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Abstract: Dead-zone, dead-band or hysteresis are well-known local faulty behaviors which
are typically observed on the actuators and sensors of physical systems. After being identified,
these local nonlinearities are usually taken into account when designing observers or controllers.
This paper breaks the trend of case by case analysis of these nonlinearities, and suggest a
new unifying representation which encapsulates a large class of nonlinear faults. Although more
conservative than already existing specific approaches, the proposed framework necessitates very
few knowledge on the nonlinearties, and may offer a practical duality between the actuator and
the sensor cases. Ultimate bound guarantees are given both in the case of nonlinear and linear
systems. The latter case is illustrated numerically by an example.
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1. INTRODUCTION

Nonlinear faulty local behaviors of actuators are com-
monly found in many physical systems, including hydraulic
servovalves, electric servomotors, among other applica-
tions. Though less discussed in the literature, these faulty
local behaviors can also be observed on sensors, e.g. on
relative pressure sensors. These faults tend to deterio-
rate the controller and observer performances, sometimes
even leading to instability of the whole system. Usually
falling under the category of dead-zones, dead-bands or
hysteresis, these types of local behaviors have been well
investigated in the control literature, with an emphasis on
the dead-zone of actuators [Tao and Kokotovic, 1996, Tao
and Lewis, 2001].

Two primary approaches are commonly used to mitigate
the impact of dead-zones [Gianino, 1994]. The first method
is to implement an active compensation control strategy
on the actuators based on a dead-zone inverse [Tao and
Kokotovic, 1994]: this method is however limited since
the inverse is discontinuous, and it does not exist if the
dead-zone is in fact a dead-band (Figure 1), or if it
affects a sensor. The second approach models the dead-
zone as a combination of a linear control input with a
constant or time-varying gain and a bounded disturbance-
like term. This disturbance-like term is typically treated
as an uncertain nonlinearity and is handled using robust
feedback mechanisms [Zhang et al., 2014]. This paper
extends the second approach, allowing the modelling of
a broader range of nonlinear local behaviors.

Also very much investigated in the control literature from
a theoretical point of view, a lot of models of hysteresis
have been developed over the years for control purposes,
including - among others - the Preisach model [Preisach,
1935], the Duhem model [Duhem, 1897] and its variations

(e.g. the Bouc-Wen, LuGre, Dahl models...). The reader is
referred to [Hassani et al., 2014] for more details.

In this paper, a new unifying representation which en-
capsulates the nonlinearities discussed above is proposed,
leading to ultimate bound guarantees both in the case of
nonlinear and linear systems. Even if the suggested frame-
work is more conservative compared to pre-existing spe-
cialized methods, it nevertheless requires minimal knowl-
edge of nonlinearities, and moreover establishes a duality
between the actuators and sensors local nonlinearities.

This paper is organized as follows: Sections 2 and 3
introduce respectively the notations used in the paper
and some preliminary results. In Section 4, the unified
modelling of faulty local nonlinear behaviors on actuators
and sensors is introduced. Early ultimate bounds results
for Linear Time Invariant (LTI) systems are provided
in Section 5, and these results are applied on a simple
example in Section 6. Finally, Section 7 concludes the
paper.

2. DEFINITIONS, NOTATIONS

The set of integers between a and b (both included) is
denoted Ja, bK. The i-th coordinate of a vector v P Rn

is denoted vpiq. Given P “ PJ a real symmetric matrix,
λmaxpP q (resp. λminpP q) stands for the largest (resp.
smallest) eigenvalue of P . Moreover, ĺ (ă) stands for the
(strict) Loewner order. The definitions of a ball and of an
ellipsoid of Rn centered at the origin are recalled below

Bprq fi tx P Rn : ∥x∥2 ď ru (1)

EpQ, rq fi tx P Rn :
a

xJQx ď ru (2)

In (2), usually Q “ QJ ą 0, but this paper tolerates Q “

QJ ľ 0, which provides a degenerate ellipsoid. Moreover,



B fi Bp1q and EpQq fi EpQ, 1q. Given a set S Ď Rn, 1S

stands for the indicator function 1Spxq fi 1 if x P S, 0 else.

