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Abstract
The Nonlinear Sector Approach (NLSA) is a way to construct Takagi-Sugeno (T-S) models which exactly
represent nonlinear systems with bounded nonlinearities. Generally, the nonlinearities are bounded by
a box-shaped set, however, this paper generalizes the NLSA for polytopic and smooth convex bounding
sets, providing new ways of reducing the intrinsic conservatism of T-S representations with interdependent
scheduling parameters. Some Linear Matrix Inequalities (LMI) criteria for stability analysis of these models
are provided throughout the paper.
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1. Introduction

The study of nonlinear systems for control purposes is a challenging task that has received a great amount
of attention in the last century due to its numerous applications in the fields of engineering [1], biology [2]
or even economics and finance [3, 4]. A nonlinear dynamical system is typically given by the following
equations

δx(t) = f(x(t), u(t), σ(t), t) (1a)
y(t) = g(x(t), u(t), σ(t), t) (1b)

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny are the state, input and output vector of the system
respectively; σ(t) ∈ Rnσ is a vector of exogenous signals (such as noise); f and g are two (generally smooth)
nonlinear functions; and δ is the shift operator, with δx(t) = ẋ(t) in the continuous-time case (and t ∈ R)
or δx(t) = x(t + 1) in the discrete-time case (and t ∈ Z). These systems are generally implicitly assumed to
have a solution for “all time”, in the sense that given an initial condition x(t0) ∈ Rnx , the trajectory x(t) is
uniquely defined on the maximal interval of existence [t0, +∞). Several models have been suggested by the
literature to offer a systematic approach to the control synthesis of such systems. Among them, a recurring
idea consists in approximating or rewriting the shifted state vector δx(t) and the output y(t) as a weighted
sum of several Linear Time Invariant (LTI) systems, the so-called local models (or submodels), to obtain:

δx(t) =
nΩ∑
i=1

hi(θ) [Aix(t) + Biu(t) + αi] (2a)

y(t) =
nΩ∑
i=1

hi(θ) [Cix(t) + Diu(t) + βi] (2b)

with nΩ the number of local models; θ ∈ Ω ⊆ Rnθ a vector of scheduling parameters which usually depend on
x(t), u(t), σ(t) and t; αi ∈ Rnx and βi ∈ Rny the two affine biases of the i-th local model; and (h1, . . . , hnΩ)
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the weighting functions, also known as the membership functions or the activation functions (indeed, hi

provides the weight of the i-th local model of the system). Several terminologies are employed in the
literature to refer to this kind of model:

• the Takagi-Sugeno (fuzzy) model (T-S) [5];

• the multiple model [6];

• the polytopic (quasi-)Linear Parameter Varying (LPV) model [7];

• the linear polytopic model [8].

In particular, the “quasi-LPV” terminology is reserved for cases when θ depends on the state x(t), whereas
the “the linear polytopic model” terminology is reserved for cases when θ does not depend on the state
x(t) [9]. Moreover, as a special case, (2) is also equivalent to a flattened tensor-product model [10], to a
polynomial fuzzy model with only linear terms [11], or to a polytopic linear differential inclusion model with
known weights [12]. The weighting functions (h1, . . . , hnΩ) satisfy the convex sum properties:

hi(θ) ≥ 0 [positivity] (3)
nΩ∑
i=1

hi(θ) = 1 [partition of unity] (4)

Thanks to the convex nature of these models, many control problems with no simple analytical solution
can be numerically solved through convex optimization techniques, in particular by formulating them using
Linear Matrix Inequalities (LMI) [12, 13, 14].

Two main approaches exist in the literature to obtain a T-S model from a nonlinear system: numerical
identification using measurements of the system behavior, or analytical construction using an already existing
nonlinear model of the system dynamic. The first approach is out of the scope of this paper and the interested
reader is referred to [15, 16, 17, 18, 19, 20, 21]. Common examples of the second approach are the dynamic
linearization at different representative points of the system [22], the use of unimodal basis functions with
arbitrary accuracy on the approximation error [23], and the Nonlinear Sector Approach (NLSA) [24, 25],
also called the convex polytopic transformation [26]. The latter is the most prominent in the literature of
T-S models, since it provides an exact representation of the initial nonlinear system on a box-shaped set of
the scheduling parameter space. Formally for all θ in the box-shaped set Ω:{∑nΩ

i=1 hi(θ(x, u, σ, t)) [Aix + Biu + αi] = f(x, u, σ, t)∑nΩ
i=1 hi(θ(x, u, σ, t)) [Cix + Diu + βi] = g(x, u, σ, t)

[exactness] (5)

As a matter of fact, this exactness is explained by a third property respected by the weighting functions
produced by the NLSA:

nΩ∑
i=1

hi(θV)Vi = V [linear precision] (6)

This linear precision property states that given a vector V in the convex hull of {V1, . . . , VnΩ}, weighting
each vertex Vi by hi(θV) yields back V, with θV the value of the scheduling parameter at V [27]. Linear
precision makes (h1, . . . , hnΩ) the exact barycentric coordinates of the initial nonlinear system within the
convex hull of the local LTI models.

Despite its popularity, the NLSA is subject to some key issues: regarding the number of local models
needed, which grows exponentially with the dimension of the scheduling parameter space (nΩ = 2nθ ) [28],
and regarding the intrinsic conservatism of the model. Indeed, modeling a nonlinear system with the convex-
sum (2) generally creates a loss of information on the properties of the nonlinearities of the system (such as
their interdependence, periodicity, etc), which limits the number of solutions in the optimization problems
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obtained with a T-S model-based approach to nonlinear control questions. Some mitigating solutions to
these modeling issues have been suggested, for example by using a polar coordinate T-S model [29], by
generalizing the NLSA for polynomial fuzzy models [30], by using model reduction schemes [31, 32, 33, 34],
or simply by carefully choosing the scheduling parameters of the model [35, 36]. However, most of the
conservatism reductions in the literature are performed a-posteriori, that is to say after the construction of
the T-S model with its nΩ = 2nθ local models. The conservatism reduction is usually achieved by using
nonquadratric Lyapunov function in the stability analysis of the system [37, 38, 39, 40, 41], and by finding
a sharp LMI formulation of the control problem at hand [42, 43, 44, 45, 46, 47]. In particular, one way of
sharpening the resulting LMI problems consists in getting rid of some useless vertices of the T-S model, by
leveraging the interdependencies of the scheduling parameters [48]. However, if these vertices were in fact
useless, one could wonder why they were considered in the NLSA in the first place.

The authors argue that the key issues of the NLSA could be addressed by acknowledging that the box-
shaped bounding set Ω is ultimately incidental to the approach, and could be replaced by larger classes of
convex sets. Somehow, the generalization of the NLSA to simple polytopes (see Definition 4.1) can already
be found in the T-S literature [25], but has received very little attention yet, despite its relevance. Flexibility
on the convex polytope used to bound the scheduling vector θ is also not uncommon in the polytopic LPV
model literature [49, 35, 50]. However, since the generalization of the NLSA to simple polytopes is rarely
leveraged in the construction of polytopic LPV models, the explicit expression of the weighting functions
is rarely given. This is still a limiting issue in the polytopic LPV framework, in particular for the PDC
schemes relying on the real-time calculation of these weights.

This paper presents several convex generalizations of the NLSA which are not discussed in the literature
yet, and which can not only reduce the minimal number of local models needed, but can also lead to a
reduction of the intrinsic conservatism of some T-S models with interdependent scheduling parameters.

The paper is organized as follows: in Section 2, the notations of the document are introduced. Section 3
provides a generic description of the NLSA and introduces a nonlinear system which is studied numerically
in each of the following sections of this paper. Section 4 focuses on the NLSA for polytopic bounding
sets, which results in the well-known NLSA [24] when this bounding set is a box, and in the lesser-known
generalization of the NLSA when this bounding set is a simple polytope [25]. Section 5 provides similar
results for convex bounding sets with a smooth boundary, which results in a generalization of the NLSA for
a new kind of T-S models which is not discussed in the literature yet. New stability results are given to
study these T-S-like models using simple LMIs. Finally, some conclusions and perspectives are discussed in
Section 6.

