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Abstract— In this paper, the Takagi–Sugeno (T-S) models are
suggested as modelling tools to represent both the behavior of
a nonlinear system and its saturated actuators. Given a T-S
system with r local models, previous works on input saturation
usually required 2nur or 3nur local models to represent an
actuator saturated outside of an orthotope (nu stands for the
input vector dimension). In this paper, an elementary repre-
sentation is suggested, which only takes 2r local models (thus,
independently of nu), and is able to capture a much broader
class of actuator saturations. Local stabilization conditions
expressed as linear matrix inequalities (LMI) are provided
using the conventional static parallel distributed compensation
(PDC) state feedback scheme. A heuristic solution is given
in order to ensure a large guaranteed domain of attraction.
Numerical examples are given in order to demonstrate the
proposed approach and initiate a discussion on its contributions
and limitations.

I. INTRODUCTION

In control engineering, actuator saturation is a common
type of constraint on the control inputs of a physical plant,
which arises from the impossibility of applying unbounded
control signals, usually because of material limitations or
safety requirements. This phenomenon introduces a nonlin-
earity in the system which can significantly reduce its closed-
loop performance and potentially cause instability. Hence,
the saturation has to be accounted for in the design of a
controller. Two main strategies exist in the literature in order
to design a controller subject to saturation [1].

The first strategy involves a two-step process. First, a nom-
inal controller is developed without considering the actuator
saturation; then, an anti-windup compensator is designed to
handle the saturation constraint. This compensator computes
the discrepancy between the unsaturated and the saturated
control signals and retroactively uses it to modify the pre-
designed controller [2]. This approach is ordinarily adopted
in linear settings, and only a few extensions exists for Takagi-
Sugeno (T-S) systems (e.g. [3]–[5]).

In the second strategy, the saturation constraints are incor-
porated right from the start of the design process. Various
methods have been developed using this approach, including
the set invariance framework, which ensures that any state
trajectory starting within an invariant set remains bounded
inside it, preventing states from exceeding known bounds
[1]. However, guaranteeing a large domain of attraction with
this approach is often obtained by imposing constraints on
the feedback gains, which hinders the performances of the
controllers designed to prevent saturation (e.g. [6]–[8]).
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The T-S community usually deals with saturation the
set invariance framework with a polytopic representation
approach, and merges it with gain scheduling (e.g. [7]–[11]).
These techniques, which this paper focuses on, leverage
- explicitly or implicitly - the nonlinear sector approach
(NLSA, also called sector nonlinearity transformation) to
represent both the nonlinear system and its saturated ac-
tuators within a T-S framework [12]. Unfortunately, in a
typical T-S fashion, this leads to a large number of submodels
and generates optimization problems with a lot of LMI,
limiting their applicability. In particular, given a T-S system
with r local models and an input vector u of dimension
nu, 2nur ( [7]–[10] etc) or 3nur ( [11]) local models are
needed to represent u saturated outside of an orthotope.
Moreover, these existing T-S techniques are not only difficult
to grasp intuitively, painful to compute, but also limited in
their intrinsic modelling capabilities: what if u is saturated
outside of a polytope, or any other convex shape ?

This paper mitigates the disadvantages of the T-S approach
to actuator saturation by obtaining a flexible representa-
tion which captures a broad class of actuator saturations.
The representation discussed in this paper leverages the
Minkowski functional associated with the saturating set, and
only demands 2r local models, no matter the geometry of the
saturating set or the dimension of u. This leads to a reduced
number of LMI in the local stabilization conditions, hence
simplifying and reducing the conservatism of the approach.
Moreover, a heuristic method is given to increase the chances
of obtaining a large guaranteed domain of attraction, while
explicitly allowing saturation to happen (as in [11]). Despite
these advantages, this method comes with a few drawbacks:
guaranteeing a minimal size for the domain of attraction
does not come with a simple and generic solution, and
- in the orthotopic case - the lack of “component-wise
decomposition” of the saturated input vector may lead to
a smaller domain of attraction than previous approaches.
Numerical simulations are given in order to point out the
contributions of the proposed method, as well as to quantify
its shortcomings.

This paper is organized as follows: Section II introduces
the notations used in the paper. In Section III, the Minkowski
functional is presented as a crucial tool to derive a sim-
ple and exact T-S representation of a saturating actuator.
Section IV provides a local stabilization technique for the
previously introduced T-S model by employing a saturated
PDC controller, and details a heuristic method to maximize
the guaranteed domain of attraction. In Section V, practical
insights on the proposed method are presented through
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Fig. 1. Minkowski functional of a set S of R2 evaluated at x

numerical simulations. Finally, Section VI concludes the
paper.