3. PRELIMINARY RESULTS

Lemma 1. For all β, η ą 0, the following inequality holds:

1B ď exp rβp1 ´ ∥¨∥η2qs (3)

moreover the following limit is verified

lim
mÑ8

exp

„

1

m
p1 ´ ∥¨∥m2 q

ȷ

“ 1B pointwise (4)

but this convergence is non-uniform.

Proof. Let x P Rn. If x R B, then exp rβp1 ´ ∥x∥η2qs ě 0
is obvious. Moreover, ∥x∥2 ą 1, hence limmÑ8

1
m p1 ´

∥x∥m2 q “ ´8, providing (4) for such x. If x P B, then
∥x∥2 ď 1 and exp rβp1 ´ ∥x∥η2qs ě e0 “ 1. Moreover,
limmÑ8

1
m p1 ´ ∥x∥m2 q “ 0, again providing (4) for such

x. Finally, the convergence (4) cannot be uniform since
exp

“

1
m p1 ´ ∥¨∥m2 q

‰

is continuous on Rn for all m, whereas
1B is discontinuous. ˝

Lemma 2. (Minimum-volume covering ellipsoid). Given a
set S Ă Rn, the minimum volume ellipsoid EpMJMq

centered at the origin and covering S is found with the
optimization problem (5).

M “ arg min
Mą0

p´ log detMq

s.t. pMxqJMx ď 1, for all x P S
(5)

In particular, this problem is convex when S is the convex
hull of a finite set [Sun and Freund, 2004].

Lemma 3. (Radius of the intersection of ellipsoids). Given
m (eventually degenerated) ellipsoids EpQi, riq and Q0 “

QJ
0 ą 0, with for all i “ 1, . . . ,m, Qi “ QJ

i ľ 0, if a
minimal radius r0 ą 0 exists such that

m
č

i“1

EpQi, riq Ď EpQ0, r0q (6)

then r0 is given by

r20 “max
xPRn

xJx

s.t. xJTix ď r2i , for all i “ 1, . . . ,m
(7)

with Ti fi Q
´ 1

2 J

0 QiQ
´ 1

2
0 . However, this problem is concave,

and there are no efficient numerical procedures to solve it
exactly. This paper uses the following “rank 1 dropping”
Semidefinite Programming (SDP) relaxation to upper-
bound the minimal radius:

r20 ď max
X“XJľ0

TrX

s.t. TrpTiXq ď r2i , for all i “ 1, . . . ,m
(8)

The reader is referred to [Henrion et al., 1998] for a
review on the subject, including (8) among other convex
relaxations of (7).

4. A GENERALIZED MODEL OF ACTUATORS
DEAD-ZONE, DEAD-BAND AND HYSTERESIS

Consider the nonlinear system
"

9xptq “ f pxptq, ũptqq

ũptq “ hpuptqq
(9)

with xptq P Rnx the state of the system, ũptq P Rnu

its control input and uptq P Rnu the reference signal
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Fig. 1. Nonlinear local behaviors of actuators, and their
suggested unified uncertain modelling, d “ ´d “ 1

given to the actuators. From now on, the time dependence
is omitted for concision. The function f is continuously
differentiable and globally Lipschitz in px, ũq, and h is a
nonlinear function modelling the nonlinear faults affecting
the actuators, such as their dead-zone, dead-band or
hysteresis. In this paper, instead of specifying exactly h,
the authors suggest a generic expression for h of the form

ũ “ hpuq “ u ` δ (10)

where δ P Rnu is considered to be an unknown piecewise
continuous signal. This allows h to model a wide range
of nonlinear actuator faults without precise knowledge on
them. The assumptions made on δ differ depending on
whether the actuators nonlinear faults affect ũ component-
wise or not. In both cases, two vectors d and d of Rnu are
defined such that dpiq ă 0 ă dpiq for i “ 1, . . . , nu.