2. Notations

Z, N stand resp. for the set of integer and non-negative integers. Given k, m ∈ Z, Jk, mK stands for the
subset of integers between k and m (both included). Given a ∈ N, a[k] . . . a[1]

(b) denotes the standard base-b
positional notation of a, where a[i] ∈ J0, b − 1K stands for the i-th digit of a, with b ∈ J2, +∞J:

a = a[k] . . . a[1]
(b) =

k∑
i=1

a[i]b
i−1 (7)

R, R>0 stand resp. for the set of real numbers and positive real numbers. Rp×q denotes the set of matrices
of p rows and q columns with coefficients in R. The matrices with one column in Rp×1 are identified with
vectors of Rp. Given a matrix A ∈ Rp×q and a vector v ∈ Rp, A(i,j) stands for the (i, j)-th coefficient of A
and v(i) stands for the i-th coordinate of v. ∥·∥ stands for the Euclidean norm for vectors. ⟨·|·⟩ stands for the
dot product between two vectors. Given a matrix E ∈ Rp×q, E⊤ denotes its transposition. If p = q, then
H(E) = E⊤ + E. Given two symmetric matrices E, F ∈ Rp×p, E ≻ F means that E − F is positive-definite
(which is denoted E − F ≻ 0) and that F − E is negative-definite (F − E ≺ 0).

A n-dimensional polytope P ⊂ Rn is defined as the convex hull of a finite set S of vectors of Rn containing
at least n + 1 affinely independent vectors. This is denoted by P = Hull(S). A n-dimensional polytope is
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bounded by a finite number of 0-dimensional and (n − 1)-dimensional faces which are respectively called its
vertices and its facets. The set of vertices and the set of facets of P are respectively denoted by v(P) and
f(P). Given a vertex V of v(P), ind(V) stands for the set of facets containing V. Given F a facet of f(P),
NF stands for the exterior-pointing normal to F . In particular, Nind(V) is the matrix whose columns are
formed by the exterior-pointing normals to each facet of ind(V). A complete exposition on the theory of
convex polytopes can be found in [51] and [52].

Given a set S ∈ Rn a smooth convex set and V is an element of its boundary, NV stands for the
exterior-pointing normal to the supporting hyperplane of S at V.

When considering the scheduling vector θ ∈ Ω ⊆ Rnθ , for concision and readability, θ(i) is denoted θi

directly. Moreover, from (8) to the end of the paper, the dependence of θ on x, u, σ and t is implicit, and θ
is generally a shorthand for θ(x(t), u(t), σ(t), t).

3. The General NLSA

The NLSA is a two-step procedure to obtain a T-S model (2) which exactly represents a nonlinear system
(1) on a peculiar set. In this section, the two steps of the NLSA procedure are described succinctly, and a
nonlinear system is introduced to illustrate the first step of this procedure. This nonlinear system is reused
in each section of the paper with variation on the second step of the NLSA.

3.1. NLSA method
Step 1: The first step of the NLSA consists in rewriting (1) as a general LPV system of the following

form:

δx(t) = A(θ)x(t) + B(θ)u(t) + α(θ) (8a)
y(t) = C(θ)x(t) + D(θ)u(t) + β(θ) (8b)

with θ ∈ Rnθ a scheduling vector standing for the nonlinearities and exogenous signals of (1), and A, B,
α, C, D, β affine functions of θ. Indeed, θ is chosen such that for all E ∈ {A, B, α, C, D, β}, E(θ) can be
written as

E(θ) = E0 +
nθ∑

i=1
θiEi (9)

Remark 3.1. Several LPV representations are often already possible at this stage, some being more advan-
tageous than others in terms of conservatism reduction or of structural properties (such as controllability
and observability). However, this discussion is beyond the scope of this paper, and the interested reader is
referred to [35, 36].

Remark 3.2. Note that the α and β functions are rarely considered in practice, since they introduce some
difficulties in the stability analysis of the model, despite enhancing its representation capabilities.

Step 2: The second step consists in bounding the values of θ within a set Ω of Rnθ with realistic assump-
tions on x(t), u(t), σ(t) and t. From the affine relation between θ and {A, B, α, C, D, β}, the barycentric
coordinates of θ within Ω are also the barycentric coordinates of {A, B, α, C, D, β} within their bounds.
Indeed, assuming that Ω is a polytope with vertices v(Ω) = {Vi}1≤i≤nΩ

and of barycentric coordinates
(h1, . . . , hnΩ), for all E ∈ {A, B, α, C, D, β}, this “transfer” of barycentric coordinates is easily shown with
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the following operations:

E(θ) = E0 +
nΩ∑
i=1

θiEi

= E0 +
nΩ∑
i=1

 nΩ∑
j=1

hj(θ) (Vj)(i)

Ei

=
nΩ∑
j=1

hj(θ)
[

E0 +
nΩ∑
i=1

(Vj)(i) Ei

]

E(θ) =
nΩ∑
j=1

hj(θ)E (Vj)

(10)

By linearity, this provides a convex-sum representation of (8) for all x(t), u(t), σ(t) and t such that θ ∈ Ω,
which is an exact T-S model representation of (1).

This paper focuses on the second step of the approach. In particular, based on the work of [24] and [27],
the next sections provide the barycentric coordinates of θ in Ω respectively when Ω is a polytope (Section 4)
or a convex set with a smooth boundary (Section 5). An intuitive measure of the intrinsic conservativeness
of the resulting T-S models is given by the size of the subset of Ω that does not contain admissible values of
θ [35]. This clearly indicates that some of the previous geometries are better suited for some systems than
others depending on the nonlinearities of (1). However, even if this intuitive measure of conservativeness
is arguably accurate, some analytical difficulties or simplification can still show up during the practical
manipulation of the model and affect the conservativeness of the stability analysis. Rather than providing
a single process to obtain the single best NLSA to construct an exact T-S model from a nonlinear system,
each section emphasizes the singularity of the presented approach. The authors’ goal is to underline the
diversity of the possible exact T-S representations obtainable from the NLSA, a topic which is not discussed
in the literature yet.

3.2. Application
The T-S models being a convex sum of linear models, it is possible to numerically conduct the stability

analysis of these systems through convex optimization techniques, in particular by leveraging results on
Quadratic Lyapunov Functions (QLF). Throughout the paper, several T-S representations will be compared
in terms of their respective capabilities in the stability analysis of the following second order nonlinear
differential equation:

z̈ + (1 + α cos z)ż + (1 + β sin z)z = 0 (11)
which can be re-written as the following system:[

ẋ1
ẋ2

]
=
[

x2
−(1 + β sin x1)x1 − (1 + α cos x1)x2

]
(12)

with x1 = z and x2 = ż. The vector field associated to this differential equation is plotted on Figure 1
for different (α, β) values. For the investigated values, the system displays a typical asymptotically stable
behavior. However, the range of (α, β) values for which this property holds is unknown. This will be
investigated through several through several exact T-S rewriting of the system, facilitating the numerical
stability analysis.

Remark 3.3. This toy model is arbitrary, and any other system with interdependent nonlinearities could
have been chosen to illustrate the generalized NLSA.

The first step of the NLSA is applied to system (12), which can be re-written as an LPV model (8) by
considering a scheduling vector θ = [ θ1 θ2 ]⊤ such that

ẋ = A(θ)x (13)
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(a) α = −0.5, β = 0.3 (b) α = 0.9, β = −0.8

Figure 1: Vector field associated with the differential equation (12) for different (α, β) values, with some trajectories (in blue)
converging towards the origin for a set of evenly spread initial conditions.

with A(θ) =
[

0 1
−1 − βθ1 −1 − αθ2

]
and

{
θ1 = sin x1

θ2 = cos x1
(14)

The scheduling parameters (θ1, θ2) are interdependent, with θ2
1 + θ2

2 = 1 being always verified. This demon-
strates that θ is on the unit circle centered at the origin. Note that these interdependent nonlinearities
are also found in real-world dynamical systems, e.g. in the Vertical Take-Off and Landing (VTOL) aircraft
model [53, 54], or in the kinematic model of a wheeled mobile robot [55]. Throughout the paper, the unit
circle is bounded by a set Ω whose shape varies depending on the considered NLSA. The conservatism of
each NLSA is evaluated by comparing the values of α and β for which the resulting T-S representations of
(12) are found to be globally exponentially stable. In particular, these results are compared to the following
theoretical guarantee, which relies on a QLF.

