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Abstract

In the context of model-based diagnosis of dynamical systems, this paper introduces the Minkowski functional
as a new analytical thresholding tool for a generic set-membership approach to FDI. This tool formalizes
the threshold computation problem as a function upper- and lower-bounding problem, and provides non-
specific inequalities that can be applied to residual signals for real-time system analysis. In particular, this
paper provides two new characterizations of the linear transformation of a smooth convex set based on its
Minkowski functional. These results are then illustrated by computing several thresholds to residual signals.
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1. Introduction

1.1. Context of the study

system

residual
generator

u(t) y(t)

faults f(t)disturbances w(t)

residuals r(t)

Figure 1: Residuals generation architecture.

Given a monitored dynamical system for which a mathematical model is known, fault diagnosis consists
in identifying the faults occurring in the system, its sensors, and its actuators, by analyzing - for example -
the discrepancies between the measured inputs and outputs of the system and their expected or estimated
behaviour. This task has been approached both by the control theory community using Fault Detection
and Isolation (FDI) techniques, and the diagnosis (DX) community, by relying on artificial intelligence tech-
niques. Although this work focuses on techniques from the FDI community, it is worth mentioning the
pioneer works of the DX community [48, 41, 19], as well as more recent works bridging the gap between the
two communities [26, 12, 61]. In order to achieve fault diagnosis, residual signals are generally generated by

∗Corresponding author
Email addresses: gustave.bainier@univ-lorraine.fr (Gustave Bainier), benoit.marx@univ-lorraine.fr (Benoît

Marx), jean-christophe.ponsart@univ-lorraine.fr (Jean-Christophe Ponsart)

Preprint submitted to Elsevier April 12, 2025



numerically checking the consistency between the inputs and the outputs of the system onto a single vector,
measurable in real-time, nominally centered at the origin, and which diverges from it in case of discrepancies
(Figure 1) [25, 39, 27, 13, 21]. From these residuals, the fault diagnosis process is generally handled in three
steps: fault detection (detect if at least one fault is active), fault isolation (pinpoint which set of faults is
active) and fault identification (evaluate the magnitude of each occurring fault). One obvious way of per-
forming fault diagnosis consists in leveraging physical redundancy in the sensors and actuators monitoring
the system (e.g. using triplex sensors), but these solutions usually require costly extra equipment, hence
analytical redundancy methods are often preferred. After some pioneer works in aerospace engineering [20]
and chemical engineering [34, 56], several analytical residual generating methods have been developed in
the literature for both linear and nonlinear systems. The most well-known schemes include the parity space
approach [14, 39, 28] and the use of diagnostic observers [54, 6, 24, 39]. Of course, the residual signals
obtained through these methods are affected by the system’s parametric uncertainties (such as modeling
errors) and exogenous disturbances (such as measurement noise), and one of the challenges in performing
fault diagnosis is to distinguish the unavoidable noise in the residual signals from the signature of an actual
fault affecting the system, while taking into account its parametric uncertainties.

Usually, the presence of noise and parametric uncertainties are handled in two ways [25, 27, 21]:
− firstly, by minimizing or even canceling their influence on the residual generation through some ro-

bustness techniques (the active approach);
− secondly, by processing the residual signals with consideration for the statistical influence of the noise

and of the uncertainties (the passive approach).
However, identifying a probabilistic model of the noise and using it with consideration for the parametric
uncertainties of the model is generally a difficult task which limits the applicability of the statistical methods
of the passive approach. This obstacle has led to the development of so-called set-membership (or bounding)
approaches, where the passive step is achieved through the construction of an adaptive threshold on the
residuals which only relies on the knowledge of the noise and uncertainty bounds [36, 17].

The difficulty common to all set-membership approaches - which also includes reachability analysis, ro-
bust Model Predictive Control (MPC) and state estimation - concerns the computation of the bounding sets,
which are generally hard to compute exactly, especially in real-time. In the literature, geometric results are
generally leveraged to characterize their inner- and outer-approximations. The usual method consists in
approximating all the sets of the problem by convex sets of a convenient class: orthotopes in the case of
interval analysis [1], including interval observer techniques [35, 46, 22]; ellipsoids [31, 49]; parallelotopes [44];
zonotopes [40, 10, 43, 11]; polytopes [9], sometimes considered as constrained zonotopes [55, 45]; or more
generic convex shapes, represented using hybrid zonotopes [16, 7] or constrained convex generators [57, 58].
Dedicated algorithms are then used to compute the exact representation of the sets of interest, or at least
some inner- or outer-approximations when the exact sets cannot be easily computed. The classes of convex
sets and their representations are chosen depending on the system and the task at hand, as a trade-off
between their geometric accuracy and the efficiency of the algorithms associated with their representation.
These set-memberships techniques have sometimes been merged with results from the probabilistic paradigm
mentioned earlier, to enhance their efficiency [38, 5, 15].

Although less common in the literature, there already exist generalized set-membership approaches,
which usually rely on the support functions associated with the convex sets of interest [32, 47]. Under
these generalized approaches, very little structural properties are assumed on the sets of interests, leading
to interesting unified results applicable to all other techniques. This present work falls under the category
of these more generalized frameworks.

1.2. Contributions
This paper is an attempt at providing a unified set-theoretic thresholding perspective to FDI, and at

establishing results that can be applied to a large class of set-membership approaches, with a possibly higher
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degree of accuracy than, for example, by only using ellipsoids. The idea is to establish a flexible framework
to the manipulation of convex (or even star-convex) sets, allowing for easier combinations of the already
existing set-membership approaches to FDI, while unifying them to a new degree of generality. This paper
does not aim at competing with these already existing methodologies, but rather complements them by
offering an alternative and unified analytical point of view to represent the sets of interest, similarly to
support functions. All algorithm dedicated to special classes of convex sets remain applicable under the
proposed methodology, and can be enhanced by leveraging the generic results found in this paper.

To this end, this paper introduces a tool from order theory: a (upper semi-)lattice structure; as well
as a tool from convex analysis: the Minkowski functional (or Minkowski function, or gauge function). The
Minkowski functional has already gained popularity for the control of dynamical systems due to its practi-
cality, in particular to find so-called Minkowski-Lyapunov functions demonstrating the stability of ordinary
differential equations [29, 8, 47]. The authors also believe that these functions are convenient in the context
of set-membership approaches, and in particular for FDI, since the Minkowski functional of a set often
provides a way to describe this set using a single inequality, which can very easily serve as a threshold that
can be scaled up or down. More generally, the Minkowski functional of a set S possesses algebraic properties
linked with the geometric properties of S which are interesting to know in the context of a set-membership
approach. However, as far as the authors are aware, its use has not been adopted in a FDI context yet,
and could be very well-suited to complement already existing set-membership approaches, in particular the
generic approaches relying on support functions.

The main contributions of the paper are listed hereafter:

− The (upper semi-)lattice is introduced as a tool from order theory to isolate the fault occurrences of
a system.

− The Minkowski functional of a set is introduced as a thresholding tool, which can represent a set
implicitly through a simple inequality. The evaluation of the Minkowksi functional gives an intuitive
measurement of the extend to which a set-membership relation is verified. This evaluation is introduced
later in this document as the Minkowski signal associated with the set-membership relation.

− The usual operations of union, intersection, Minkowski sum and linear transformation of convex sets
are investigated under the lens of the Minkowksi functional.

− The expression of the Minkowski functional is leveraged to obtain analytical criteria on the minimal
fault magnitude guaranteeing its isolation.

Although the union and intersection operation are easily dealt with, the Minkowksi sum and the linear
transformation of sets represented by their Minkowski functional remain challenging to obtain without relying
on pre-existing algorithms dedicated to special classes of convex sets. Some inner- and outer-approximations
are nevertheless obtained to approximate the Minkowski sum of convex sets, and a tight result is obtained for
ellipsoids. Similarly, two methodologies to analytically characterize the linear transformation of a convex set
are derived. The opposite properties are found for support functions associated with convex sets, where the
union and intersection set operations are difficult to handle, contrary to the Minkowski sum and the linear
transformation which are easily dealt with. These properties probably explain the prevalence of the support
functions in the set-membership literature. The support function of a set is however not well-adapted for
thresholding purposes. Both tools are complementary in this regard. As a matter of fact, the Minkowski
functional of a compact and convex set is the support function associated with its polar set [53, 47].

The paper is organized as follows. Section 3 presents a highly generic set-membership approach to FDI
for residuals following an uncertain linear internal structure (a notion introduced in Section 3.1). Section 4
introduces the Minkowski functional as a practical tool to compute inner- and outer-approximations of the
sets manipulated in the set-membership approach described earlier, and to generate Minkowski signals from
the residuals, which are easily thresholded. In particular, Section 4.3 provides two analytical characteriza-
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tions of the linear transformation of smooth convex sets. Section 5 illustrates the described methodology
with an academic example. Finally, some conclusions and perspectives are discussed in Section 6.