4.1 Local component-wise nonlinearities

If each coordinate of the control input vector ũpiq is subject
to a nonlinear distortion with respect to the nominal signal
upiq for upiq P rdpiq, dpiqs, then h is nonlinear in the following
domain:

Du fi

!

u P Rnu : Di P J1, nuK s.t. upiq P rdpiq, dpiqs

)

(11)

Outside of Du, h is considered to be the identity function.
It is moreover assumed that this input distortion remains
bounded according to the following property:

upiq P rdpiq, dpiqs ñ ũpiq P rdpiq, dpiqs (12)

Usual candidates for h satisfying these properties include
the dead-band:

rhpuqspiq “ 0 if upiq P rdpiq, dpiqs (13)

the continuous dead-zone:

rhpuqspiq “

$

’

’

’

’

’

&

’

’

’

’

’

%

dpiq

dpiq ´ εpiq

pupiq ´ εpiqq if dpiq ď upiq ă εpiq

0 if εpiq ď upiq ď εpiq

dpiq

dpiq ´ εpiq

pupiq ´ εpiqq if εpiq ă upiq ď dpiq

(14)



with dpiq ă εpiq ă 0 ă εpiq ă dpiq for i “ 1, . . . , nu, or even

the Preisach hysteresis [Preisach, 1935]:

rhpuqspiq “ “last value of upiq outside of rdpiq, dpiqs” (15)

Instead of choosing one of the representation above, (10)
is preferred, with the unknown signal δ satisfying:
#

δpiq P rdpiq ´ upiq, dpiq ´ upiqs if upiq P rdpiq, dpiqs

δpiq “ 0 else
(16)

It is easily verified that the dead-zone, dead-band and
hysteresis described above can all be embedded in this rep-
resentation (Figure 1). Moreover, it is also easily verified
that δ is bounded inside a set D defined by:

D fi rdp1q´dp1q, dp1q´dp1qsˆ¨ ¨ ¨ˆrdpnuq´dpnuq, dpnuq´dpnuqs

(17)
hence ∥δ∥2 ď

∥∥d ´ d
∥∥
2
, where ˆ denotes the Cartesian

product of sets. Note that in the case of a dead-zone, this
modelling can be leveraged after applying a first approx-
imate “smooth dead-zone inverse” to the reference input
signal, hence reducing the conservatism of the assumptions
of this section.

4.2 Local nonlinearities of Rnu

Although very rarely discussed in the dead-zone literature,
some local actuators faults may lead to a distortion of ũ
with respect to its nominal signal u which is restricted to
a bounded set surrounding the origin of the input space
Rnu . In that case, h can be considered nonlinear in an
orthotopic domain D˝

u defined by:

D˝
u fi

!

u P Rnu : @i P J1, nuK, upiq P rdpiq, dpiqs

)

(18)

Outside of D˝
u, h is considered to be the identity function.

Again, it is assumed that this input distortion remains
bounded according to the following property:

u P D˝
u ñ ũ P D˝

u (19)

These kind of local nonlinearities are typically found on
actuators with several degree of freedom, e.g. radial dead-
zones of joysticks [Goel et al., 2003, Ding et al., 2004].
They are usually purposefully imposed to physical systems
in order to avoid over-sensitivity of the system to small
input values, but it is nonetheless useful to study their
effect [Broschart and Scheeres, 2007]. Moreover, even if
the nonlinearities of the actuators are actually component-
wise, the assumptions of this section can be leveraged
as an intermediary step in order to diminish the overall
conservatism of the study (see Corollary 9).

It is easily verified that δ P D “ (17) still holds true here.
Moreover, a practical upper-bounding to ∥δ∥2 in that case
is given by the following Lemma.