Lemma 3.1 (Perturbative Approach). The solutions to (11) are globally exponentially stable if

max(|α|, |β|) < 2/(5 +
√

5) ≈ 0.27639... (15)

Proof. Equation (12) is equivalent to a perturbed system of form

ẋ = Ax + g(x) (16)

with A =
[

0 1
−1 −1

]
and g(x) =

[
0

−αx2 cos x1 − βx1 sin x1

]
(17)

If P = P ⊤ ≻ 0 is a positive definite matrix such that H(PA) = −I2, then V (x) = x⊤Px is a QLF
demonstrating that ẋ = Ax is globally exponentially stable. It is easy to find such a P .

P =
[

1.5 0.5
0.5 1

]
(18)

Moreover, if ∥g(x)∥2 ≤ γ∥x∥2 and γ < 1
2λmax(P ) , then a result on perturbed systems provides the global

exponential stability of (16) as well (see Chapter 9 of [56]). Here, γ = max(|α|, |β|) and λmax(P ) = 1
4 (5+

√
5),

which concludes the proof.
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(a) Pyramid of R3 with a square base (b) Simplex of R3 (c) Box of R3

Figure 2: Illustration of Examples 4.1 and 4.2.

4. The NLSA for Polytopes

This section broadens the well-known NLSA from box-shaped bounding sets to polytopic bounding sets
Ω. After defining “simple polytopes” in Definition 4.1, Lemma 4.1 provides the barycentric coordinates of
θ inside a simple polytope Ω, and Lemma 4.2 extends these barycentric coordinates to general polytopes.
The barycentric coordinates of a box-shaped set are retrieved as a special case of the polytopic barycentric
coordinates in Corollary 4.1. Following the procedure of the NLSA, Theorem 4.1 uses these barycentric
coordinates as weighting functions in order to obtain a T-S model which exactly represents the nonlinear
system (1) for all θ ∈ Ω. After discussing the advantages and inconveniences of the NLSA on a polytopic
set, a basic result of stability for T-S models is recalled, which is applied to the nonlinear system (11) of
Section 3.2 with several geometries for the bounding set Ω.

4.1. NLSA method
Definition 4.1 (Simple Vertex, Simple Polytope [27]). Given a n-dimensional polytope Ω with vertices
v(Ω) = {Vi}1≤i≤nΩ

, Vi is a simple vertex of Ω if ind(Vi) has exactly n elements. Otherwise, Vi is called
a non-simple vertex of Ω. The subset of simple vertices (resp. non-simple vertices) of Ω is denoted by
vs(Ω) =

{
Vs(i)

}
1≤i≤ns

(resp. vs(Ω)) with s : J1, nsK 7→ J1, nΩK (resp. s) an injective function. Ω is called a
simple polytope if all of its vertices are simple, i.e. if vs(Ω) = v(Ω).

Example 4.1. The four vertices at the base of a pyramid of R3 with a square base are simple, since they
are all contained in exactly three faces of the pyramid. However, its apex is not a simple vertex since it is
contained in exactly four faces. Hence, the pyramid is not a simple polytope. This is illustrated in Figure 2a.

Example 4.2. All vertices of the n-simplex and of the n-box of Rn are simple since they are all contained
in exactly n facets of these polytopes. Hence, the n-simplex and the n-box are simple polytopes. This is
illustrated for R3 in Figure 2b and 2c.

Example 4.3. In general, the 2-dimensional polytopes of R2 are simple. Indeed, this polytopes are polygons,
and every vertex of a polygon is contained in exactly two edges.

Lemma 4.1 (Barycentric coordinates of a Simple Polytope). Let θ ∈ Rnθ be bounded by the simple polytope
Ω with vertices v(Ω) = {Vi}1≤i≤nΩ

. For all i ∈ J1, nΩK, wVi stands for the weight function associated to Vi,
with

wVi
(θ) =

∣∣det
(
Nind(Vi)

)∣∣∏
F∈ind(Vi)

⟨NF |Vi − θ⟩
(19)

The barycentric coordinates of θ in Ω associated to the vertices v(Ω) are given by (hVi
)1≤i≤nΩ

, a normaliza-
tion of the previous weights. For all i ∈ J1, nΩK, hVi

is given by

hVi(θ) = wVi(θ)
nΩ∑
j=1

wVj
(θ) (20)
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Proof. For all nΩ ∈ N∗ and θ ∈ Ω, the three axioms of barycentric coordinates (3), (4), (6) are verified. The
proof that (6) stands can be found in [27], and the two other properties are trivial by construction.

Corollary 4.1 (Barycentric coordinates of a Box). Let θ ∈ Rnθ be bounded by the box-shaped polytope
Ω = [θ1, θ1] × · · · × [θnθ

, θnθ
], i.e. by the convex hull of {Vi}1≤i≤2nθ with for all i ∈ J1, 2nθK

Vi = V
(i−1)[nθ ]...(i−1)[1]

(2)+1
with, for all k ∈ J1, nθK, (Vi)(k) =

{
θk if (i − 1)[k] = 1
θk if (i − 1)[k] = 0

(21)

For all i ∈ J1, 2nθK, let K+
i and K−

i stand for the indices of the digits equal to 1 or 0 resp. in the standard
base-2 positional notation of (i − 1). Formally:

K+
i =

{
k ∈ J1, nθK : (i − 1)[k] = 1

}
(22a)

K−
i =

{
k ∈ J1, nθK : (i − 1)[k] = 0

}
(22b)

The barycentric coordinates of θ in Ω associated to the vertices {Vi}1≤i≤2nθ are given by (hVi)1≤i≤2nθ with
for all i ∈ J1, 2nθK

hVi(θ) = 1
nθ∏

k=1
(θk − θk)

 ∏
k∈K−

i

(θk − θk)

 ∏
k∈K+

i

(θk − θk)

 (23)

Proof. The barycentric coordinates functions constructed for boxes [24] and simple polytopes [27] are rational
functions of the same minimal degree. By unicity of the barycentric coordinates of minimal degree, the two
constructions are necessarily equal to each other when a box is considered [57]. To verify this claim, the
barycentric coordinates of a box are retrieved below from the formula of the barycentric coordinates of a
simple polytope. Taking nΩ = 2nθ , Ω = [θ1, θ1] × · · · × [θnθ

, θnθ
], the facets of the polytope Ω are given by

f(Ω) =
{

F+
k , F−

k

}
1≤k≤nθ

, with for all k ∈ J1, nθK

F+
k = Hull

{
Vi : i ∈ J1, 2nθK | k ∈ K+

i

}
(24a)

F−
k = Hull

{
Vi : i ∈ J1, 2nθK | k ∈ K−

i

}
(24b)

By denoting (e1, . . . , enθ
) the standard basis of Rnθ , it is clear that the normals to the facets of Ω are simply

given by NF+
k

= ek and NF−
k

= −ek. Moreover, for all i ∈ J1, 2nθK

ind(Vi) =
{

F+
k : k ∈ J1, nθK | k ∈ K+

i

}
∪
{

F−
k : k ∈ J1, nθK | k ∈ K−

i

}
(25)

hence
∣∣det

(
Nind(Vi)

)∣∣ = 1, and

∏
F∈ind(Vi)

⟨NF |Vi − θ⟩ =

 ∏
k∈K+

i

⟨NF+
k

|Vi − θ⟩

 ∏
k∈K−

i

⟨NF−
k

|Vi − θ⟩


=

 ∏
k∈K+

i

(θk − θk)

 ∏
k∈K−

i

(θk − θk)

 (26)

which yields
2nθ∑
i=1

wVi
(θ) =

2nθ∑
i=1

1(∏
k∈K+

i
(θk − θk)

)(∏
k∈K−

i
(θk − θk)

) (27)
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noticing that K+
i and K−

i form a partition of J1, nθK for all i ∈ J1, 2nθK, multiplying the numerator and
denominator of each term in the sum by

(∏
k∈K−

i
(θk − θk)

)(∏
k∈K+

i
(θk − θk)

)
provides

2nθ∑
i=1

wVi
(θ) = 1∏nθ

k=1(θk − θk)(θk − θk)

2nθ∑
i=1

 ∏
k∈K−

i

(θk − θk)

 ∏
k∈K+

i

(θk − θk)

 (28)

finally, the fact that K+
2nθ +1−i = K−

i (resp. K−
2nθ +1−i = K+

i ) makes it possible to re-order the terms of the
sum, and obtain

2nθ∑
i=1

wVi
(θ) = 1∏nθ

k=1(θk − θk)(θk − θk)

