\to 0} pF(p)$
- Translation en t: $\mathcal{L}(f(t-t_0)) = e^{-\rho t_0} F(\rho)$
- Dilatation en t: $\mathcal{L}(f(kt)) = \frac{1}{k}F\left(\frac{p}{k}\right)$
- modulation : $\mathcal{L}(e^{-at}f(t)) = F(p+a)$

Applications de la transformée de Laplace

- La principale application des T.L. est la résolution d'équations différentielles linéaires à coefficients constants
 - appliquer la T.L. aux deux membres de l'équation différentielle
 - les C.I. sont directement prises en compte
 - résoudre en p
 - prendre la T.L. inverse de la solution

Applications de la transformée de Laplace

- La principale application des T.L. est la résolution d'équations différentielles linéaires à coefficients constants
 - appliquer la T.L. aux deux membres de l'équation différentielle
 - les C.I. sont directement prises en compte
 - résoudre en p
 - prendre la T.L. inverse de la solution
- Exemple : résoudre l'équation différentielle suivante

$$x''(t) + 4x'(t) + 3x(t) = 2e^{-2t}$$
, avec $x(0) = 0$ et $x'(0) = 1$