Lemma 4. Given EpMJMq an ellipsoid centered at the
origin and covering D˝

u (obtained through Lemma 2), then
for all β, η ą 0, the following upper-bound holds:

∥δpuq∥2 ď
∥∥d ´ d

∥∥
2
exp rβ p1 ´ ∥Mu∥η2qs (20)

Proof. For all u R D˝
u, ∥δpuq∥2 “ 0; and for all u P D˝

u,

∥δpuq∥2 ď
∥∥d ´ d

∥∥
2

The minimum-volume ellipsoid centered at the origin
covering D˝

u provides:

∥δpuq∥2 ď
∥∥d ´ d

∥∥
2
1BpMuq (21)

and (20) is obtained with Lemma 1. ˝

4.3 A generic ultimate bound guarantee

The nonlinear system (9) can be re-written by considering
δ as a new unknown input

9x “ fapx, u, δq p“ f px, u ` δqq (22)

with fa a continuously differentiable and globally Lipschitz
function in px, u, δq. Given a state feedback reference
signal, the next result provides a simple condition to
guarantee the ultimate boundedness of the closed-loop
system, no matter if the nonlinearities of the actuators
act on the control input component-wise or not.

Theorem 5. (Ultimate boundedness). If there exists a state
feedback law u “ gpxq with g continuously differentiable
and globally Lipschitz in x such that

9x “ fapx, gpxq, 0q (23)

has a globally exponentially stable equilibrium at x “ 0,
then for all bounded signal δ P D “ (17), there exists r ą 0
such that for all initial state x0 P Rnx , the state trajectory
x of (22) taken with u “ gpxq is ultimately bounded by
Bprq.

Proof. From Lemma 4.5 page 108 of [Khalil, 2014], (22)
with u “ gpxq is Input-to-State Stable in δ. In particular,
by an application of Definition 4.4 page 107 of [Khalil,
2014] for all initial state x0 P Rnx , the state trajectory x
is ultimately bounded by

γ

ˆ

sup
t0ďτďt

∥δpτq∥2
˙

ď γ

ˆ

sup
δPD

∥δ∥2
˙

ď γ
`
∥∥d ´ d

∥∥
2

˘

(24)

with γ a class K function. In other words, there exists
r ą 0 such that for all x0, there exists a T ą 0 providing
xptq P Bprq for all t ě t0 ` T . ˝

4.4 Duality regarding sensors

Contrary to actuators, dead-zone of sensors are not theo-
retically invertible. Instead, the output ỹ P Rny of sensors
subject to faults like dead-zone, dead-band or hysteresis
becomes uncertain when measured in a specific range of
values. By making similar assumptions as previously, a
system subject to local nonlinear sensor faults may be
written using an unknown signal δ:

"

9x “ fpxq

ỹ “ hpyq “ y ` δ
with δ P D “ (17) (25)

with y P Rny the theoretical value that the sensors
should measure. This symmetry of assumptions between
the nonlinear actuator and sensor faults allowed by our
simple modelling is not usual in the dead-zone literature,
although it allows to very easily generalize the ultimate
bounds discussed in the next section to the observer design
problem, by duality between the linear state feedback
control laws and the Luenberger observers.

5. ULTIMATE BOUND FOR LTI SYSTEMS

Given a stabilizable LTI system (26) subject to local
nonlinear actuator faults, this section establishes ultimate
bound guarantees on an usual linear state-feedback control
u “ Kx with an imposed decay-rate α ą 0.

"

9x “ Ax ` Bũ

ũ “ hpuq “ u ` δ
with δ P D “ (17) (26)



It is assumed there exists a gain matrixK and a symmetric
positive definite matrix P “ PJ ą 0 such that the
following holds:

pA ` BKqJP ` P pA ` BKq ĺ ´2αP (27)

meaning the control law u “ Kx imposes a minimum
decay rate α ą 0 to the nominal closed-loop system
9x “ pA ` BKqx.