2. Definitions, Notations

R, R̃, R>s and R≥s denote resp. the field of real numbers, R∪{−∞, +∞}, and the intervals (s, +∞) and
[s, +∞). {x} denotes the singleton containing x. ∪, ∩, \, ⊕ stand resp. for the union, the intersection, the
set difference, and the Minkowski sum between sets. ⊂ and ⊆ stand for the strict and non-strict inclusion.
∅ denotes the empty set. Given two sets S1 ⊆ Rn, S2 ⊆ Rm, and M ∈ Rm×n a matrix with m rows and
n columns, −S1 ≜ {x : −x ∈ S1}, hull(S1) stands for the convex hull of S1, MS1 stands for the linear
transformation of S1 by M , and for all ⋆ ∈ {∪, ∩, \, ⊕}, S1 ⋆M S2 ≜ S1 ⋆ {x ∈ Rn : Mx ∈ S2}. intr(S1),
cls(S1) and ∂S1 denote respectively the interior, the closure and the boundary of S1 in Rn. tS1 denotes the
scaled set {x ∈ Rn : x = ty, y ∈ S1}. The sets of symmetric definite positive real matrix is denoted S++

n (R).
Given two vectors x, y ∈ Rn, ⟨x|y⟩ stands for the usual inner product of the Euclidean space Rn. Let

V be a linear subspaces of Rn. V⊥ denotes the orthogonal complement of V in Rn. dim(V) denotes the
dimension of V.

J·, ·K stands for the integer interval. # stands for the cardinal. Pnf
stands for the power set of J1, nf K,

and for all I ⊆ J1, nf K (i.e. I ∈ Pnf
), I ≜ J1, nf K \ I. Given two positive integers m, n,

(
n
m

)
stands for the

binomial coefficient. ∨ and ∧ stand resp. for the logical “OR” and “AND”.
Given f, g two maps, f ◦ g denotes their composition, f−1 denotes the inverse of f , and ∇f denotes

the gradient of f . Let M represent a linear transformation from Rn to Rm. Im(M) and Ker(M) denote
respectively the image and the kernel of M . This document identifies M with its matrix representation in
the standard basis. M⊤, M−1 and M† denote resp. the transpose, the inverse, and the Moore–Penrose
inverse of M .

3. Set-membership diagnosis

After introducing in Section 3.1 the internal structure of the residual that will be studied throughout
this paper (Definition 3.1), it is recalled in Section 3.2 how the set-membership approach to diagnosis
deals with the question of fault detection using the Direct Image Test (Theorem 3.1), and then a generic
extension of this approach to fault isolation is suggested in Section 3.3 by leveraging some order theory
results (Theorem 3.2). For now, these results are stated using an all-encompassing set-theoretic framework.

3.1. Residuals internal structure
The residuals synthesized for system diagnosis can be written under two forms [27]:

− their computational form, giving their relationship to the measured signals used in their calculation;
− their internal form, giving their relationship to the noises and faults affecting the system.

It is assumed that the computational form of the residuals provides a vector of signals r(θ, t), with θ denoting
the time varying parametric uncertainties of the system, and where r(θ, t) = 0 is verified in a noise- and
fault-free context.

This paper focuses on the set-membership approach to diagnosis schemes where the residuals follow an
uncertain linear internal structure. This structure is introduced in Definition 3.1 below.

Definition 3.1 (Uncertain linear internal structure). The residual signal r(θ, t) ∈ Rnr is said to follow an
uncertain linear internal structure if its internal form can be written as:

r(θ, t) =
nw∑
i=1

Wi(θ, t)wi(t) +
nf∑
i=1

Fi(θ, t)fi(t) (1)
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with wi(t) ∈ Wi ⊂ Rnwi the bounded noises affecting the residual signals, fi(t) ∈ Fi ⊂ Rnfi the potential
faults to be detected, θ ∈ Θ ⊂ Rnθ the time-varying uncertainties of the system, and Wi ∈ Rnr×nwi ,
Fi ∈ Rnr×nfi uncertain time-varying matrices. Let Ω(t) ⊆ Θ denote the bounding set for the uncertainties
θ of the system at time t. The union over all the uncertainties θ ∈ Ω(t) of the residual signals is referred to
as the residual set and is denoted R(t):

R(t) ≜
⋃

θ∈Ω(t)

{r(θ, t)} (2)

This structure is common among residuals obtained for Linear Time Invariant, Time Varying, and
Parameter Varying (LTI, LTV, LPV) discrete-time systems. In particular, residual signals following this
internal structure can be obtained with parity space approaches or some simple diagnostic observer designs
[27, 39, 40, 11]. Note that this structure can also be leveraged for residuals with a more complex internal
structure by means of linearization, or by considering the residuals’ internal nonlinearities as new parametric
uncertainties.

Remark 3.1. Despite (1) being an instantaneous expression, delays on the disturbances, on the faults and
on the time-varying components of the matrices are not difficult to handle by considering w̃i(t) = wi(t − τi),
f̃i(t) = fi(t − τi), W̃i(θ, t) = Wi(θ, t − τi) and F̃i(θ, t) = Fi(θ, t − τi), with τi ≥ 0. However, if the parametric
uncertainties θ ∈ Ω(t) are also time-varying and subject to delays, the residuals analysis can become more
challenging, and some assumptions on the variation rate of θ may become extremely useful to approximate
the bounding set Ω(t).

Remark 3.2. The choice of writing the residuals in the form (1) might be surprising, as they can be simply
rewritten as the uncertain linear transformation of a single fault and noise vector. The sums are introduced
in order to distinguish between several types of additive faults and noises (actuator, sensor, or parametric
faults and noises), at potentially different instant of the past. Moreover, the faults and noises are assumed to
be vectors instead of scalars in order to limit the number of terms in the sums, hence reducing the complexity
and conservatism of the FDI methods described in this paper. The model described above contains in fact
mw scalar noises and mf scalar faults, with:

mw ≜
nw∑
i=1

nwi , mf ≜
nf∑
i=1

nfi (3)

Example 3.1 (Parity Relations [40]). Considering the following uncertain discrete-time linear system:

xt+1 = A(θ)xt + B(θ)ut + G1(θ)ft + V1(θ)wt (4a)
yt = C(θ)xt + D(θ)ut + G2(θ)ft + V2(θ)wt (4b)

where xt ∈ Rnx is the state of the system, θ ∈ Θ ⊂ Rnθ is a vector of parametric uncertainties, ut ∈ Rnu is
the known input vector, yt ∈ Rny is the measured output vector, ft ∈ F ⊂ Rnx are potential faults to detect,
and wt ∈ W ⊂ Rnx are the bounded noises affecting the system. In the following parity space approach, θ
is assumed to be a constant and unknown uncertainty at a horizon of h time steps. It is moreover assumed
that an estimation of θ, denoted θ̂, is known. The residual r([θ, θ̂], t) is a vector signal with the following
computational and internal form resp.:

r([θ, θ̂], t) ≜ N(θ̂)
(

Yt − Γu(θ̂)Ut

)
(5a)

r([θ, θ̂], t) = N(θ̂)
(

O(θ)xt + Γw(θ)Wt + Γf (θ)Ft +
(

Γu(θ) − Γu(θ̂)
)

Ut

)
(5b)

with for all (Z, z) ∈ {(U, u), (Y, y), (W, w), (F, f)}, Zt =
(

z⊤
t−h . . . z⊤

t

)⊤, and where the matrix N is
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synthesized such that N(θ̂)O(θ)xt ≈ 0, with

Γu =


D 0

CB
. . .

...
. . .

CAh−1B . . . CB D

 , Γw =


V2 0

CV1
. . .

...
. . .

CAh−1V1 . . . CV1 V2

 ,

Γf =


G2 0

CG1
. . .

...
. . .

CAh−1G1 . . . CG1 G2

 , O =
[

C⊤ [CA]⊤ . . . [CAh]⊤
]⊤

(6)

where the dependence on θ or θ̂ has been omitted for concision. The residual r follows the uncertain linear
internal structure introduced in Definition 3.1 if N(θ̂)O(θ)xt and (Γu(θ) − Γu(θ̂))Ut are assumed to be
bounded noise signals.

Example 3.2 (Luenberger observer [24]). The system (4) is considered once again, but θ is now assumed to
be an uncertainty measured in real-time. The Luenberger observer (7) is designed with a matrix L ∈ Rnx×ny

chosen such that the system generating the state estimation error et+1 = (A(θt) + LC(θt))et is globally
asymptotically stable.

x̂t+1 = A(θt)x̂t + B(θt)ut + L(yt − C(θt)x̂t − D(θt)ut) (7)

A residual r([θt, θt−1], t) can be obtained with the following computational and internal form resp.:

r([θt, θt−1], t) ≜yt − C(θt)x̂t − D(θt)ut (8a)
r([θt, θt−1], t) =C(θt)[A(θt−1)(xt−1 − x̂t−1) − Lr([θt−1, θt−2], t − 1) + G1(θt−1)ft−1 + V1(θt−1)wt−1]

· · · + G2(θt)ft + V2(θt)wt (8b)

The residual r follows the uncertain linear internal structure introduced in Definition 3.1 if the state esti-
mation error (xt−1 − x̂t−1) and the residual at the previous time-step r([θt−1, θt−2], t − 1) are assumed to
be noise signals, with bounds that can be evaluated recursively, e.g. using set-membership state estimation
[54, 6].

Remark 3.3. From now on, the time-dependence in r(θ, t), R(t), W (θ, t), wi(t), F (θ, t), and fi(t) is
omitted, resp. r(θ), R, W (θ), wi, F (θ) and fi.