2nθ∑
i=1

 ∏
k∈K+

i

(θk − θk)

 ∏
k∈K−

i

(θk − θk)


= 1∏nθ

k=1(θk − θk)(θk − θk)

(2nθ∑
i=1

1
wVi

(θ)

) (29)

By a succession of factorization, one has

2nθ∑
i=1

1
wVi(θ) =

2nθ∑
i=1

 ∏
k∈K−

i

(θk − θk)

 ∏
k∈K+

i

(θk − θk)


=
[
(θnθ

− θnθ
) + (θnθ

− θnθ
)
] 2nθ−1∑

i=1

 ∏
k∈K−

i
\{nθ}

(θk − θk)

 ∏
k∈K+

i
\{nθ}

(θk − θk)


=
(
θnθ

− θnθ

) 2nθ−1∑
i=1

 ∏
k∈K−

i
\{nθ}

(θk − θk)

 ∏
k∈K+

i
\{nθ}

(θk − θk)


=
(
θnθ

− θnθ

) (
θnθ−1 − θnθ−1

) 2nθ−2∑
i=1

 ∏
k∈K−

i
\{nθ,nθ−1}

(θk − θk)

 ∏
k∈K+

i
\{nθ,nθ−1}

(θk − θk)


= . . .

=
[

nθ∏
k=3

(
θk − θk

)] [
(θ2 − θ2)

(
(θ1 − θ1) + (θ1 − θ1)

)
+ (θ2 − θ2)

(
(θ1 − θ1) + (θ1 − θ1)

)]
=
[
(θ2 − θ2) + (θ2 − θ2)

] [ nθ∏
k=3

(
θk − θk

)] (
(θ1 − θ1) + (θ1 − θ1)

)
=
[

nθ∏
k=2

(
θk − θk

)] (
(θ1 − θ1) + (θ1 − θ1)

)
=

nθ∏
k=1

(
θk − θk

)

(30)
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Injecting the expression of
2nθ∑
j=1

wVj
(θ) and wVi

(θ) in hVi
(θ) provides

hVi
(θ) = wVi

(θ)
nΩ∑
j=1

wVj
(θ)

= 1∏nθ

k=1
(
θk − θk

) ·

(
nθ∏

k=1
(θk − θk)(θk − θk)

)
wVi

(θ)

hVi(θ) = 1∏nθ

k=1
(
θk − θk

) ·
∏nθ

k=1(θk − θk)(θk − θk)(∏
k∈K+

i
(θk − θk)

)(∏
k∈K−

i
(θk − θk)

)
(31)

and finally, leveraging again the partition of J1, nθK by K+
i and K−

i gives

hVi
(θ) = 1∏nθ

k=1
(
θk − θk

) ·
∏nθ

k=1(θk − θk)(θk − θk)(∏
k∈K+

i
(θk − θk)

)(∏
k∈K−

i
(θk − θk)

)
= 1∏nθ

k=1
(
θk − θk

)
 ∏

k∈K−
i

(θk − θk)

 ∏
k∈K+

i

(θk − θk)

 (32)

which is the expression (23).

The previous barycentric coordinates can be extended to all kinds of polytopes with a perturbation trick
where the non-simple vertices of the polytopes are decomposed into several simple vertices. The idea of this
trick is given succinctly in the Lemma 4.2, and the rigorous proof of the invariance of the weight functions
under the infinitesimal decomposition of non-simple vertices is found in [58].

Lemma 4.2 (Barycentric coordinates of a Polytope). Let θ ∈ Rnθ be bounded by the polytope Ω with
vertices v(Ω) = {Vi}1≤i≤nΩ

. Each non-simple vertex Vs(i) ∈ vs(Ω) is infinitesimally disturbed into mi

distinct vertices wi = {Wj}1≤j≤mi
such that the polytope Ωs given by the convex hull of vs(Ω) ∪ (

⋃ns

i=1 wi)
is simple. For all Vs(i) ∈ vs(Ω), the weight function of Vs(i) in Ω is given by summing the weight functions
of the simple vertices wi in Ωs. Moreover, for all Vs(i) ∈ vs(Ω), the weight function of Vs(i) stays unchanged
between Ω and Ωs. Formally:

wΩ
Vs(i)

(θ) = wΩs

Vs(i)
(θ) (33a)

wΩ
Vs(i)

(θ) =
mi∑
j=1

wΩs

Wj
(θ) (33b)

The weight functions for the simple vertices Ωs are defined in Lemma 4.1. The barycentric coordinates of θ
in Ω associated to the vertices v(Ω) are finally given by normalizing the previous weights, as in Lemma 4.1.

Keeping the notations of Lemmas 4.1 and 4.2, the following generalization of the NLSA on a polytope
can be stated.

Theorem 4.1 (NLSA on a Polytope). The T-S model (34) is an exact representation of the nonlinear
system (1) for all x(t), u(t), σ(t) and t such that θ ∈ Ω.

δx(t) =
nΩ∑
i=1

hVi(θ) [A(Vi)x(t) + B(Vi)u(t) + α(Vi)] (34a)

y(t) =
nΩ∑
i=1

hVi(θ) [C(Vi)x(t) + D(Vi)u(t) + β(Vi)] (34b)
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The intrinsic conservatism of the usual NLSA on a box-shaped bounding set is generally fair if the
initial nonlinear system (1) has independent and narrowly bounded scheduling parameters θi. Moreover,
the barycentric coordinates (hVi

)1≤i≤2nθ are very easy to construct and are polynomial in the scheduling
parameters (see Corollary 4.1), which allows for some conservatism reduction in the stability analysis [59, 43].
However, the resulting T-S model needs a number of vertices which is exponentially growing (nΩ = 2nθ ) in
the number of scheduling parameters, and it generally ceases to be the best representation as long as some
of the scheduling parameters are not fully decoupled and show some interdependencies.

In comparison, the extension of the NLSA to polytopic bounding sets has a lot of advantages: the
number of vertices needed is flexible, and can be chosen to be linearly growing (nΩ = nθ + 1) in the number
of scheduling parameters by bounding θ within a simplex. It also appears to be extremely useful in order to
minimize the intrinsic conservatism of the T-S model when the scheduling parameters are not fully decoupled
and show some interdependencies. Indeed, moving away from the box-shaped framework, it is now possible
to get rid of some useless vertices of the model earlier than in other works [48], or to move some vertices
around, which can easily reduce the size of the subset of Ω that does not contain admissible values of θ, hence
reducing the intrinsic conservatism of the T-S model. Finally, the barycentric coordinates (hVi

)1≤i≤nΩ
are

rational functions of the scheduling parameters, which could possibly be leveraged for some conservatism
reduction, by taking inspiration from the results found in [59, 43].

However, this extension has a few weaknesses: in high dimensions, the construction of such models can
be laborious, the bounding polytope being hard to determine, and the non-simple vertices challenging to
handle. Moreover, the computation of the weight functions behind the barycentric coordinates of the model
also involves some divisions by zero, which do not cause any theoretical problem (by a simple argument of
continuity), but which have to be taken care of numerically, for example in PDC schemes. Note that this
generalization of the NLSA for T-S models was already mentioned, solely for simple polytopes, in Section
2.1.2 of [25].

4.2. Bounding methodology
Contrary to the usual NLSA on a box-shaped bounding set, bounding interdependent nonlinearities

within a small polytope Ω is a much harder problem in high dimensions. However, this problem is not new,
and several techniques to find minimal bounding polytopes are already known in the LPV literature (see
[49] for a review) and can be leveraged to this end. Generally speaking, the techniques consist in the two
following steps:

• sample the scheduling vector θ for x, u, σ and t in a range of interest, possibly with random noise to
increase robustness;

• compute the convex hull of all the obtained points using a dedicated algorithm (such as the well-known
“quick hull” [60]).

The resulting convex hull provides a vertex-representation (V-representation) of the bounding polytope.
However, in addition to the usual LPV methodology, the polytopic NLSA provides an expression for the
activation functions (hVi

)1≤i≤nΩ
. For this expression to be properly determined algorithmically, one must:

• disturb the non-simple vertices of the bounding polytope until the polytope becomes simple [61];

• compute normals to the facets, which is equivalent to computing the half-space-representation (H-
representation) of the polytope [52, 51].