Theorem 6. (Generic ultimate bound). System (26) asso-
ciated with the control law u “ Kx such that (27) holds
is ultimately bounded by EpP, rq with

r “

a

λmaxpP q

αλminpP q
∥PB∥2

∥∥d ´ d
∥∥
2

(28)

Proof. It is easily obtained from (27) that the derivative
of the Lyapunov function V pxq “ xJPx along the trajec-
tories of (26) with u “ Kx respects:

9V pxq ď ´2αxJPx ` 2xJPBδ

ď ´2αλminpP q∥x∥22 ` 2∥x∥2∥PB∥2∥δ∥2
(29)

Thus, 9V pxq ă 0 is verified when

∥x∥2 ą
∥PB∥2∥δ∥2
αλminpP q

(30)

hence, the ultimate bound of the system can be computed
as the following level-set:

V pxq “ λmaxpP q

ˆ

∥PB∥2∥δ∥2
αλminpP q

˙2

(31)

and the inequality ∥δ∥2 ď
∥∥d ´ d

∥∥
2
concludes the proof. ˝

The result discussed above holds whether the distortion
of the input is component-wise or not. However, because
it does not take into account the dependency between the
uncertainties δ and the state of the system x, this ultimate
bound is rather conservative. Other ultimate bounds are
suggested below, both when the nonlinear fault affecting
ũ is component-wise or not.

In order to deal with the component-wise case of Sec-
tion 4.1, where h is nonlinear on Du “ (11), the set of
indices (32) is introduced to list which coordinates of δ
are active (i.e. not zero) at a given state x.

Ipxq fi

!

i P J1, nuK : dpiq ď pKxqpiq ď dpiq

)

(32)

Moreover, for each non-empty subset J Ď J1, nuK, the
polytope (33) is defined under a half-space representation
as follows:

PJ fi

$

’

&

’

%

x P Rnx :

$

’

&

’

%

J Ď Ipxq

∥x∥8 ď a

d

ÿ

jPJ

´

dpjq ´ dpjq

¯2

,

/

.

/

-

with a “
∥PB∥2

αλminpP q

(33)
note that J Ď Ipxq is verified for all x P Rnx such that:

@j P J , dpjq ď pKxqpjq ď dpjq (34)

Theorem 7. (Component-wise ultimate bound). If δ P D “

(17) follows the assumptions of Section 4.1, system (26)
associated with the control law u “ Kx such that (27)
holds is ultimately bounded by EpP, rq with

r2 “max
xPRn

xJPx

s.t. x P
ď

JĎJ1,nuK

PJ
(35)

which can be computed by enumerating the vertices of all
the polytopes PJ “ (33).

Proof. Similarly to the proof of Theorem 6, for V pxq “

xJPx, 9V pxq ă 0 is verified when

∥x∥2 ą
∥PB∥2∥δ∥2
αλminpP q

(36)

in particular, if ∥x∥8 ą a∥δ∥2 then 9V pxq ă 0 holds, with
a defined in (33). Since for all i R Ipxq, δpiq “ 0, it follows
that if Ipxq “ H then ∥δ∥2 “ 0, and if Ipxq ‰ H then

∥δ∥22 “
ÿ

iPIpxq

δ2piq ď
ÿ

iPIpxq

´

dpiq ´ dpiq

¯2

(37)

Reciprocally, if 9V pxq ě 0, then ∥x∥8 ď a∥δ∥2, and either
Ipxq “ H hence x “ 0, or there exists J Ď J1, nuK
such that J Ď Ipxq and ∥x∥8 ď a

b

ř

iPJ pdpiq ´ dpiqq2.

This provides that 9V pxq can only be positive for x inside

a polytope PJ , which is to say 9V pxq ă 0 for all x R
Ť

JĎJ1,nuK PJ . In the end, the ultimate bound of the

system can be computed as the smallest level-set of V
containing

Ť

JĎJ1,nuK PJ , i.e. through the optimization

problem (35). ˝

A similar reasoning can be carried out when δ follows
the assumptions of Section 4.2, where h is nonlinear on
D˝

u “ (18), by enumerating the vertices of the polytope
PJ1,nuK directly.

Keeping the assumptions of Section 4.2, the next result
leverages the upper-bound of Lemma 4 in order to obtain
an ultimate bound through a simple SDP optimization
problem.