3.2. Fault detection
As discussed in the introduction, fault detection consists in performing a consistency test to a monitored

dynamical system in order to detect if the system is subject to at least one occurring fault. In a fault-
free context, a residual r(θ) following the structure (1) is only affected by noises, and belongs to Rθ, a
finite Minkowski sum of uncertain linear transformations of the sets (Wi)1≤i≤nw . Knowing precisely these
bounding sets, the set-membership approach provides r(θ) ∈ Rθ as an elementary consistency test across
all uncertainties θ ∈ Θ, where Rθ is the set of all the residual values possibly due to the noises, defined by:

Rθ ≜
nw⊕
i=1

Wi(θ)Wi, and RΘ ≜
⋃

θ∈Θ
Rθ (9)

The boundary of Rθ can be considered as an exact or clear-cut threshold for fault detection, since it provides
the sharpest criterion to detect a fault which also avoids any false detection. Checking if the residuals verify
∪θ∈Θ(r(θ) \ Rθ) ̸= ∅ in order to detect a fault is usually called the Direct Image Test (DIT) [43, 62], and it
relies on the following property:
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Theorem 3.1 (Direct Image Test). Considering that the following statement holds:

∀i ∈ J1, nf K, fi = 0 ⇒ ∀θ ∈ Θ, r(θ) ∈ Rθ (10)

the contrapositive statement provides:

∃θ ∈ Θ, r(θ) /∈ Rθ ⇒ ∃i ∈ J1, nf K, fi ̸= 0 (11)

which is to say: if there exists an uncertainty θ ∈ Θ for which the residual r(θ) does not belong to the set
Rθ (or more succinctly, if ∪θ∈Θ(r(θ) \ Rθ) ̸= ∅), then at least one fault has occurred in the system.

Remark 3.4. Note that no internal model of the faults influence on the residuals is leveraged at this point,
hence this fault detection scheme can be applied to any residuals signals for which the influence of the noises
on the residuals reduces to the internal structure (1) in a fault-free context.

Remark 3.5 (Robust Direct Image Test). This test is not equivalent to checking if (∪θ∈Θ r(θ))\(∪θ∈ΘRθ)) ≜
R \ RΘ ̸= ∅ (with R defined in (2)). This later test, although not as sharp as (11), is still interesting as it
does not require to know which uncertainty θ is responsible for each residual in R, which is often the case
in fault diagnosis schemes. This paper refers to this latter test as the Robust DIT (RDIT).

The DIT still works using inner-approximations of Θ or outer-approximations of RΘ. In particular, the
literature sometimes evaluates Ω̂(t), an estimated set of values for θ at time t (such that Ω(t) ⊆ Ω̂(t) ⊆ Θ
in (2)) using some additional assumptions on θ (e.g. known dynamic, bounded rate of variation, partial
estimation, etc). The DIT described above is then performed with this set estimate in order to detect a fault.
This approach is sometimes called the inverse image test, where the term inverse refers to the dynamical
construction of Ω̂(t), which can involve the computation of the pre-image set of some output signals [43, 62].
This paper will mainly focus on DIT, but its extension to inverse image tests is possible as long as residuals
of the form (1) can be constructed. In that case, instead of Θ, the set Ω̂(t) should be considered.

3.3. Fault isolation
Following the ideas previously introduced, checking what are the occurring faults in the system can again

be achieved by means of consistency tests. Moving forward, Pnf
stands for the power set of J1, nf K, i.e. the

set of all the subsets of J1, nf K, and for all I ⊆ J1, nf K (i.e. I ∈ Pnf
), I ≜ J1, nf K \ I. Assuming I ∈ Pnf

a
list of potentially active faults indices, the obtainable residuals are given by the set Rθ,I defined hereafter.

Definition 3.2 (Feasible set). The feasible set Rθ,I is the set of residuals obtainable with I ∈ Pnf
a list of

potentially active faults indices. The residuals structure (1) provides:

Rθ,I ≜ Rθ ⊕

(⊕
i∈I

Fi(θ)Fi

)
, and RΘ,I ≜

⋃
θ∈Θ

Rθ,I (12)

where it is considered that Rθ,∅ = Rθ in a fault-free context. The collections of all the feasible sets are
denoted FSθ and FSΘ, with:

FSθ ≜ {Rθ,I : I ∈ Pnf
}, FSΘ ≜ {RΘ,I : I ∈ Pnf

} (13)

It is easily verified that there are #FSθ = 2nf feasible sets, hence their calculation can rapidly become
computationally heavy, especially over all uncertainties θ. Moreover, in a faulty situation, the fault isolation
process has to discriminate between all the feasible sets containing r(θ) in order to estimate the list of
possible active faults. This task is difficult, and to the authors’ knowledge, the literature has only tackled
this problem for specific fault isolation schemes. In particular, fault isolation has motivated the design of
Dedicated and Generalized Observer Schemes (the DOS and GOS architectures) [24] and the use of struc-
tured residuals and fault matrices [28]. Leveraging some tools from order theory, this section provides a

7



∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

⊆

φ

Figure 2: Hasse diagram of the lattice (P3, ⊆) in relation to the inclusion hierarchy of the feasible sets FSΘ.

straightforward and all-encompassing procedure to fault isolation, which generalizes the DIT discussed pre-
viously.

As a first observation, one can notice that the inclusion hierarchy of the feasible sets (13) contains at least
the same lattice structure as the power set Pnf

taken with the inclusion ⊆ as a lattice ordering (Figures 2
and 3). This is formalized in the following property.

Property 3.1 (Order structure of the feasible sets). Let FSθ be considered with the partial order ⪯ defined
by Rθ,I1 ⪯ Rθ,I2 if and only if I1 ⊆ I2. (FSθ, ⪯) and (Pnf

, ⊆) have an isomorphic lattice structure.
Moreover if 0 ∈ Fi for all i ∈ J1, nf K (i.e., each fault can be null), then:

∀I1, I2 ∈ Pnf
, Rθ,I1 ⪯ Rθ,I2 ⇒ Rθ,I1 ⊆ Rθ,I2 (14)

meaning ⪯ is only a restriction of the partial order ⊆ on FSθ.

Proof. The map φ : Pnf
→ FSθ defined such that for all I ∈ Pnf

, φ(I) = Rθ,I , is by definition an order
isomorphism, and order isomorphisms preserve lattice structures, hence, since (Pnf

, ⊆) is a lattice, then
(FSθ, ⪯) has an isomorphic lattice structure. Moreover if 0 ∈ Fi for all i ∈ J1, nf K, from equation (2) and
by definition of the Minkowski sum, (14) holds, and φ is an order homomorphism between (Pnf

, ⊆) and
(FSθ, ⊆).

Remark 3.6. This property is easily extended to FSΘ (Figure 2).

Remark 3.7. Notice that the reciprocal to (14) is not verified in general, since non-trivial inclusions such
as Rθ,{2} ⊆ Rθ,{1,3} can hold true in practice. Hence, even if (FSθ, ⊆) contains at least the lattice structure
of (Pnf

, ⊆) by restriction to (FSθ, ⪯), it is not necessarily a lattice itself (Figure 3).

As discussed previously, the DIT described in Theorem 3.1 can be generalized to the feasible sets (13).
In that case, in order to prove that at least one fault of index i ∈ I has occurred in the system, one must
show that a residual r(θ) does not belong to the feasible set which has the complement of I (denoted I) as a
list of potentially active faults. Succinctly, there must exists a θ ∈ Θ such that r(θ) /∈ Rθ,I to demonstrate
that one of the fault of index i ∈ I is active. Contrary to the DIT to fault detection, all sets of potentially
active faults I ∈ Pnf

have to be considered, and the question of which elements of Pnf
verifying the DIT

provide the most meaningful results must be raised. It is shown below that the sets of FSθ satisfying the
DIT follow an upper semi-lattice structure [18], where the strongest statements about the system’s faults
are found at the bottom of the semi-lattice (Example 3.3 illustrated by Figure 4).
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Rθ

Rθ,{1} Rθ,{2} Rθ,{3}

Rθ,{1,2} Rθ,{1,3} Rθ,{2,3}

Rθ,{1,2,3}

⊆
Rθ

Rθ,{1} Rθ,{2} Rθ,{3}

Rθ,{1,2} Rθ,{1,3} Rθ,{2,3}

Rθ,{1,2,3}

⪯

Figure 3: Hasse diagram of the lattice (FSθ, ⪯) (on the left) and of the partially ordered set (FSθ, ⊆) (on the right) with
nf = 3, where the non-trivial inclusion Rθ,{2} ⊆ Rθ,{1,3} is verified.

Theorem 3.2 (Generalized Direct Image Test). If 0 ∈ Fi for all i ∈ J1, nf K (i.e., each fault can be null),
then, the DIT set defined below is an upper semi-lattice with inclusion taken as partial order.

DIT =
{

I ∈ Pnf
: ∃θ ∈ Θ s.t. r(θ) /∈ Rθ,I

}
(15)

Denoting Pi with i ∈, J1, nf K and QI with I ≜ {i1, . . . , ip} ∈ Pnf
the following statements:

Pi ≜ [fi ̸= 0] : “ The i-th vector fault is active” (16a)
QI ≜ Pi1 ∨ · · · ∨ Pip

: “ At least one of the i1-th, . . . , ip-th vector fault is active” (16b)

the DIT set demonstrates that the statement
∧

I∈DIT QI holds true. Moreover, the following equivalence
holds:  ∧

I∈DIT
QI

 ⇔

 ∧
I∈me(DIT)

QI

 (17)

where me(DIT) stands for the sets of minimal elements of (DIT, ⊆). These elements belong to Pnf
and

summarize all the information about the faults’ activity that can be deduced from DIT.