Thankfully, all these computationally heavy steps just need to be perfomed once. After the V- and H-
representations of the bounding polytope Ω are obtained, the expression of hVi

(θ) can be evaluated in real
time, for example to compute PDC control laws.
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4.3. Stability Analysis
The previously presented generalized NLSA is now used for stability analysis. No new stabilty results

are provided here, but the objective is to illustrate the conservatism reduction brought by the generalized
NLSA compared to the usual box approach. Given the continuous-time and input-free T-S model (35),

ẋ(t) =
nΩ∑
i=1

hi(θ)Aix(t) (35)

the most widespread approach to stability analysis of T-S models relies on a direct Lyapunov method. In
particular, introducing a QLF is the simplest way to obtain a system of LMI conditions, that, if satisfied,
demonstrates the exponential stability of the T-S model. Given the QLF (36)

V (x) = x⊤Px (36)

with P = P ⊤ ≻ 0, these LMI conditions are stated as follows:
Theorem 4.2 (Quadratic Stability [62]). The T-S model (35) is globally exponentially stable if there exists
P = P ⊤ ∈ Rnx×nx such that the LMI conditions (37) are satisfied.

P ≻ 0 (37a)
∀j ∈ J, H(PAj) ≺ 0 (37b)

Where J is a subset of J1, nΩK such that for all i ∈ J1, nΩK, Ai ∈ Hull{Aj : j ∈ J}.

Proof. It is assumed that the LMIs (37) hold. For all j ∈ J , the matrices H(PAj) and −P are real,
symmetric and negative definite, meaning all their eigenvalues are strictly negative. Hence, there exists
ε ∈ R>0 such that for all j ∈ J , λmax [H(PAj)] < 2ελmin(−P ), providing λmax [H(PAj) + 2εP ] < 0 and
finally H(PAj) ≺ −2εP by a simple application of Weyl’s inequalities on Hermitian matrices [63]. By
convexity, for all X ∈ Hull{Aj : j ∈ J}, H (PX) ≺ −2εP , that is to say, for all θ ∈ Ω

H

(
P

nθ∑
i=1

hi(θ)Ai

)
≺ −2εP (38)

Introducing (36) as a QLF, the previous equation provides V̇ (x(t)) ≤ −2εV (x(t)). Grönwall’s inequality
then yields

V (x(t)) ≤ e−2ε(t−t0)V (x(t0)) (39)
Moreover, since λmin(P )Inx ⪯ P ⪯ λmax(P )Inx , it is easy to find

∥x(t)∥ ≤

√
λmax(P )
λmin(P ) e−ε(t−t0)∥x(t0)∥ (40)

which demonstrates that the T-S model (35) is globally exponentially stable.

Remark 4.1. For T-S models obtained through the NLSA when Ω is a polytopic set, by construction
J = J1, nΩK. This means that not a single local model obtained through the polytopic NLSA is useless in the
LMI-based stability analysis described above.

This result is rudimentary and introduces some conservativeness in the stability analysis. Less conserva-
tive approaches usually involve a nonquadratic Lyapunov function and lead to an LMI optimization problem
of higher dimension. The most commonly used nonquadratic Lyapunov functions are the multiquadratic
Lyapunov functions, also known as the polyquadratic Lyapunov functions or the fuzzy Lyapunov functions
[39, 46], and the piecewise quadratic Lyapunov functions [37, 38, 45]. This paper only considers QLF in
order to compare different T-S models on an equal footing. It is expected that using more sophisticated
Lyapunov functions improves the results obtained with the different models without changing which mod-
els perform better than the others. This is succinctly illustrated by Remark 4.2 and Figure 9, where the
piecewise quadratic Lyapunov function of [38] is used in the stability analysis.
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θ1

θ2

V1 V2

V3 V4

Ω

Figure 3: The box-shaped set Ω is bounding the scheduling vector θ of (13)

4.4. Application
The previous results are applied to the nonlinear system (11) of Section 3.2 by using three different

bounding sets Ω for the scheduling vector θ of the LPV model (13). The first one is chosen to be a box
(the usual approach), the second one is chosen to be an hexagon, and the last one is chosen to be an
octagon. As expected, it is shown that the stability results obtained using the octagonal bounding set are
less conservative than those obtained using the hexagonal bounding set, which are themselves arguably less
conservative than those obtained using the box-shaped bounding set. Note that the hexagon is not strictly
included in the square box, even if its area is lower.

4.4.1. Box-shaped bounding set
Considering the LPV model (13), the box Ω = [−1, 1]2 is chosen to be the bounding set of θ. As

illustrated by Figure 3, Ω has four vertices:

V1 = [ −1 −1 ]⊤ (41a)
V2 = [ 1 −1 ]⊤ (41b)
V3 = [ −1 1 ]⊤ (41c)
V4 = [ 1 1 ]⊤ (41d)

The barycentric coordinates of θ are given by Corollary 4.1:

hV1(θ) = 1
4(1 − θ1)(1 − θ2) (42a)

hV2(θ) = 1
4(1 + θ1)(1 − θ2) (42b)

hV3(θ) = 1
4(1 − θ1)(1 + θ2) (42c)

hV4(θ) = 1
4(1 + θ1)(1 + θ2) (42d)

Finally, the NLSA on the box Ω is completed and the system (12) is exactly represented by the following
T-S model:

ẋ(t) =
4∑

i=1
hVi(θ)A(Vi)x(t) (43)

The stability analysis of the T-S model (43) is performed using Theorem 4.2 at several (α, β) ∈ R2 values.
The (α, β)-region for which the system (43) is found to be stable is plotted on Figure 4, where it is compared
to the (α, β)-region obtained with the perturbative approach of Section 3.2. The (α, β)-region of stability
is visibly larger with Theorem 4.2 than with the perturbative approach, but contrary to the perturbative
approach, the region is only a discrete subset of the (α, β)-plane.
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Figure 4: Stability (α, β)-regions of (11) using Theorem 4.2 on the T-S model (43) (box model), and using the perturbative
approach of Section 3.2

4.4.2. Hexagonal bounding set
Similarly, the regular hexagon Ω = Hull {V1, . . . , V6} is chosen to be the bounding set of θ. As illustrated

by Figure 5, Ω has six vertices:

V1 = [ 2√
3 0 ]⊤ (44a)

V2 = [ 1√
3 1 ]⊤ (44b)

V3 = [ − 1√
3 1 ]⊤ (44c)

V4 = [ − 2√
3 0 ]⊤ (44d)

V5 = [ − 1√
3 −1 ]⊤ (44e)

V6 = [ 1√
3 −1 ]⊤ (44f)

This polytope has six facets f(Ω) = {F1, . . . , F6}, with for all i ∈ J1, 5K, Fi = Hull{Vi, Vi+1} and F6 =
Hull{V1, V6}. The normals to these facets are given below.

NF1 = [
√

3
2

1
2 ]⊤ (45a)

NF2 = [ 0 1 ]⊤ (45b)
NF3 = [ −

√
3

2
1
2 ]⊤ (45c)

NF4 = [ −
√

3
2 − 1

2 ]⊤ (45d)
NF5 = [ 0 −1 ]⊤ (45e)
NF6 = [

√
3

2 − 1
2 ]⊤ (45f)
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NF1

θ1

θ2

V1

V2V3

V4

V5 V6

F1

F2

F3

F4

F5

F6

Ω

Figure 5: The hexagonal set Ω is bounding the scheduling vector θ of (13)

The polytope being 2-dimensional, it is a simple polytope, moreover ind(V1) = {F6, F1} and for all i ∈ J2, 6K,
ind(Vi) = {Fi−1, Fi}. The weight functions are computed using Lemma 4.1:

wV1(θ) = 2
√

3
3θ2

1 − 4
√

3θ1 − θ2
2 + 4

(46a)

wV2(θ) =
√

3
(θ2 − 1)(

√
3θ1 + θ2 − 2)

(46b)

wV3(θ) =
√

3
(θ2 − 1)(−

√
3θ1 + θ2 − 2)

(46c)

wV4(θ) = 2
√

3
3θ2

1 + 4
√

3θ1 − θ2
2 + 4

(46d)

wV5(θ) =
√

3
(θ2 + 1)(

√
3θ1 + θ2 + 2)

(46e)

wV6(θ) =
√

3
(θ2 + 1)(−

√
3θ1 + θ2 + 2)