II. NOTATIONS

R stands for the set of real numbers, R≥0 ≜ {x ∈ R, x ≥
0}, R>0 ≜ {x ∈ R, x > 0} and R≥0 = R≥0 ∪{+∞}. Rp×q

stands for the set of real matrices with p rows and q columns.
Rp×1 is identified with the Euclidean space Rp with its usual
inner product ⟨·|·⟩. Given a matrix E ∈ Rp×q , E⊤ denotes
its transposition, and if p = q, then H(E) = E⊤+E. Given
two symmetric matrices E,F ∈ Rp×p, E ≻ F means that
E − F is positive-definite (which is denoted E − F ≻ 0)
and that F − E is negative-definite (F − E ≺ 0). In stands
for the identity matrix of Rn×n. Let S denote a subset of
Rn, int(S), cl(S) and ∂S denote respectively the interior,
the closure and the boundary of S in Rn.

III. T-S MODELING OF THE SATURATION

In this section, the Minkowski functional is introduced as
a useful tool to represent through a single scalar value the
saturation level of a vector compared to a convex saturating
set. First, the definition of the Minkowski functional is
provided together with its expression for common convex
sets and some of its established properties. Then, it is
leveraged to obtain an exact T-S representation of an actuator
saturating outside of a convex set.

A. The Minkowski functional

Intuitively, the Minkowski functional µS associated with
the set S ⊂ Rn is defined such that for all x ∈ Rn, µS(x)
provides the smallest scaling t of the set S with respect
to the origin such that the scaled set tS ≜ {ty : y ∈ S}
reaches x (Figure 1). This definition is formalized below,
and the expression of the Minkowski functional is specified
for usual classes of convex sets.

Definition 1 (Minkowski functional [13]): Given S a
non-empty set of Rn, the Minkowski functional associated
to S is the map µS : Rn → R≥0 defined by:

µS(x) ≜ inf{t ∈ R≥0 : x ∈ tS} (1)
Example 1 (p-Ball [13]): The Minkowski functional of

Bp ⊂ Rn the unit ball of norm p centered at the origin
is given by:

µBp
(x) = ∥x∥p (2)

where ∥x∥p stands for the p-norm of x.
Example 2 (Ellipsoid [14]): The Minkowski functional

of an ellipsoid E ⊂ Rn centered at the origin is given by:

µE(x) = µMB2
(x) =

√
x⊤Qx (3)

with M ∈ Rn×m a full row rank matrix, and Q = Q⊤ ≻ 0
the positive definite matrix given by Q = (MM⊤)−1.

Example 3 (Polytope [15]): Given P ⊂ Rn a closed and
convex polytope whose interior contains the origin and
whose halfspace-representation is given by:

P = {x ∈ Rn : ∀k ∈ J1,mK, ⟨hk|x⟩ ≤ 1} (4)

with (hk)1≤k≤m as set of m vectors of Rn, then, the
Minkowski functional of P is given by:

µP(x) = max
k∈J1,mK

⟨hk|x⟩ (5)

Example 4 (Radially parameterized set): Given O ⊂ Rn

a star-convex set at 0 whose boundary can be parameterized
radially by the continuous map ρ : [0, π)n−2×[0, 2π) → R>0

such that

∂O=


ρ(φ1, . . . , φn−1)


cosφ1

sinφ1 cosφ2

...
sinφ1 . . . sinφn−2 cosφn−1

sinφ1 . . . sinφn−2 sinφn−1




(6)

with (φ1, . . . , φn−1) ∈ [0, π)n−2 × [0, 2π), then the
Minkowski functional of O is given by:

µO(x) =
∥x∥2

ρ(φ1, . . . , φn−1)
(7)

where φ1, . . . , φn−1 stand for the following angular coordi-
nates of x:

∀k ∈ J1, n− 2K, φk = arccos
xk√∑n
i=k x

2
i

(8a)

φn−1 = 2arccot
xn−1 +

√
x2
n + x2

n−1

xn
(8b)

The classical properties on the Minkowski functional
associated with a convex set are recalled hereafter.

Property 1 (Convex properties [13]): If S is convex and
0 ∈ int(S):

1) For all x ∈ Rn \ {0}, 0 < µS(x) < +∞, µS(0) = 0,
2) For all x ∈ Rn and t ∈ R≥0, µS(tx) = tµS(x), and

µS(tx) = µ 1
t S

(x) if t ̸= 0,
3) For all x1, x2 ∈ Rn, µS(x1 + x2) ≤ µS(x1)+µS(x2)
4) µS is a continuous map from Rn to R≥0

5) µ−1
S ([0, 1))= int(S), µ−1

S ([0, 1])=cl(S), µ−1
S ({1})=

∂S
B. T-S model of a convex saturation

The T-S model (9) is presumed to represent a nonlinear
system subject to actuator saturation outside of S ⊂ Rnu , a
convex set containing the origin in its interior (0 ∈ int(S)).