Proof. This proof is split in three parts. First, (DIT, ⊆) is shown to be an upper semi-lattice. Then∧
I∈DIT QI is shown to hold. Finally, the equivalence (17) is proved.

To prove that (DIT, ⊆) is an upper semi-lattice, as DIT ⊆ Pnf
, it is sufficient to demonstrate the sta-

bility of DIT with respect to inclusion [18]. Let I1 ∈ DIT and I2 ∈ Pnf
such that I1 ⊆ I2. By definition

there exits θ ∈ Θ for which r(θ) /∈ Rθ,I1
. Since I2 ⊆ I1, by an application of the lattice isomorphism φ,

Rθ,I2
⪯ Rθ,I1

, and finally if 0 ∈ Fi for all i ∈ J1, nf K, (14) provides Rθ,I2
⊆ Rθ,I1

, hence r(θ) /∈ Rθ,I2
,

meaning I2 ∈ DIT.

The statement
∧

I∈DIT QI holds by a direct and repeated application of the usual DIT to the sets RΘ,I
with I ∈ Pnf

.

Finally the equivalence (17) is shown by double implication.

⇒ This implication is an easy consequence of me(DIT) ⊆ DIT.

⇐ On one hand, for all I1, I2 ∈ DIT, (I1 ⊆ I2) ⇒ (QI1 ⇒ QI2) is trivial considering that QIj

holds if and only if at least one of the (Pi)i∈Ij
holds, with j ∈ {1, 2}. On the other hand, considering
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{1}

{1, 2} {1, 3} {1, 4} {2, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

⊆

Figure 4: Hasse diagram of upper semi-lattice (DIT, ⊆) defined in Example 3.3.

{I1 ∈ DIT : I1 ⊆ I2} a subset of DIT, since this set is finite, it must contain at least one minimal
element, which will also be a minimal element of DIT by definition. Hence for all I2 ∈ DIT, there exists
I1 ∈ me(DIT) such that I1 ⊆ I2, which implies (QI1 ⇒ QI2). Repeating the process for all QI in(∧

I∈DIT QI
)

demonstrates the implication.

Corollary 3.1 (Generalized Robust Direct Image Test). The following inclusion is verified (with R defined
in (2)):

RDIT ≜
{

I ∈ Pnf
: R \ RΘ,I ̸= ∅

}
⊆ DIT (18)

The set RDIT (Robust Direct Image Test) on the left also follows an upper semi-lattice structure with respect
to inclusion, where the minimal elements summarize all the information about the faults’ activity that can
be deduced from the elements in the set.

Remark 3.8. As noted in Remark 3.5, the tests performed to obtain the elements of RDIT do not require
to know which uncertainty θ is responsible for each residual r(θ) in R.

Corollary 3.2 (Fault isolation). If there exists I ∈ DIT (or I ∈ RDIT) such that #I = 1, i.e. I = {i}
with i ∈ J1, nf K, then the i-th fault has been isolated and fi ̸= 0 is guaranteed.

Remark 3.9. No matter how many faults are active in the system, r(θ) ∈ Rθ,J1,nf K and R ⊆ RΘ,J1,nf K are
always verified by definition, and the edge cases ∅ ∈ DIT and ∅ ∈ RDIT do not need to be considered. If
these edge cases happen anyway, it means that the model used for the residual is incorrect or incomplete.

Remark 3.10. As for the DIT and the RDIT, these generalized DIT and RDIT still work using inner-
approximations of Θ or outer-approximations of Rθ,I .

Example 3.3. Consider a system with nf = 4 potentially active faults, and a residual R such that the DIT
results in:

DIT = {{1}, {1, 2}, {1, 3}, {1, 4}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}} (19)

The upper semi-lattice structure of DIT is illustrated by Figure 4. The minimal elements of DIT are given
below:

me(DIT) = {{1}, {2, 4}} (20)

Hence, the generalized DIT provides the truth statement P1 ∧ (P2 ∨ P4), i.e. [f1 ̸= 0] ∧ ([f2 ̸= 0] ∨ [f4 ̸= 0])
which is to say: the first fault of the system is active, and the second or the fourth (or both) faults are active.

10



tS
S

µS(x) = t

x

Figure 5: Minkowski functional of a set S of R2, star-convex at 0.

4. The Minkowski functional for set-membership fault isolation

In practice, the feasible sets (13) introduced in Definition 3.2 can be difficult to compute, and when
their direct calculation is not possible, inner- and outer-approximation of these sets are often used as fault
detection thresholds. In this section, the authors suggest a unifying approach where the geometric problem
of finding inner- and outer-approximations to the feasible sets of the previous section is translated into the
problem of upper- and lower-bounding their Minkowski functionals.

Section 4.1 begins with the introduction of the general properties of the Minkowski functional, and,
in particular, how to use it for the usual set operations (union, intersection, Minkowski sum and left-
invertible linear transformations). In Section 4.3, two new characterizations of the (non-invertible) linear
transformation of smooth convex sets are provided. Finally, these results are leveraged in Section 4.4 to
obtain a generic solution to the inner- and outer-approximation problem of the feasible sets (13), providing
upper-bounds on the minimal faults magnitude guaranteeing fault isolation through the generalized image
test.

4.1. The Minkowski functional
Intuitively, the Minkowski functional µS associated with the set S is defined such that for all x, µS(x)

provides the smallest scaling t of the set S with respect to the origin such that the scaled set tS reaches x
(Figure 5). This definition is formalized below, and the expression of the Minkowski functional is specified
for the usual classes of convex sets.

Definition 4.1 (Minkowski functional [53]). Given S a non-empty set of Rn, the Minkowski functional
associated to S is the map µS : Rn → R̃≥0 defined by:

µS(x) ≜ inf
{

t ∈ R̃≥0 : x ∈ tS
}

(21)

Remark 4.1. The set S is said to be absorbing if µS < +∞.

Remark 4.2. Alternative functionals can be used for off-centered sets S ⊂ Rn, where the scaling is performed
with respect to a point x0 ∈ Rn instead of the origin, such that µx0

S ≜ µS⊕{−x0}.

Example 4.1 (p-Ball [53]). The Minkowski functional of Bp ⊂ Rn the unit ball of norm p ∈ R̃≥1 centered
at the origin is given by:

µBp
(x) = ∥x∥p (22)

where ∥x∥p stands for the p-norm of x.

11



Example 4.2 (Ellipsoid [8]). The Minkowski functional of an ellipsoid E ⊂ Rn centered at the origin is
given by:

µE(x) = µMB2(x) =
√

x⊤Qx (23)
with M ∈ Rn×m a full row rank matrix, and Q ∈ S++

n (R), the positive definite matrix given by Q =
(MM⊤)−1.

Example 4.3 (Zonotope [3]). The Minkowski functional of a zonotope Z ⊂ Rn centered at the origin is
given by:

µZ(x) = µGB∞(x) = ∥Lx∥∞ (24)
with G ∈ Rn×m a full row rank matrix, and L ∈ Rp×n the matrix whose p =

(
m

n−1
)

rows are given by lI/dI
for all I ⊆ J1, mK with #I = m − n + 1, and such that

lI = ×n(G⟨I⟩)⊤

∥×n(G⟨I⟩)∥2
(25a)

dI = ∥lIG∥1 (25b)

with G⟨I⟩ the matrix G taken without its columns of index in I, and ×n the generalized vector product
defined by:

∀H ∈ Rn×(n−1), ×n(H) ≜
(

. . . (−1)i+1 det H [i] . . .
)⊤ (26)

where H [i] stands for the sub-matrix defined by H without its i-th row.

Remark 4.3. A parallelotope is a zonotope where m = n. An orthotope is a zonotope where G = In.

Example 4.4 (Polytope [23]). Given P ⊂ Rn a compact and convex polytope whose interior contains the
origin and whose halfspace-representation is given by:

P = {x ∈ Rn : ∀k ∈ J1, mK, ⟨hk|x⟩ ≤ 1} (27)

with (hk)1≤k≤m as set of m vectors of Rn, then, the Minkowski functional of P is given by:

µP(x) = max
k∈J1,mK

⟨hk|x⟩ (28)

Remark 4.4. As discussed in [55], it is possible to extract the polytopic halfspace-representation of con-
strained zonotopes, and it is therefore also possible to obtain their Minkowski functional.

Remark 4.5. At their final set-based evaluation, hybrid zonotopes can be considered as the union of a
finite number of constrained zonotopes. As such, it is also possible to obtain an explicit expression of
their Minkowksi functional [16, 7]. It is the minimum of all the Minkowski functionals associated with the
constrained zonotopes of this union (see Property 4.3 and Remark 4.6).