(46f)

which provides the barycentric coordinates of θ within the hexagon Ω:

hV1(θ) = (θ2
2 − 1)(3θ2

1 + 4
√

3θ1 − θ2
2 + 4)

6(θ2
1 + θ2

2 − 4) (47a)

hV2(θ) = (θ2 + 1)(−
√

3θ1 + θ2 − 2)(−3θ2
1 + θ2

2 + 4θ2 + 4)
12(θ2

1 + θ2
2 − 4) (47b)

hV3(θ) = (θ2 + 1)(
√

3θ1 + θ2 − 2)(−3θ2
1 + θ2

2 + 4θ2 + 4)
12(θ2

1 + θ2
2 − 4) (47c)

hV4(θ) = (θ2
2 − 1)(3θ2

1 − 4
√

3θ1 − θ2
2 + 4)

6(θ2
1 + θ2

2 − 4) (47d)

hV5(θ) = (θ2 − 1)(
√

3θ1 − θ2 − 2)(3θ2
1 − θ2

2 + 4θ2 − 4)
12(θ2

1 + θ2
2 − 4) (47e)

hV6(θ) = (θ2 − 1)(−
√

3θ1 − θ2 − 2)(3θ2
1 − θ2

2 + 4θ2 − 4)
12(θ2

1 + θ2
2 − 4) (47f)
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Finally, the NLSA on the polytope Ω is completed and the system (12) is exactly represented by the following
T-S model:

ẋ(t) =
6∑

i=1
hVi

(θ)A(Vi)x(t) (48)

Figure 6: Stability (α, β)-regions of (11) using Theorem 4.2 on the T-S models (48) (hexagonal model), (43) (box model), and
using the perturbative approach of Section 3.2

The stability analysis of the T-S model (48) is performed using Theorem 4.2 at several (α, β) ∈ R2

values. The (α, β)-region for which the system (48) (hexagonal model) is found to be stable is plotted on
Figure 6, where it is compared to the (α, β)-region obtained with the T-S model (43) (box model), and with
the perturbative approach of Section 3.2. The (α, β)-region of stability is visibly larger by using Theorem 4.2
on the T-S model (48) (hexagonal model) than on the T-S model (43) (box model): indeed, the hexagonal
bounding set is sharper than the box-shaped bounding set, which relaxes the conservatism of the stability
analysis.
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NF1

θ1

θ2

V1

V2V3

V4

V5

V6 V7

V8

F1

F2
F3

F4

F5
F6

F7

F8Ω

Figure 7: The octagonal set Ω is bounding the scheduling vector θ of (13)

4.4.3. Octagonal bounding set
Finally, the regular octagon Ω = Hull {V1, . . . , V8} is chosen to be the bounding set of θ. As illustrated

by Figure 7, Ω has eight vertices:

V1 = [ 1
√

2 − 1 ]⊤ (49a)
V2 = [

√
2 − 1 1 ]⊤ (49b)

V3 = [ −
√

2 + 1 1 ]⊤ (49c)
V4 = [ −1

√
2 − 1 ]⊤ (49d)

V5 = [ −1 −
√

2 + 1 ]⊤ (49e)
V6 = [ −

√
2 + 1 −1 ]⊤ (49f)

V7 = [
√

2 − 1 −1 ]⊤ (49g)
V8 = [ 1 −

√
2 + 1 ]⊤ (49h)

This polytope has eight facets f(Ω) = {F1, . . . , F8}, with for all i ∈ J1, 7K, Fi = Hull{Vi, Vi+1} and
F8 = Hull{V1, V8}. The normals to these facets are given below.

NF1 = [ 1√
2

1√
2 ]⊤ (50a)

NF2 = [ 0 1 ]⊤ (50b)
NF3 = [ − 1√

2
1√
2 ]⊤ (50c)

NF4 = [ −1 0 ]⊤ (50d)
NF5 = [ − 1√

2 − 1√
2 ]⊤ (50e)

NF6 = [ 0 −1 ]⊤ (50f)
NF7 = [ 1√

2 − 1√
2 ]⊤ (50g)

NF8 = [ 1 0 ]⊤ (50h)

Again, the polytope being 2-dimensional, it is a simple polytope, moreover ind(V1) = {F8, F1} and for
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Figure 8: Stability (α, β)-regions of (11) using Theorem 4.2 on the T-S models (53) (octagonal model), (48) (hexagonal model),
(43) (box model), and using the perturbative approach of Section 3.2

all i ∈ J2, 8K, ind(Vi) = {Fi−1, Fi}. The weight functions are computed using Lemma 4.1:

wV1(θ) = 1
(1 − θ1)(

√
2 − θ1 − θ2)

(51a)

wV2(θ) = 1
(1 − θ2)(

√
2 − θ1 − θ2)

(51b)

wV3(θ) = 1
(1 − θ2)(

√
2 + θ1 − θ2)

(51c)

wV4(θ) = 1
(1 + θ1)(

√
2 + θ1 − θ2)

(51d)

wV5(θ) = 1
(1 + θ1)(

√
2 + θ1 + θ2)

(51e)

wV6(θ) = 1
(1 + θ2)(

√
2 + θ1 + θ2)

(51f)

wV7(θ) = 1
(1 + θ2)(

√
2 − θ1 + θ2)

(51g)

wV8(θ) = 1
(1 − θ1)(

√
2 − θ1 + θ2)

(51h)
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Figure 9: Stability (α, β)-regions of (11) using the piecewise quadratic Lyapunov function of [38] on the T-S models (53)
(octagonal model), (48) (hexagonal model), (43) (box model)

which provides the barycentric coordinates of θ within the octagon Ω:

hV1(θ) = (θ2
2 − 1)(θ1 + 1)(θ1 + θ2 +

√
2)(−(θ1 − θ2)2 + 2)

4(θ2
1 + θ2

2 − 2)(2
√

2 + (1 −
√

2)θ2
1 + (1 −

√
2)θ2

2)
(52a)

hV2(θ) = (θ2
1 − 1)(θ2 + 1)(θ1 + θ2 +

√
2)(−(θ1 − θ2)2 + 2)

4(θ2
1 + θ2

2 − 2)(2
√

2 + (1 −
√

2)θ2
1 + (1 −

√
2)θ2

2)
(52b)

hV3(θ) = (θ2
1 − 1)(θ2 + 1)(θ1 − θ2 −

√
2)((θ1 + θ2)2 − 2)

4(θ2
1 + θ2

2 − 2)(2
√

2 + (1 −
√

2)θ2
1 + (1 −

√
2)θ2

2)
(52c)

hV4(θ) = (θ2
2 − 1)(θ1 − 1)(−θ1 + θ2 +

√
2)((θ1 + θ2)2 − 2)

4(θ2
1 + θ2

2 − 2)(2
√

2 + (1 −
√

2)θ2
1 + (1 −

√
2)θ2

2)
(52d)

hV5(θ) = (θ2
2 − 1)(θ1 − 1)(θ1 + θ2 −

√
2)(−(θ1 − θ2)2 + 2)

4(θ2
1 + θ2

2 − 2)(2
√

2 + (1 −
√

2)θ2
1 + (1 −

√
2)θ2

2)
(52e)

hV6(θ) = (θ2
1 − 1)(θ2 − 1)(θ1 + θ2 −

√
2)(−(θ1 − θ2)2 + 2)

4(θ2
1 + θ2

2 − 2)(2
√

2 + (1 −
√

2)θ2
1 + (1 −

√
2)θ2

2)
(52f)

hV7(θ) = (θ2
1 − 1)(θ2 − 1)(θ1 − θ2 +

√
2)((θ1 + θ2)2 − 2)

4(θ2
1 + θ2

2 − 2)(2
√

2 + (1 −
√

2)θ2
1 + (1 −

√
2)θ2

2)
(52g)

hV8(θ) = (θ2
2 − 1)(θ1 + 1)(−θ1 + θ2 −

√
2)((θ1 + θ2)2 − 2)

4(θ2
1 + θ2

2 − 2)(2
√

2 + (1 −
√

2)θ2
1 + (1 −

√
2)θ2

2)
(52h)

Finally, the NLSA on the polytope Ω is completed and the system (12) is exactly represented by the following
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T-S model:

ẋ(t) =
8∑

i=1
hVi(θ)A(Vi)x(t) (53)

The stability analysis of the T-S model (53) is performed using Theorem 4.2 at several (α, β) ∈ R2 values.
The (α, β)-region for which the system (53) (octagonal model) is found to be stable is plotted on Figure 8,
where it is compared to the (α, β)-region obtained with the T-S models (48) (hexagonal model), (43) (box
model), and with the perturbative approach of Section 3.2. The (α, β)-region of stability is visibly larger
by using Theorem 4.2 on the T-S model (53) (octagonal model) than on the two other T-S models: indeed,
the octagonal bounding set is sharper than the box-shaped and hexagonal bounding sets, which relaxes the
conservatism of the stability analysis.