Theorem 8. (Non component-wise ultimate bound). If δ P

D “ (17) follows the assumptions of Section 4.2, system
(26) associated with the control law u “ Kx such that
(27) holds is ultimately bounded by EpP, rq with

r2 “ max
X“XJľ0

TrX

s.t. TrpTiXq ď r2i , for i “ 1, 2
(38)

where

T1 fi P´ 1
2 JR

„

Ip 0
0 0

ȷ

RJP´ 1
2 (39)

T2 fi P´ 1
2 JR

„

0 0
0 Inx´p

ȷ

RJP´ 1
2 (40)

r1 fi

”

W0

´

ηβλ
η{2
minpΛqrη2

¯

{ηβ
ı

1
η

λ
1{2
minpΛq

(41)

r2 fi
∥PB∥2

αλminpP q

∥∥d ´ d
∥∥
2
eβ (42)

where W0 denotes the principal branch of the Lambert W
function, R is a unitary matrix such that λminpΛq ą 0 in

KJQK “ R diagpλ1, . . . , λp, 0, . . . , 0qRJ “ R

„

Λ 0
0 0

ȷ

RJ

(43)



and Q fi MJM , with M provided by Lemma 4.

Proof. Similarly to the proof of Theorem 6, for V pxq “

xJPx, 9V pxq ă 0 is verified when

∥x∥2 ą
∥PB∥2∥δ∥2
αλminpP q

(44)

leveraging the upper-bound (20) of Lemma 4, 9V pxq ă 0
stands for all x such that:

∥x∥2 ą
∥PB∥2

αλminpP q

∥∥d ´ d
∥∥
2
exp

”

β
´

1 ´ puJQuq
η
2

¯ı

(45)

i.e.

∥x∥2 exp
”

βpxJKJQKxq
η
2

ı

ą r2 (46)

KJQK is real-symmetric hence unitary diagonalizable.

We take x “ Rz “ R
“

zJ
1 zJ

2

‰J
, with R a unitary matrix

and such that (43) holds. This provides 9V pxq ă 0 for all z
such that:

b

pRzqJRz exp
”

βpzJ
1 Λz1q

η
2

ı

ą r2 (47)

note that since R is unitary, RJR “ Inu
follows, hence

9V pxq ă 0 holds if:
b

pzJ
1 z1 ` zJ

2 z2q exp
“

2βpzJ
1 Λz1q

η
2

‰

ą r2 (48)

which also holds, since 2βpzJ
1 Λz1q

η
2 ě 0, if:

b

zJ
1 z1 exp

“

2βpzJ
1 Λz1q

η
2

‰

` zJ
2 z2 ą r2 (49)

Finally 9V pxq ă 0 holds if:

max
!

∥z1∥2 exp
”

βλ
η{2
minpΛq∥z1∥η2

ı

, ∥z2∥2
)

ą r2 (50)

In particular for z1:

∥z1∥2 exp
”

βλ
η{2
minpΛq∥z1∥η2

ı

ą r2

ô ∥z1∥2 ą

”

W0

´

ηβλ
η{2
minpΛqrη2

¯

{ηβ
ı

1
η

λ
1{2
minpΛq

“ r1

(51)

In the end, the ultimate bound of the system can be
computed as the smallest level-set of V containing the
intersection of the two degenerate ellipsoids ∥z1∥2 ă r1
and ∥z2∥2 ă r2, and Lemma 3 provides the tractable
optimization problem (38) to obtain this level-set. ˝

This ultimate bound can actually be leveraged with a
δ P D “ (17) following the assumptions of Section 4.1
if a sufficiently small ultimate bound is already known.

Corollary 9. If δ P D “ (17) follows the assumptions of
Section 4.1, system (26) associated with the control law
u “ Kx such that (27) holds is ultimately bounded by
EpP, r1q with r1 defined by (38) if there exists r2 ą r1
such that EpP, r2q Ă X with EpP, r2q an ultimate bound
for the system and X defined by

X fi tx P Rnx : Kx P D˝
u “ (18)u (52)

Proof. For all x P X , the assumptions on δ of Section 4.1
and of Section 4.2 are equivalent. Hence 9V pxq ă 0 holds
for all x R EpP, r2q and for all x P X zEpP, r1q. Since

EpP, r2q Ă X , overall, 9V pxq ă 0 for all x R EpP, r1q, which
concludes the proof. ˝
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6. APPLICATION

The results of the previous section are applied to (26)

taken with A “

„

0 1
1 2

ȷ

, B “ I2, and K “

„

´2 ´1
´1 ´4

ȷ

.