Example 4.5 (Radially parameterized set). Let O ⊂ Rn be a star-convex set at 0 whose boundary can be
parameterized radially by the map ρ : [0, π)n−2 × [0, 2π) → R>0 such that

∂O =


ρ(φ)


cos(φ1)

sin(φ1) cos(φ2)
...

sin(φ1) . . . sin(φn−2) cos(φn−1)
sin(φ1) . . . sin(φn−2) sin(φn−1)

 : φ ∈ [0, π)n−2 × [0, 2π)


(29)

with φ ≜ (φ1, . . . , φn−1). The Minkowski functional of O is given by:

µO(x) =
{

∥x∥2/ρ(φ(x)) if x ̸= 0
0 else

(30)
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where φ(x) = (φ1(x), . . . , φn−1(x)) stands for the following angular coordinates of x:

φk(x) = arccos xk√∑n
i=k x2

i

, ∀k ∈ J1, n − 2K (31a)

φn−1(x) = 2 arccot
xn−1 +

√
x2

n + x2
n−1

xn
(31b)

Proof. It is easily verified that µO(0) = 0. Moreover, for all x ∈ Rn \ {0}, the following equalities stand:

µO(x) = inf{t ∈ R̃≥0 : x ∈ tO}
= inf{t ∈ R̃≥0 : x ∈ tρ(φ(x))B2}

= inf{t ∈ R̃≥0 : 1
tρ(φ(x))x ∈ B2}

= µB2(x/ρ(φ(x))) = ∥x∥2/ρ(φ(x))

(32)

This concludes the proof.

4.2. Properties
First, the classical properties on the Minkowski functional associated with star-convex and convex sets

are recalled. In particular, when S is a star-convex set at 0 (i.e. tS ⊆ S for all t ∈ [0, 1] [53]) of Rn whose
interior contains 0, checking if x ∈ Rn belongs - in a loose sense - to tS, can simply be achieved by verifying
the inequality µS(x) ≤ t. This fact is formalized, among others, in the two properties below.

Property 4.1 (Star-convex properties [52, 51]). Let S be a bounded star-convex set at 0 of Rn whose interior
contains 0. The Minkowski functional µS : Rn → R≥0 associated with S satisfies:

1. For all x ∈ Rn, 0 ≤ µS(x) < +∞,
2. For all x ∈ Rn and t ∈ R≥0, µS(tx) = tµS(x), and µS(tx) = µ 1

t S(x) if t ̸= 0,
3. µ−1

S ([0, 1)) ⊆ S ⊆ µ−1
S ([0, 1]).

Property 4.2 (Convex properties [33]). Let S be a convex set whose interior contains 0. The Minkowski
functional µS : Rn → R≥0 associated with S satisfies:

1. For all x1, x2 ∈ Rn, µS(x1 + x2) ≤ µS(x1) + µS(x2),
2. µS ∈ C0(Rn,R≥0),
3. µ−1

S ([0, 1)) = intr(S), µ−1
S ([0, 1]) = cls(S), µ−1

S ({1}) = ∂S.

Item 1 hereabove combined with item 2 of Property 4.1 makes µS a convex function.

For all non-empty sets S1 and S2, it is easily established from Definition 4.1 that S1 ⊆ S2 provides
µS2 ≤ µS1 , however S1 and S2 need to be star-convex at 0 for the reciprocal to hold (this is a particular
case of (33b) stated below). Moreover, the usual set operations of union, intersection and Minkowski sum
can also be expressed in terms of Minkowski functionals as follows.

Property 4.3 (Usual set operations). Given M a linear map from Rn to Rm in matrix form, and S1, S2
two bounded star-convex sets at 0 of Rn and Rm respectively and whose interior contains 0. For all x ∈ Rn,
the following identities hold:

µS1∪M S2(x) = min{µS1(x), µS2(Mx)} (33a)
µS1∩M S2(x) = max{µS1(x), µS2(Mx)} (33b)
µS1⊕M S2(x) = inf

x1+x2=x
{max{µS1(x1), µS2(Mx2)}} (33c)

Given ⋆ ∈ {∪, ∩, ⊕}, then the set operation S1 ⋆M S2 stands for S1 ⋆ {x ∈ Rn : Mx ∈ S2}.
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Proof. Given any set operation ⋆ ∈ {∪, ∩, ⊕}, by definition of S1 ⋆M S2, and since µ{x∈Rn:Mx∈S2} = µS2 ◦ M
holds, then, the proof reduces to showing that (33) holds when m = n and M = In. Note that (33a) holds
even if S1 and S2 are simply non-empty sets without further assumptions: this follows from Definition 4.1
and from inf ∪ = min inf in this context (see Exercise 1.5 from [60], which can be solved by contradiction):

inf{t ∈ R̃≥0 : x ∈ t(S1 ∪ S2)} = inf ∪i∈{1,2}{t ∈ R̃≥0 : x ∈ tSi} = min
i∈{1,2}

inf{t ∈ R̃≥0 : x ∈ tSi} (34)

The proof of (33b) can be found in Lemma 5.49, page 192 of [2]. Finally, the proof of (33c) can be found
in Lemma 1, page 9 of [30] in the convex and balanced case, but it is easily noticed that the proof only
leverages Property 4.1, hence Lemma 1 at page 9 of [30] also holds in the star-convex case.

Remark 4.6. The identities (33a), (33b) and (33c) can easily be generalized to finite collections (Si)1≤i≤m

of bounded star-convex sets at 0 of Rn and whose interior contains 0:

µ∪m
i=1Si

(x) = min
1≤i≤m

µSi
(x) (35a)

µ∩m
i=1Si

(x) = max
1≤i≤m

µSi
(x) (35b)

µ⊕m
i=1Si(x) = inf

x1+···+xm=x

{
max

1≤i≤m
µSi(xi)

}
(35c)

The identity (33a) can be extended to uncountable collections (Sj)j∈[0,1] simply by replacing the min1≤i≤m

by an infj∈[0,1]. The existence of this inf is easily deduced by the fact that the Minkowski functional is
bounded from below by 0, and the deduction of this identity follows the same steps as (34), by leveraging
inf ∪ = inf inf in this context (using a similar proof by contradiction).

Among the previous set operations, the Minkowski functional associated with the Minkowski sum (33c)
is impractical for direct computation since it combines both an inf and a max in its expression. However,
elementary upper- and lower-bounds can be retrieved respectively by evaluating the max at specific values
of xi (hence upper-bounding the inf), or by determining the inf of the average of all of the µSi(xi) (hence
lower-bounding the max). The authors also suggest in Property 4.4 some less straightforward inequalities
to bound the value of (33c).

Property 4.4 (Minkowski sum of convex sets). Let (Si)1≤i≤m be a collection of bounded star-convex sets
at 0 of Rn whose interior contains 0. For all x ∈ Rn \ {0}, the following holds:

1
m

· µhull(∪m
i=1Si)(x) ≤ µ⊕m

i=1Si(x) ≤ 1∑m
i=1

1
µSi

(x)
(36)

which can be lower-bounded again using max1≤i≤m{siµSi
(x)} ≤ µhull(∪m

i=1Si)(x), where the (si)1≤i≤m ∈ Rm
>0

are taken such that hull(∪m
i=1Si) ⊆ ∩m

i=1
1
si

Si.

Proof. µ⊕ ≤ . . . Let x ∈ Rn \ {0}. The Si being star-convex at 0, their Minkowski sum is also star-convex
at 0. Hence given (ti)1≤i≤m ∈ Rm

>0 taken such that tix ∈ Si, then for all 0 ≤ λ ≤ (
∑m

i=1 ti), λx ∈ ⊕m
i=1Si is

verified by definition of the Minkowski sum. This provides the following lower-bound:

sup ⊕m
i=1{t ∈ R>0, tx ∈ Si} ≤ sup{t ∈ R>0, tx ∈ ⊕m

i=1Si} (37)

Note that sup ⊕ =
∑

sup in this context [42], hence the expression above can be rewritten as [37]:
m∑

i=1

1
inf{t ∈ R>0, x ∈ tSi}

≤ 1
inf{t ∈ R>0, x ∈ t ⊕m

i=1 Si}
(38)

Recognizing the Definition 4.1 of the Minkowski functional in the expression above provides the upper-bound
in (36).
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· · · ≤ µ⊕ Since for all i, Si ⊆ hull(
⋃m

j=1 Sj), the following upper-bound holds:

sup{t ∈ R>0, tx ∈ ⊕m
i=1Si} ≤ sup{t ∈ R>0, tx ∈ ⊕m

i=1 hull(∪m
i=1Si)} (39)

Moreover, since ⊕m
i=1 hull(

⋃m
i=1 Si) = m · hull(

⋃m
i=1 Si), the following holds:

1
inf{t ∈ R>0, x ∈ t ⊕m

i=1 Si}
≤ m

inf{t ∈ R>0, x ∈ t hull(∪m
i=1Si)}

(40)

Recognizing the Definition 4.1 of the Minkowski functional provides the lower-bound in (36). Finally, since
all Si contain 0 in their interior, for all i there exists εi > 0 such that εiB2 ⊆ Si, meaning there exists
si ∈ R>0 such that hull(∪m

i=1Si) ⊆ 1
si

εiB2 ⊆ 1
si

Si. Given hull(∪m
i=1Si) ⊆ ∩m

i=1
1
si

Si, the straightforward gen-
eralization of (33b) to m intersections combined with item 2 of Property 4.1 provides max1≤i≤m{siµSi

(x)} ≤
µhull(∪m

i=1Si)(x).