Remark 4.2. In order to show that using a more sophisticated Lyapunov function does not change which
models perform better than the others, the piecewise quadratic Lyapunov function of [38] is now used in the
stability analysis of the three T-S models. Using τi,i,k = 0 and τi,j,k = 1 (i ̸= j) for all models in the LMI
conditions found in Theorem 1 of [38], the (α, β)-regions for which the T-S models (53) (octagonal model),
(48) (hexagonal model) and (43) (box model) are found to be stable are plotted on Figure 9. As expected,
all the (α, β)-regions of stability are larger than on Figure 8, and the octagonal model still outperforms the
hexagonal model, this latter also outperforming the box model.

Remark 4.3. So far, the conservatism reduction has only been achieved by accumulating more and more
local models in the T-S representation. This is due to the nonlinearities of the toy model which are shaped
like a circle, and this accumulation is not an essential feature of the polytopic NLSA. Indeed, applying the
polytopic NLSA to the T-S model described in [48] after its useless vertices have been removed can diminish
the number of local models from nΩ = 2nθ to nΩ = nθ + 1. As shown in [48], getting rid of the useless
vertices of this system reduces the conservatism of the controller design problem.

5. The NLSA for Smooth Convex Sets

This section introduces a new NLSA for smooth convex sets, i.e. when the scheduling vector θ is bounded
within a convex set Ω with a smooth boundary SΩ. Lemma 5.1 provides the barycentric coordinates of θ
inside Ω. Following the procedure of the NLSA, Theorem 5.1 uses these barycentric coordinates as weighting
functions in order to obtain a new kind of T-S model, where the discrete sum is replaced by an integral
along SΩ, and which exactly represents (1) for all θ ∈ Ω. After discussing the advantages and inconveniences
of the NLSA on a smooth convex set, basic results of stability for the newly introduced T-S-like models are
provided, followed by an application of these results to the nonlinear system (11) of Section 3.2.

5.1. NLSA method
Lemma 5.1 (Barycentric coordinates of a Smooth Convex Set). Let θ ∈ Rnθ be bounded by the smooth and
bounded convex set Ω whose boundary is a (nθ − 1)-dimensional smooth manifold denoted by SΩ. For all
V ∈ SΩ, wV stands for the weight function associated to V, with

wV(θ) = κ(V)
⟨NV |V − θ⟩nθ

(54)

where κ(V) represents the Gaussian curvature of SΩ at V. The barycentric coordinates of θ in Ω are given
by the functions (hV)V∈SΩ

, obtained by a normalization of the previous weights, and defined for all V ∈ SΩ
by

hV(θ) = wV(θ)∫
W∈SΩ

wW(θ)dSΩ (55)
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Proof. The three axioms for barycentric coordinates (3), (4), (6) are verified under their integral form, which
can be found in [27]. The proof of the linear precision property can be found in [27] as well, and the two
other properties are trivial by construction.

Remark 5.1 (Expression of the Gaussian curvature [64]). If there exists a smooth function f : Rnθ 7→ R
such that

SΩ = {V ∈ Rnθ : f(V) = 0} (56)

then the Gaussian curvature of SΩ at V can be expressed by

κ(V) = ∇f(V)Hf⊤(V)∇f⊤(V)
∥∇f(V)∥nθ+1 (57)

where ∇f(V) and Hf(V) stand resp. for the gradient and for the Hessian of f at V.

Keeping the notations of Lemma 5.1, the following generalization of the NLSA on a smooth convex set
can be stated.

Theorem 5.1 (NLSA on a Smooth Convex Set). The T-S-like model (58) is an exact representation of the
nonlinear system (1) for all x(t), u(t), σ(t) and t such that θ ∈ Ω.

δx(t) =
∫

V∈SΩ

hV(θ) [A(V)x(t) + B(V)u(t) + α(V)] dSΩ (58a)

y(t) =
∫

V∈SΩ

hV(θ) [C(V)x(t) + D(V)u(t) + β(V)] dSΩ (58b)

This NLSA approach and its resulting T-S-like model have never been studied in the literature before,
and there are still no known method to extract computable LMI conditions from the stability analysis
of such systems. If this T-S-like model is geometrically one of the sharpest convex representation of a
nonlinear system presenting “smoothly” interdependent scheduling parameters, this is counterbalanced by
the number of vertices V ∈ SΩ which is infinite and uncountable, leading to a tricky stability analysis of such
models. Some elementary results are given below in order to deal with the stability analysis of this T-S-like
model using a QLF. Moreover, bounding interdependent nonlinearities within a smooth convex set Ω is a
difficult problem in general with no systematic solution. However, this problem is well-studied if the class of
smooth convex sets is restricted to ellipsoids, and it simply consists in finding the minimum volume ellipsoid
which covers all the obtainable scheduling parameters θ (eventually after sampling them): the reader is
referred to Section 8.4 of [65] for more details. In general, this NLSA seems to only be advantageous in
highly circumstantial cases compared to the other approaches of this paper. Similarly to what was stated
at the end of the Section 4.1, the computation of the continuous weight functions of the model involves
some divisions by zero which have to be taken care of numerically, for example in Parallel Distributed
Compensation (PDC) schemes.

5.2. Stability Analysis
Introducing a QLF to perform the stability analysis of the continuous-time and input-free T-S-like model

(59) obtained via Theorem 5.1 is immediately problematic.

ẋ(t) =
∫

V∈SΩ

hV(θ)A(V)x(t)dSΩ (59)

Indeed, the LMI conditions stated below, which are the straightforward generalization of the LMI conditions
found in Theorem 4.2, are often numerically intractable.
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Theorem 5.2 (Quadratic Stability). The T-S-like model (59) is globally exponentially stable if there exists
P = P ⊤ ∈ Rnx×nx such that the LMI conditions (60) are satisfied.

P ≻ 0 (60a)
∀V ∈ SΩ, H(PA(V)) ≺ 0 (60b)

Proof. By convexity, the proof of this result is similar to the proof of Theorem 4.2.

In particular, when Ω is an ellipsoid, i.e. when Ω = E with E defined in (61), the problem of finding such
a P is NP-hard.

E =
{

θ ∈ Rnθ : θ⊤Qθ ≤ 1
}

with Q = Q⊤ ≻ 0 (61)
Indeed, given P = P ⊤ ∈ Rnx×nx and Ω an ellipsoid, simply checking if the conditions (60) are satisfied or
not can be turned into an NP-complete problem.

Theorem 5.3 (NP-hardness). Let Ω = E where E is the ellipsoid defined in (61). Finding P = P ⊤ ∈ Rnx×nx

such that the LMI conditions (60) are satisfied is an NP-hard problem.

Proof. V ∈ SΩ is equivalent to the existence of v ∈ Rnθ such that{
v⊤v = 1
V = Q− 1

2 v
(62)

By construction of the T-S model (see (9)), for all V ∈ SΩ

A(V) = A0 +
nθ∑

i=1

(
Q− 1

2 v
)

(i)
Ai (63)

hence:

A(V) = A0 +
nθ∑

i=1

 nθ∑
j=1

Q
− 1

2
(i,j)v(j)

Ai (64)

which can be re-written as
A(V) = A0 +

nθ∑
j=1

v(j)Rj (65)

with Rj =
∑nθ

i=1 Q
− 1

2
(i,j)Ai. Hence, the LMI condition (60b) is equivalent to the following condition:

∀v ∈ Rnθ : v⊤v = 1, H

P

A0 +
nθ∑

j=1
v(j)Rj

 ≺ 0 (66)

Checking the LMI above for a given P = P ⊤ ≻ 0 can be turned into NP-complete problem, as shown in
Section 3.4.1 of [66], hence, finding P satisfying the previous LMI condition is an NP-hard problem.