ẋ(t) =

r∑
i=1

hi(θ)[Aix(t) +BiuS(t)] (9)



In this model, x(t) ∈ Rnx stands for the state vector, uS(t) ∈
S ⊂ Rnu stands for the saturated input vector, r denotes
the number of local models, and θ ∈ Rnθ is a vector of
scheduling parameters assumed to be known in real-time.
The activation functions (hi)1≤i≤r satisfy the convex sum
properties:

hi(θ) ≥ 0,

r∑
i=1

hi(θ) = 1 (10)

The T-S model (9) can easily be rewritten as (11) with an
unrestricted input vector u(t) ∈ Rnu , using the map u 7→
act(u)u, guaranteeing a continuous mapping from Rnu to
S:

ẋ(t) =

r∑
i=1

hi(θ)[Aix(t) + act(u(t))Biu(t)] (11)

with act : Rnu → (0, 1] the continuous scalar map defined
by:

act(u) =

{
1 if µS(u) ≤ 1

1/µS(u) if µS(u) > 1
(12)

Continuity is indeed obtained from the 4th item of Prop-
erty 1. This rewriting is powerful, since it reduces all the
nonlinearities induced by the saturation of u to a bounded
scalar term pre-multiplying the input matrices Bi. From here,
an exact representation of (11) is obtained.

Theorem 1 (Open-loop T-S rewriting): Let τ ∈ [0, 1) and
Uτ ≜ {u ∈ Rnu : act(u) ≥ τ}. For all u ∈ Uτ , the T-S
model (13) is an exact representation of (11).

ẋ(t) =

r∑
i=1

2∑
k=1

hi(θ)h
τ
k(u(t))[Aix(t) +Bi,ku(t)] (13)

with Bi,1 = Bi, Bi,2 = τBi and:

hτ
k(u) =

{
(act(u)− τ)/(1− τ) if k = 1

(1− act(u))/(1− τ) if k = 2
(14)

Proof: Since act(u) ∈ [τ, 1], (14) follows from the
NLSA [12].

Remark 1: For all τ ∈ (0, 1), (13) only represents (11)
locally (Uτ ⊂ Rnu ). However, for τ = 0, (13) is a global
representation of (11) (U0 = Rnu ).

IV. SATURATED PDC STATE FEEDBACK CONTROL LAW

This section investigates the local stabilization of the
saturated T-S model (9) controlled by (15), a PDC state
feedback [16] employing the same activation functions as
in (9).

uS(t) = act(u(t))u(t) with u(t) =

r∑
i=1

hi(θ)Kix(t) (15)

Remark 2: The parameters of the activation functions are
now denoted implicitly, i.e. hi stands for hi(θ) and hτ

k stands
for hτ

k(u(t)).
Remark 3: In a similar context, the T-S literature has

already considered a PDC feedback law which involves the
activation functions (hτ

k)k=1,2 [8]. However, this gives rise

to a self-referential effect in which the control signal u(t)
depends on its own current value. Indeed, the simulations of
[8] do not employ these activation functions.

A. LMI conditions for stabilization using PDC state feedback

As a direct consequence of Theorem 1, injecting (15)
within the T-S system (13) provides an exact representation
of the closed-loop system [12].

Lemma 1 (Closed-loop T-S rewriting): For a given τ ∈
[0, 1) and

Xτ ≜

{
x ∈ Rnx : µS

(
r∑

i=1

hiKix

)
≤ 1

τ

}
(16)

(if τ = 0, X0 = Rnx ). For all x ∈ Xτ , the T-S model (17)
is an exact representation of (9) taken with the control law
(15).

ẋ(t) =

r∑
i=1

r∑
j=1

2∑
k=1

hihjh
τ
k[Ai +Bi,kKj ]x(t) (17)

From this representation, the following local stabilization
conditions, expressed as LMI, can be obtained.

Theorem 2 (Local Stabilization Conditions): Let Eλ∗ ≜
{x ∈ Rn : x⊤Px ≤ λ∗} denote the biggest ellipsoid
contained within the set Xτ . The T-S model (9) taken with
the control law (15) is guaranteed to be exponentially stable
on Eλ∗ if there exists X = X⊤ ≻ 0 and (Mj)1≤j≤r such
that:

r∑
i=1

r∑
j=1

hihjH [AiX +BiMj ] ≺ 0 (18a)

r∑
i=1

r∑
j=1

hihjH [AiX + τBiMj ] ≺ 0 (18b)

with X = P−1, Mj = KjX .
Proof: Introducing the quadratic Lyapunov function

V (x) = x⊤Px, the LMI (18a) and (18b) are obtained by
applying the results of [17] to the closed loop system (17)
resp. for k = 1, 2.

Remark 4: If τ = 0, then Eλ∗ = Rnx , additionally if (18b)
has a solution, then the input-free system is already globally
exponentially stable.