Although these inner- and outer-approximations may not always be practically handled, the Minkowski
functional of a Minkowski sum can still be obtained for special classes of convex sets for which dedicated
algorithms already exist (e.g. constrained zonotopes [55, 45]). Moreover, if the Minkowski sum is difficult
to handle, the usage of the Minkowski functional can also lead to advantageous results for special classes of
convex set, as demonstrated hereafter on ellipsoids.
Property 4.5 (Minkowski sum of two ellipsoids). Let E(Q1) ≜ {x ∈ Rn : x⊤Q1x ≤ 1} and E(Q2) be defined
similarly, with Q1, Q2 ∈ S++

n (R). The eigenvalues of the matrix pencil (Q−1
2 , Q−1

1 ), solutions of the equation

det(Q−1
1 − λQ−1

2 ) = 0 (41)

are denoted as:
λ = λ1 ≤ · · · ≤ λn = λ (42)

Let I be a finite subset of [λ, λ]. The following inequality holds for all x ∈ Rn:

max
p∈I

µE(Q(p))(x) ≤ µE(Q1)⊕E(Q2)(x) (43)

where
Q(p) ≜

(
(1 + p−1)Q−1

1 + (1 + p)Q−1
2
)−1 (44)

This outer-approximation can be made arbitrarily precise by increasing the number of points in I.
Proof. Theorem 2.2.3 at page 118 of [31] states that:

E(Q1) ⊕ E(Q2) =
⋂

p∈[λ,λ]

E(Q(p)) (45)

hence:
E(Q1) ⊕ E(Q2) ⊆

⋂
p∈I

E(Q(p)) (46)

The result is then obtained by applying (35b) to the right-hand side of the inclusion (46).

Finally, the Minkowski functional of a linearly transformed set is given below.
Property 4.6 (Linear transformation). Given M a linear map from Rn to Rm in matrix form and S a
non-empty set of Rn , if M has a left inverse, then for all x ∈ Im(M):

µMS(x) = µS(M†x) (47)

with M† the Moore–Penrose inverse of M , such that M†M = In.
Proof. The linear transformation M is injective, hence M† is the inverse of M on Im(M). Moreover, for all
t ∈ R≥0, tMS ⊆ Im(M), hence (47) holds for all x ∈ Im(M).

Other practical characterizations of the linear transformation of a convex set are obtained thereafter.
This manuscript focuses on the non-invertible linear case since, to the authors’ knowledge, practical char-
acterizations of µMS are not found in the literature of the Minkowski functional.
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4.3. Linear transformation of smooth convex sets
In order to generalize Property 4.6, this paper provides two characterizations for the Minkowski functional

of a linearly transformed smooth compact and convex set S of Rn whose interior contains the origin. The
first characterization is obtained for strictly convex sets with the help of the Legendre transform, which is a
common tool in convex analysis. The second characterization is obtained using a result on the orthogonal
projection of convex set onto the linear subspaces of Rn [4]. From now on, M is a linear map from Rn to
Rm, k is defined by k ≜ dim(Im(M)) = dim(Ker(M)⊥) with the assumption that k ≥ 1 (indeed, MS = {0}
if k = 0, which is not an interesting case to consider).

Definition 4.2 (Legendre transform [53]). Given a closed and convex function f : Rn → R̃, the Legendre
transform of f is given by the convex function f∗ : Rn → R̃ such that:

f∗(y) ≜ sup
x∈Rn

(⟨y|x⟩ − f(x)) (48)

Theorem 4.1 (First characterization). Let S be a smooth compact and strictly convex set of Rn whose
interior contains 0, and g : R≥0 → R≥0 be a bijective strictly increasing and strictly convex function such
that g ◦ µS is differentiable over Rn. Let f1 : Rn → Rn and f2 : Rm → Rm be two functions defined by

f1 = ∂

∂x
[g ◦ µS ] (49a)

f2 = M ◦ ∂

∂x
[(g ◦ µS)∗] ◦ M⊤ (49b)

Then, f1 is invertible on f1(Rn), and for all y ∈ ∂
∂x f1(Rn)

(g ◦ µS)∗(y) =
〈
f−1

1 (y)|y
〉

− g ◦ µS ◦ f−1
1 (y) (50)

From here, if f2 is invertible on f2(Rm), it is possible to retrieve the expression of µMS by computing

µMS(y) = g−1(
〈
f−1

2 (y)|y
〉

− (g ◦ µS)∗ ◦ M⊤ ◦ f−1
2 (y)) (51)

which offers a characterization of the linear transformation of S by M that - in spite of its apparent com-
plexity - can sometimes be treated algebraically. The problem is reduced to finding a suitable g and an inverse
for f1 and f2.

Proof. First it is proven that g ◦ µS is a strictly convex function. Let x1, x2 ∈ Rn such that x1 ̸= x2 and
t ∈ (0, 1). On one hand, if µS(x1) = µS(x2) = λ, then necessarily x1, x2 ̸= 0, and by strict convexity of S:

tx1 + (1 − t)x2 ∈ intr(λS) ⇔ µλS(tx1 + (1 − t)x2) < 1
⇔ µS(tx1 + (1 − t)x2) < λ

(52)

Since g is a strictly increasing function, (g ◦ µS)(tx1 + (1 − t)x2) < g(λ) = tg(λ) + (1 − t)g(λ), hence

(g ◦ µS)(tx1 + (1 − t)x2) < t(g ◦ µS)(x1) + (1 − t)(g ◦ µS)(x2) (53)

On the other hand, if µS(x1) ̸= µS(x2), then by convexity of µS and from the fact that g is increasing, the
following holds: (g ◦ µS)(tx1 + (1 − t)x2) ≤ g(tµS(x1) + (1 − t)µS(x2)). Finally by strict convexity of g, it
follows:

(g ◦ µS)(tx1 + (1 − t)x2) < t(g ◦ µS)(x1) + (1 − t)(g ◦ µS)(x2) (54)

Hence g ◦ µS is a strictly convex function. The rest of the proof is based on explicitly calculating the
right-hand side of the following identity (the Legendre transform of the identity found at page 142-143 of
[50]):

g ◦ µMS = ((g ◦ µS)∗ ◦ M⊤)∗ (55)
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Given f : Rn → R a strictly convex and differentiable function, ∂
∂x f is invertible on ∂

∂x f(Rn), and for all
y ∈ ∂

∂x f(Rn), the Legendre transform of f at y is given by (see Remark 1.6.18 of [53]):

f∗(y) =
〈

( ∂

∂x
f)−1(y)|y

〉
− f ◦ ( ∂

∂x
f)−1(y) (56)

Applying the previous result to g ◦ µS provides:

(g ◦ µS)∗(y) =
〈
f−1

1 (y)|y
〉

− g ◦ µS ◦ f−1
1 (y) (57)

The result can be applied again, this time to (g ◦ µS)∗ ◦ M⊤. Under the assumption that (g ◦ µS)∗ ◦ M⊤ is
strictly convex and differentiable, then f2 = ∂

∂x ((g ◦ µS)∗ ◦ M⊤) = M ◦ ∂
∂x [(g ◦ µS)∗] ◦ M⊤ is invertible on

f2(Rm), and the identity (55) can be written:

g ◦ µMS = ((g ◦ µS)∗ ◦ M⊤)∗

=
〈

( ∂

∂x
[(g ◦ µS)∗ ◦ M⊤])−1(y)|y

〉
− (g ◦ µS)∗ ◦ M⊤ ◦ ( ∂

∂x
[(g ◦ µS)∗ ◦ M⊤])−1(y)

=
〈

(M ◦ ∂

∂x
[g ◦ µS ]∗ ◦ M⊤)−1(y)|y

〉
− (g ◦ µS)∗ ◦ M⊤ ◦ (M ◦ ∂

∂x
[g ◦ µS ]∗ ◦ M⊤)−1(y)

(58)

which concludes the proof.

Remark 4.7. This first result is a broad generalization of the well-known result on ellipsoids which states
that ME(P ) = E((MP −1M⊤)−1), where E(P ) ≜ {x ∈ Rn : x⊤Px ≤ 1} and M is a full row rank matrix.

Example 4.6. Consider the Minkowski functional associated to B4/3, the unit ball of norm 4/3 of R3:

µB4/3(x, y, z) ≜
(

x4/3 + y4/3 + z4/3
)3/4

(59)

and let us compute the Minkowski functional associated to MB4/3 where M is defined by:

M =
(

1 1 1
1 −1 1

)
(60)

Since B4/3 is a smooth compact and strictly convex set, Theorem 4.1 is applied.