However, in spite of this pessimistic result, two tractable optimization problems are given to perform the
stability analysis of the T-S-like model (59) when Ω is bounded by an ellipsoid E . The first one introduces
some conservatism in (60b) (Theorem 5.4). The second one relies on the structure of the state matrix, where
it is assumed that the scheduling vector θ acts on a single column or row of A(θ) (Theorem 5.5).

Theorem 5.4 (The “Universal” Conservative Conditions). Let Ω ⊆ E where E is the ellipsoid defined in
(61). By construction of the T-S-like model (59), for all θ ∈ E, A(θ) can be re-written as

A(θ) = A0 +
nθ∑

k=1
v(k)(θ)Rk (67)
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with v(θ) ∈ Rnθ such that v⊤(θ)v(θ) ≤ 1 and A0, R1, . . . , Rnθ
∈ Rnx×nx . If there exists P = P ⊤ ∈ Rnx×nx

satisfying the LMI conditions

P ≻ 0 (68a)

H(PA0) H(PR1) H(PR2) . . . H(PRnθ
)

H(PR1) H(PA0) 0 . . . 0

H(PR2) 0 H(PA0) . . .
...

...
...

. . . . . . 0
H(PRnθ

) 0 . . . 0 H(PA0)

 ≺ 0 (68b)

then such a P also satisfies (60), hence the T-S-like model (59) is globally exponentially stable.

Proof. This is an application of the Theorem 3.4 of [66].

Theorem 5.5 (The “Rank 2” Conditions). It is assumed that the scheduling vector θ acts on the l-th column
of A(θ), with l ∈ J1, nxK. Let Ω ⊆ E where E is the ellipsoid defined in (61). By construction of the T-S
model, for all θ ∈ E, A(θ) can be re-written as

A(θ) = A0 +
nθ∑

k=1
v(k)(θ)rkẽ⊤

l (69)

with ẽl the l-th column of Inx , v(θ) ∈ Rnθ such that v⊤(θ)v(θ) ≤ 1, and r1, . . . , rnθ
∈ Rnx . In this case,

there exists P = P ⊤ ∈ Rnx×nx and λ ∈ R>0 satisfying the LMI conditions

P ≻ 0 (70a)[
H(PA0) + λẽlẽ

⊤
l PR

R⊤P −λInx

]
≺ 0 (70b)

with R = [ r1 . . . rnθ ] if and only if this P also satisfies (60), which provides the global exponential
stability of the T-S-like model (59).

Proof. For all θ ∈ E , there exists v(θ) ∈ Rnθ such that ∥v(θ)∥2 ≤ 1 and

A(θ) = A0 + Rv(θ)ẽ⊤
l (71)

hence, when the scheduling vector θ acts on a single column of A(θ), (59) can be interpreted as a partic-
ular Norm Bound Linear Differential Inclusion (NLDI) system, and the LMI conditions demonstrating the
stability of such systems are given in Section 5.1 of [12]. In this peculiar case, the equivalence between the
LMI conditions (70) and (60) is found in Proposition 3.1 of [66].

Corollary 5.1. The LMI conditions (60) also demonstrate the stability of the T-S-like model

ẋ(t) =
∫

V∈SΩ

hV(θ)A⊤(V)x(t)dSΩ (72)

hence, it is also possible to use the LMI conditions (70) when the scheduling vector θ acts on a single row
of A(θ), instead of on a single column.

Proof. Succinctly, if there exists P such that the LMI conditions (60) hold, then the LMI conditions (73)
also hold by congruence.

P −1 ≻ 0 (73a)
∀V ∈ SΩ, H(A(V)P −1) ≺ 0 (73b)

Hence there exists P −1 ≻ 0 such that for all V ∈ SΩ, H(P −1A⊤(V)) ≺ 0.
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θ1

θ2 NV
SΩ

Ω

V

Figure 10: The disc Ω is bounding the scheduling vector θ of (13)

Remark 5.2. The name of Theorems 5.4 and 5.5 are taken from [66].

Leaving the quadratic framework, the natural generalization of the multiquadratic Lyapunov function is
given by

V (x) = x⊤
(∫

V∈SΩ

hV(θ)P (V)dSΩ

)
x (74)

with for all V ∈ SΩ, P (V) = P ⊤(V) ≻ 0. The question of whether there exist tractable optimization problems
to check the stability of the T-S-like model (59) by leveraging this multiquadratic Lyapunov function remains
open for future works.

5.3. Application
Considering the LPV model (13), the disc Ω =

{
θ ∈ R2 : θ2

1 + θ2
2 ≤ 1

}
is chosen to be the bounding set

of θ, as illustrated by Figure 10. The Gaussian curvature of a circle is constant and given by the inverse of
its radius, and for all V ∈ SΩ, NV = V. The weight functions are computed using Lemma 5.1:

wV(θ) = 1(
V(1)(V(1) − θ1) + V(2)(V(2) − θ2)

)2

= 1(
1 − V(1)θ1 − V(2)θ2

)2

(75)

moreover, the following is verified [27]:∫
V∈SΩ

wV(θ)dSΩ = 2π

(1 − θ2
1 − θ2

2)3/2 (76)

which provides the barycentric coordinates of θ within the disc Ω:

hV(θ) = (1 − θ2
1 − θ2

2)3/2

2π
(
1 − V(1)θ1 − V(2)θ2

)2 (77)

Finally, the NLSA on the disc Ω is completed and the system (12) is exactly represented by the following
T-S-like model:

ẋ(t) =
∫

V∈SΩ

hV(θ)A(V)x(t)dSΩ (78)

The stability analysis of the T-S-like model (78) is performed using Theorem 5.4 and Theorem 5.5 (which
is applicable since θ acts on a single row of A(θ) in (13)) at several (α, β) ∈ R2 values. The (α, β)-regions
for which the system (78) (disc model) is found to be stable are plotted on Figure 11, where they are
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Figure 11: Stability (α, β)-regions of (11) using Theorem 5.4 (“universal” conditions) and Theorem 5.5 (“rank 2” conditions) on
the T-S-like model (78) (disc model), using Theorem 4.2 on the T-S model (48) (hexagonal model), and using the perturbative
approach of Section 3.2

compared to the (α, β)-regions obtained with the hexagonal T-S model (48) and the perturbative approach
of Section 3.2. The (α, β)-region of stability is visibly larger by using Theorem 5.5 (“rank 2” conditions)
instead of Theorem 5.4 (“universal” conditions) on the T-S-like model (78), which confirms that the “rank
2” LMI conditions are less conservative than the “universal” LMI conditions. Moreover, the (α, β)-region of
stability for the hexagonal T-S model (48) is about the same size as the region computed on the T-S-like
model (78) with Theorem 5.4, which indicates that, to some degree, the sharpness of the smooth convex
shape has compensated the conservatism introduced by the “universal” LMI conditions. However, when
these “universal” LMI conditions are compared to the stability results obtained using the T-S model (53)
(octagonal model) on Figure 12, the conservatism introduced in the stability analysis is not compensated
by the sharpness of the smooth convex shape anymore. Nevertheless, in all cases, the “rank 2” conditions
outperform the others. This indicates that the NLSA for smooth convex shape seems to only be advantageous
in highly circumstantial cases, e.g. when θ acts on a single row (or column) of A(θ).

6. Conclusion and Perspectives

The Nonlinear Sector Approach (NLSA) is a way to construct Takagi-Sugeno (T-S) models which exactly
represent nonlinear systems whose nonlinearities are bounded by a box-shaped set. This paper has gener-
alized the NLSA for larger classes of convex bounding sets: extending it for polytopic and smooth convex
sets. These generalizations provide new ways of reducing the intrinsic conservatism of T-S representations
with interdependent scheduling parameters, which has been demonstrated numerically through the study of
simple Linear Matrix Inequalities (LMI) criteria for stability analysis of the resulting models. In particular,
it has been shown that the LMI criteria for the newly introduced T-S-like models are still conservative, and
the problem of stability and stabilization for these models is left open for further investigations. The NLSA
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Figure 12: Stability (α, β)-regions of (11) using Theorem 5.4 (“universal” conditions) and Theorem 5.5 (“rank 2” conditions) on
the T-S-like model (78) (disc model), using Theorem 4.2 on the T-S model (53) (octagonal model), and using the perturbative
approach of Section 3.2

also remains to be extended for non-convex bounding sets, for example by exactly rewriting the nonlinear
system as a switched T-S model on several polytopic sets arranged in a non-convex disposition.
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