It is easily verified that (27) holds with α “ 2, P “ I2.
Moreover, the vectors d, d P R2 are defined by dpiq “

´dpiq “ 1, i “ 1, 2. In simulation (Figures 2, 3, 4), the

nonlinear function h is taken such that (53) holds on
Du “ (11) and D˝

u “ (18) respectively (Figure 1).

ũpiq “ hpupiqq “ ´signpupiqq|upiq|
1
5 cospπu5

piqq (53)

6.1 Component-wise nonlinearity

A simple application of Theorem 6 provides ∥x∥2 ď
?
2 “

UB1 as a first ultimate bound of the system. Moreover,
applying Theorem 7 with

Pt1u “
␣

x P R2 : max t|2x1 ` x2|, ∥x∥8u ď 1
(

(54)

Pt2u “
␣

x P R2 : max t|x1 ` 4x2|, ∥x∥8u ď 1
(

(55)

Pt1,2u “

$

&

%

x P R2 : max

$

&

%

|2x1 ` x2|,

|x1 ` 4x2|,

∥x∥8{
?
2

,

.

-

ď 1

,

.

-

(56)

provides the norm of the vertex V “ r ´1 1 s
J

as a valid

ultimate bound of the system, hence ∥x∥2 ď
?
2 “ UB2.



Fig. 4. Ultimate-bounds over the phase space of the closed-
loop taken with component-wise nonlinearities

Despite taking into account the link between δ and x,
the conservatism introduced by the infinity norm makes
UB2 “ UB1 for this particular system.

6.2 Orthotopic nonlinearity

Assuming the system is ultimately bounded by X “ (52)
(which is verified when h is given by (53)), the ultimate
bounds given below also hold in the component-wise case.
Theorem 7 now provides the norm of the vertex V “

r 5{7 ´3{7 s
J

as a valid ultimate bound, hence ∥x∥2 ď
6
7 “ UB3. Finally, applying Theorem 8 with

Q “ diag p1{2, 1{2q , KJQK “

„

5{2 3
3 17{2

ȷ

Γ “ diag
´

11{2 ´ 3
?
2, 11{2 ` 3

?
2
¯

, T1 “ I2, T2 “ H

R “

»

—

—

–

´
1 `

?
2

a

4 ` 2
?
2

´
1 ´

?
2

a

4 ´ 2
?
2

1
a

4 ` 2
?
2

1
a

4 ´ 2
?
2

fi

ffi

ffi

fl

r1 “

“

W0

`

ηβp11{2 ´ 3
?
2qη{2rη2

˘

{ηβ
‰

1
η

b

11{2 ´ 3
?
2

, r2 “
?
2eβ

provides the following ultimate bound for all β, η ą 0:

∥x∥2 ď

“

W0

`

ηβp11{2 ´ 3
?
2qη{22

η
2 eηβ

˘

{ηβ
‰

1
η

b

11{2 ´ 3
?
2

which, evaluated at β “ 10´3 and η “ 103 yields ∥x∥2 ď

0.8973... “ UB4.

7. CONCLUSIONS AND PERSPECTIVES

This paper has introduced a novel and unified approach
for addressing dead-zone, dead-band, hysteresis and others
nonlinear local faults on actuators and sensors of physical
system which requires minimal prior knowledge on these

faults. Practical ultimate bounds are given for LTI sys-
tems. Similarly to the usual dead-zone literature, more
robust bounds should be obtainable through adaptive con-
trol by leveraging a real-time estimate of the uncertain
term introduced in the paper, or by finding sufficient
conditions to reduce the assumptions on δ of Section 4.1
to those of Section 4.2. These questions remain open for
further investigations.
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