The function g : R≥0 → R≥0 defined by g(s) = (3/4)s4/3 is introduced. It is easily verified that g is
bijective (with g−1(s) =

(
2/

√
3
)3/2

s3/4), strictly increasing, strictly convex, and that g ◦ µB4/3 is smooth
over R3. Following Theorem 4.1, f1 = ∂

∂x [g ◦ µB4/3 ] and its inverse are given by:

f1(x, y, z) =
(

x1/3 y1/3 z1/3 )⊤ (61a)

f−1
1 (x, y, z) =

(
x3 y3 z3 )⊤ (61b)

This provides the Legendre transform of g ◦ µB4/3 :

(g ◦ µB4/3)∗(x, y, z) = 1
4(x4 + y4 + z4) (62)

Again, following Theorem 4.1, f2 = M ◦ ∂
∂x [(g ◦ µB4/3)∗] ◦ M⊤ and its inverse are given by:

f2(x, y) =
(

2(x + y)3 + (x − y)3

2(x + y)3 − (x − y)3

)
(63a)

f−1
2 (x, y) =

(
2−4/3 (2−1/3(x + y)1/3 + (x − y)1/3)
2−4/3 (2−1/3(x + y)1/3 − (x − y)1/3) ) (63b)
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Finally, the Minkowski functional associated to MB4/3 is given by:

µMB4/3(x, y) =
(

2√
3

)3/2(
x

24/3

(
(x + y)1/3

21/3 + (x − y)1/3
)

+ y

24/3

(
(x + y)1/3

21/3 − (x − y)1/3
)

− 1
210/3

(
(x + y)4/3

21/3 + (x − y)4/3
))3/4 (64)

Let (v1, . . . , vk) denotes a basis of Ker(M)⊥ and (vk+1, . . . , vn) denotes a basis of Ker(M). VKer⊥ is
the matrix whose columns are formed by (v1, . . . , vk) and VKer is the matrix whose columns are formed by
(vk+1, . . . , vn). The invertible matrix V ∈ Rn×n is also defined by the matrix whose columns are formed by
(v1, . . . , vn), i.e. such that:

V =
(

VKer⊥ VKer
)

(65)

Theorem 4.2 (Second characterization). Let S be a smooth compact and convex set of Rn whose interior
contains 0. Then the following identity holds:

µMS(x) =
{

µpKer⊥ (S)((MVKer⊥)†x) if x ∈ Im(M)
+∞ else

(66)

where pKer⊥(S) denotes the orthogonal projection of S onto Ker(M)⊥. The Minkowski functional on the
right-hand side can be computed using the following system:

µpKer⊥ (S)(yKer⊥) = inf
{

t ∈ R∗
+ : ∃yKer ∈ Rn−k |

{
ηS (yKer⊥ , yKer) ≤ t

yKer⊥ + yKer ̸= 0 ⇒ ∂ηS
∂yKer

(yKer⊥ , yKer) = 0

}
(67)

where yKer⊥ ∈ Rk and yKer ∈ Rn−k are expressed in the (v1, . . . , vk) and (vk+1, . . . , vn) basis respectively,
with:

ηS (yKer⊥ , yKer) ≜ µS

(
V

(
yKer⊥

yKer

))
(68)

The right-hand side of (67) can sometimes be treated algebraically, providing a characterization of the linear
transformation of S by M . The problem is reduced to solving the equation ∂ηS

∂yKer
(yKer⊥ , yKer) = 0 with yKer

unknown.

Proof. By definition of Ker(M) and Ker(M)⊥, the following equality holds:

M = MVKer⊥
(

Ik 0
)

V −1 (69)

where moreover, MVKer⊥ is left-invertible, hence by Property 4.6, the following holds:

µMS(x) = µ( Ik 0
)

V −1S((MVKer⊥)†x) (70)

From here, it can be noticed that
(

Ik 0
)

V −1S is the orthogonal projection of S onto Ker(M)⊥ expressed
in the (v1, . . . , vk) basis. Finally, the results from [4] provides the expression (66) and (67) when S is a smooth
compact and convex set of Rn whose interior contains 0, concluding the proof.

Example 4.7. Consider the Minkowski functional associated to B4, the unit ball of norm 4 of R2:

µB4(x, y) ≜
(
x4 + y4)1/4 (71)

and let us compute the Minkowski functional associated to MB4 where M is defined by:

M =
(

1 2
)

(72)
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Since B4 is a smooth compact and convex set, Theorem 4.2 is applied.

The matrix V associated with M can be taken to be V =
(

1 2
2 −1

)
. Hence:

ηB4 (yKer⊥ , yKer) ≜
(
(yKer⊥ + 2yKer)4 + (2yKer⊥ − yKer)4)1/4 (73)

and:
∂ηB4

∂yKer
(yKer⊥ , yKer) = 0 ⇔ 17y3

Ker + 18y2
KeryKer⊥ + 24yKery

2
Ker⊥ − 6y3

Ker⊥ = 0 (74)

the equation on the right possesses a single real solution given by yKer = 1
17 (−6 − 5 · 21/3 + 10 · 22/3)yKer⊥ ,

moreover (MVKer⊥)† = 1/5. Finally, the Minkowski functional associated to MB4 is given by:

µMB4(x) = µpKer⊥ (B4) (x/5) = ηB4

(
x/5, x(−6 − 5 · 21/3 + 10 · 22/3)/85

)
(75)

4.4. Analytic fault isolation
The flexibility and generality of the Minkowski functional for set-membership approaches is illustrated

here by applying its properties to the fault isolation scheme of Theorem 3.2. In Theorem 4.3, the problem
of calculating the DIT set (15) is reduced to determining analytical thresholds under the form of scalar
inequalities. In Theorem 4.4, a condition on the minimal fault magnitude is given to guarantee isolability
by the DIT. In both theorems, for all i, the sets Wi and Fi of Definition 3.1 are assumed to be bounded
star-convex sets at 0 whose interior contains 0.

Theorem 4.3 (Analytic Direct Image Test). For all I ∈ Pnf
, the Minkowski functional associated with the

feasible sets Rθ,I (13) introduced in Definition 3.2 can be computed by:

µθ,I(r) = inf
Σri
i∈J

=r
max

{
max

1≤i≤nw

µWi(θ)Wi
(ri), max

i∈I
µFi(θ)Fi

(rnw+i)
}

(76)

with J = J1, nwK ∪ ({nw} ⊕ I). Given µ
θ,I and µθ,I resp. a lower-bound and an upper-bound to µθ,I , the

DIT set (15) can be approximated by:{
I ∈ Pnf

: sup
θ∈Θ

µ
θ,I(r(θ)) > 1

}
⊆ DIT ⊆

{
I ∈ Pnf

: sup
θ∈Θ

µθ,I(r(θ)) > 1
}

(77)

Proof. This is simply a rewriting of Theorem 3.2 obtained by leveraging the Minkowski functional identities
of Property 4.1 and Remark 4.6.

Corollary 4.1 (Analytic Robust Direct Image Test). Similarly, the robust DIT set (18) can be approximated
by: {

I ∈ Pnf
: sup

θ2∈Θ
inf

θ1∈Θ
µ

θ1,I(r(θ2)) > 1
}

⊆ RDIT ⊆
{

I ∈ Pnf
: sup

θ2∈Θ
inf

θ1∈Θ
µθ1,I(r(θ2)) > 1

}
(78)

As noted in Remark 3.5 and Corollary 3.1, the tests performed to obtain these two sets do not require to
know which uncertainty θ is responsible for each residual in R.

Remark 4.8. By definition, the sets on the left-hand side of (77) and (78) avoid false fault detection.
Similarly, the sets on the right-hand side can guarantee the absence of faults.

The inf in (76) comes from Minkowski sums, and can be handled either by leveraging the inequalities
described before and in Property 4.4, or by using dedicated algorithms which compute Minkowski sums
for special classes of convex shapes. Similarly, computing the linear transformations of the sets Wi and
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Fi can be achieved either by using dedicated algorithms, or by leveraging Theorem 4.1 or 4.2. All of
these approaches allow to find upper- and lower-bounds to µθ,I , here denoted µθ,I and µ

θ,I , and which
respectively correspond to an inner- and outer-approximation of the feasible set Rθ,I . These upper- and
lower-bounds provide closed-form inequalities for residual thresholding, and their real-time evaluation can
be viewed as the computation of meta-residuals synthesizing how close is the system from the boundary of
Rθ,I . The authors believe that the name Minkowski signals is appropriate to refer the real-time evaluation
of these functions in the context of system diagnosis.

Theorem 4.4 (Minimal fault magnitude for isolation). Let QI with I ≜ {i1, . . . , ip} ∈ Pnf
denote the

following statement:

QI : “ At least one of the i1-th, . . . , ip-th vector fault is active” (79)

This statement is guaranteed to be verified (or isolated) using the DIT set (15) if the faults (fi)i∈I satisfy
the following inequality:

sup
θ∈Θ

µSθ

(∑
i∈I

Fi(θ)fi

)
> 1 with Sθ ≜ Rθ,I ⊕

(
−Rθ,I

)
(80)

Similarly, this statement is guaranteed to be verified (or isolated) using the RDIT set (18) if the faults (fi)i∈I
satisfy the following inequality:

inf
θ∈Θ

µSΘ

(∑
i∈I

Fi(θ)fi

)
> 1 with SΘ ≜ RΘ,I ⊕

(
−RΘ,I

)
(81)

Proof. Since the operations of linear transformation, union and Minkowski sum preserve star-convexity at
0, Sθ is star-convex at 0. Moreover, the inequality (80) implies that there exists θ ∈ Θ:∑

i∈I
Fi(θ)fi /∈ Rθ,I ⊕

(
−Rθ,I

)
(82)

meaning there exists θ ∈ Θ, such that for all wi ∈ Wi (with i ∈ J1, nwK) and fi ∈ Fi (with i ∈ I),

∑
i∈I

Fi(θ)fi +
nw∑
i=1

Wi(θ)wi +
∑
i∈I

Fi(θ)fi /∈ Rθ,I (83)

hence, by Theorem 3.2, (83) guarantees that I ∈ DIT, which in turn provides the statement QI . The proof
follows the same principle in the robust case.

5. Application

Consider the following academic example of residuals r(t) following the uncertain linear internal structure
of Definition 3.1:

(
r1(t)
r2(t)

)
=
(

1 θ1(t) 0
0 1 θ2(t)

) w1(t)
w2(t)
w3(t)

+
(

1 θ1(t)
0 ε

)(
f1,1(t)
f1,2(t)

)
+
(

ε
1

)
f2(t) (84a)

i.e. r(t) = W (θ(t))w(t) + F1(θ(t))f1(t) + F2(θ(t))f2(t) (84b)

where r(t) are the residuals of the system, θ(t) ∈ Θ are time-varying parametric uncertainties, f1(t) ∈ F1
and f2(t) ∈ F2 are potential faults to detect, and w(t) ∈ W are bounded noises affecting the residuals. This
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example is chosen with matrices in R2×3, R2×2 and R2×1 to cover as many cases of matrix multiplication as
possible. According to the set-membership approach developed in Section 3, the three following sets should
be determined or approximated in order to threshold the residuals of the system:

Rθ,∅ ≜ W (θ)W (85a)
Rθ,{1} ≜ W (θ)W ⊕ F1(θ)F1 (85b)
Rθ,{2} ≜ W (θ)W ⊕ F2(θ)F2 (85c)

These sets can be approximated using any sort of set-membership methodologies already available in
the literature, e.g. by leveraging results on orthotopes, ellipsoids, parallelotopes, zonotopes, constrained
zonotopes, hybrid zonotopes, etc; or (not exclusively) by using the analytical results exposed in this paper.
From here, following the analytic RDIT (Corollary 4.1) methodology of this paper, the problem consists in
obtaining or approximating the following Minkowski signals:

µΘ,∅(r) ≜ µRΘ,∅(r) = inf
θ∈Θ

µRθ,∅(r) with RΘ,∅ ≜
⋃

θ∈Θ
Rθ,∅ (86a)

µΘ,{1}(r) ≜ µRΘ,{2}(r) = inf
θ∈Θ

µRθ,{2}(r) with RΘ,{2} ≜
⋃

θ∈Θ
Rθ,{2} (86b)

µΘ,{2}(r) ≜ µRΘ,{1}(r) = inf
θ∈Θ

µRθ,{1}(r) with RΘ,{1} ≜
⋃

θ∈Θ
Rθ,{1} (86c)

where:

− µΘ,∅(r) > 1 guarantees that at least one of the vector faults f1 or f2 is active (detection);
− µΘ,{1}(r) > 1 guarantees that the vector fault f1 is active (isolation);
− µΘ,{2}(r) > 1 guarantees that the fault f2 is active (isolation).

The sets W, F1 and F2 are modeled by:

W ≜ E(Qw,1) ∪ Gw,2B∞ (87a)
F1 ≜ E(Qf1) (87b)
F2 ≜ If2 = [−1/ε, 1/ε] (87c)

In order to be as illustrative as possible, these sets are selected to exhibit many of the properties developed
in this paper. However, any other choice could have been made at this point. A more involved modeling
of these sets would lead to better detection capabilities, but also to more elaborate expressions for the
Minkowski signals, whereas simpler sets would be more easily handled, but less accurate in their detection
capabilities. The expression of µΘ,∅(r) is explicitly obtained as:

µΘ,∅(r) = inf
θ∈Θ

min
{√

r⊤
(
W (θ)Q−1

w,1W ⊤(θ)
)−1

r,
∥∥Lw,2(θ)r⊤∥∥

∞

}
(88)

where Theorem 4.1 is leveraged to handle the linear transformation of the ellipsoid, and Lw,2 is obtained
from W (θ)Gw,2 using the results of Example 4.3.

In order to obtain an expression for µΘ,{1}(r), E(Qw,1) is approximated by the zonotope Gw,1B∞, leading
to an hybrid zonotope defined by:

W (θ)W ⊕ F2(θ)F2 = W (θ) (Gw,1B∞ ∪ Gw,2B∞) ⊕ F2(θ)If2

= (W (θ)Gw,1B∞ ⊕ F2(θ)If2) ∪ (W (θ)Gw,2B∞ ⊕ F2(θ)If2)
=
(

W (θ)Gw,1
1
ε F2(θ)

)
B∞ ∪

(
W (θ)Gw,2

1
ε F2(θ)

)
B∞

(89)
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The Minkowski functional associated with this hybrid zonotope is given by:

µΘ,{1}(r) = inf
θ∈Θ

min {∥L1(θ)r∥∞ , ∥L2(θ)r∥∞} (90)

where L1(θ) and L2(θ) are resp. obtained from
(

W (θ)Gw,1
1
ε F2(θ)

)
and

(
W (θ)Gw,2

1
ε F2(θ)

)
using

the results of Example 4.3. By leveraging the central symmetry of the set RΘ,{2}, it can be noted that
Theorem 4.4 guarantees that the magnitude of the vector fault f1 is sufficient to ensure a fault detection if
the following inequality holds:

inf
θ∈Θ

µΘ,{1}(F1(θ)f1) > 2 (91)

Finally, in order to obtain an analytical expression to µΘ,{2}(r), Gw,2B∞ is approximated by the ellipsoid
E(Qw,2), hence:

W (θ)W ⊕ F1(θ)F1 = W (θ) (E(Qw,1) ∪ E(Qw,2)) ⊕ F1(θ)E(Qf1)
= (W (θ)E(Qw,1) ⊕ F1(θ)E(Qf1)) ∪ (W (θ)E(Qw,2) ⊕ F1(θ)E(Qf1))

(92)

Although only ellipsoids are leveraged in the representation of the initial sets, RΘ,{1} is obtained here as a
generic convex shape whose Minkowski functional can be approximated arbitrarily closely by:

µΘ,{2}(r) = inf
θ∈Θ

min
{

max
p∈I1

√
r⊤Q1(θ, p)r, max

p∈I2

√
r⊤Q2(θ, p)r

}
(93)

where Q1(θ, p), Q2(θ, p) and I1 and I2 are obtained with Property 4.5 on the Minkowski sum of two
ellipsoids.

Q1(θ, p) =
(

(1 + p−1)W (θ)Q−1
w,1W ⊤(θ) + (1 + p)F1(θ)Q−1

f1
F1(θ)⊤

)−1
(94a)

Q2(θ, p) =
(

(1 + p−1)W (θ)Q−1
w,2W ⊤(θ) + (1 + p)F1(θ)Q−1

f1
F1(θ)⊤

)−1
(94b)

Again, by leveraging the central symmetry of the set RΘ,{1}, it can be noted that Theorem 4.4 guarantees
that the magnitude of the fault f2 is sufficient to ensure a fault detection if the following inequality holds:

inf
θ∈Θ

µΘ,{2}(F2(θ)f2) > 2 (95)

The simulations have been carried out with the following numerical values:

Θ = [−1, 1]2, θ(t) =
(

cos(t) sin(t)
)⊤

,

Qw,1 =

 1 0 0
0 0.4 0
0 0 0.3

 , Qw,2 =

 0.4 0 0
0 0.3 0
0 0 1

 ,

Gw,1 = Q
−1/2
w,1 , Gw,2 = Q

−1/2
w,2 ,

Qf1 =
(

0.025 0.01
0.01 1

)
, ε = 0.2,

(96)

The results of the simulation can be found in Figure 6 of this document. The vector fault f1 is active for
t ∈ [1, 3] ∪ [6, 8], and the fault f2 is active for t ∈ [2, 4] ∪ [5, 7]. The Minkowski signal µΘ,∅(r) detects faults
for t ∈ [1, 4] ∪ [5, 8] almost perfectly (with the exception of a few points). Moreover, the Minkowski signal
µΘ,{1}(r) perfectly isolates the fault f1 for t ∈ [1, 3], and isolates, although less precisely, its activity in the
interval [6, 8]. Finally, the Minkowski signal µΘ,{2}(r) almost perfectly isolates the fault f2 for t ∈ [2, 4]∪[5, 7],
again with the exception of a few points that could be easily dealt with by classical filtering techniques.
The quality of the detection demonstrates the quality of the feasible sets underlying the Minkowski signals,
which were computed by combining both the properties of this document and some existing results from the
set-membership literature. Overall, for each θ ∈ Θ, the Minkowski signals are computed explicitly, while:
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Figure 6: Computation of the Minkowski signals to perform the robust direct image.
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− Rθ,∅ is considered to be the union of an ellipse and a zonotope;
− Rθ,{1} is considered to be the union of two zonotopes (or an hybrid zonotope);
− Rθ,{2} is considered to be the Minkowski sum of two ellipsoids.

This ultimately demonstrates the unifying nature of the proposed thresholding framework.

6. Conclusions and perspectives

This paper first stated a generic set-theoretic FDI scheme to evaluate residuals following an uncertain
linear internal structure. This scheme is obtained using results from order theory, which remain to be
generalized to fault-trees for multi-component systems. Then, the Minkowski functional has been introduced
as a novel and unified analytical thresholding tool for model-based diagnosis. Using the properties of the
Minkowksi functional, including two characterizations of linear transformations of smooth convex sets, the
threshold computation problem of the previously introduced fault isolation scheme has been stated in an
analytical way. This led to the introduction of Minkowski signals, an intuitive measurement of the extend
to which a set-membership relation is verified. An analytical expression of a minimal fault magnitude
guaranteeing fault isolation has also been provided. The fault isolation scheme described in the paper has
finally been illustrated by an academic example. A promising direction for future research is the integration
of the Minkowski results proposed in this paper with the established set-based methodologies, such as
set-based distinguishability [59]. Simplifying the expression of the Minkowski functional of a convex set,
particularly after it has been subject to several sets operation, also remains an open challenge which needs
to be tackled in future works.
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