Remark 5: It is easy to adapt the LMI (18a) to impose
a minimum decay rate or a H∞ attenuation criterion when
the controller is not saturating. Identical adaptations can be
made to both the LMI (18a) and (18b) to impose similar
(but typically less demanding) guarantees up to the saturation
level act(u) ≥ τ .

B. Heuristic for an improved numerical implementation

Finding the largest ellipsoid Eλ∗ contained inside Xτ is a
hard problem in general, hence optimizing the size of Eλ∗

through the LMI (18) is a difficult task which could be tack-
led using computationally heavy derivative free optimization
methods. Moreover, the actual domain of attraction for a
given set of gains (Ki)1≤i≤r can be much larger than Eλ∗

itself, hence this optimization problem would only maximize
the guaranteed domain of attraction, and not necessarily
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Fig. 2. Schematic illustration of the sets T(P,(Ki)1≤i≤r)
, Dτ and S

the domain of attraction itself. However, our approach has
provided a set of LMI (18) which are limited in their number,
size, and which are extremely simple to grasp. This leads
to a heuristic solution to the problem of maximizing the
guaranteed domain of attraction. Three key observations are
given below and schematically illustrated in Figure 2:

Observation 1: Let T(P,(Ki)1≤i≤r) denote the interval of
all scalar values of τ ∈ [0, 1) solving the LMI (18) for
fixed Lyapunov function and set of gains (P, (Ki)1≤i≤r).
Of course, (16) guarantees that the minimal value τ of
T(P,(Ki)1≤i≤r) provides the largest Xτ set, which in turns
maximizes the guaranteed domain of attraction Eλ∗ .

Observation 2: Let Dτ denote the convex set of all de-
cision variables (X, (Mi)1≤i≤r) solving the LMI (18) for a
fixed τ ∈ [0, 1). Well chosen weighted sums of (18b) and
(18a) provide that for all τ1, τ2 ∈ [0, 1) such that τ1 ≤ τ2,
then Dτ1 ⊆ Dτ2 , with the empty set being a subset of every
possible set, including itself. Therefore, trying to minimize τ
in (18) when (P, (Ki)1≤i≤r) are not fixed does not guarantee
a larger domain of attraction Eλ∗ , but rather limits the size
of the Lyapunov function and feedback gain set from which
a solution is picked by the solver.

Observation 3: Let S denote the set of all decision vari-
ables (τ,X, (Mi)1≤i≤r) solving the bilinear matrix inequal-
ities (BMI) (18) (which is only a set of LMI for a fixed
τ ). For all (τ,X, (Mi)1≤i≤r) ∈ S and α ∈ R>0 it is easily
verified that (τ, αX, (αMi)1≤i≤r) ∈ S. Hence, as long as S
is not empty, it is unbounded. Moreover, if there also exists
β ∈ (0, 1] such that (τ,X, (Mi/β)1≤i≤r) is a solution to
(18a), then (βτ,X, (Mi/β)1≤i≤r) ∈ S. Intuitively, as long
as the stabilizing gains can be scaled up in the unsaturated
system, τ can be scaled down accordingly. It can be deduced
from (16) and item 2 of Property 1 that this scaling has no
effect on the size of Xτ , hence on the guaranteed domain of
attraction Eλ∗ .

Observation 1 indicates that keeping P and (Ki)1≤i≤r

relatively “fixed” gives relevance to the pursue of the mini-
mization of τ as a means to maximize the guaranteed domain
of attraction Eλ∗ . However, Observation 2 underscores that
providing excessive flexibility to these variables diminishes
this relevance. This is partly explained by Observation 3,
since scaling up the feedback gains can result in a reduced
value of τ without any substantial impact on the guaranteed
domain of attraction Eλ∗ . Heuristically, it can therefore
be conjectured that constraining further the optimization

problem to limit this “meaningless scaling effect” should
enhance the results obtained by minimizing τ . To this end,
it is suggested to impose a maximum decay rate α/2 > 0 to
the unsaturated system, resulting in the following additional
LMI to (18):

r∑
i=1

r∑
j=1

hihjH [AiX +BiMj ] ≻ −αX (19)

The purpose of this heuristic is not to enforce a “low decay
rate”: the objective is to ensure that the solver does not seek
large gains in order to minimize τ . Large values of α can
therefore be taken so the performances of the controller are
not compromised. In case of redundant inputs, this heuristic
might need to be repeated on a selection of columns of Bi.
The effectiveness of this heuristic is investigated numerically
in the next section through the measure of the influence of
τ on the volume of the guaranteed domain of attraction (20)
(Figures 5 and 7)

Vol(Eλ∗) =
2πnx/2

nxΓ (nx/2)

√
det((P/λ∗)−1) (20)

where Γ stands for the usual gamma function [18].

V. NUMERICAL EXAMPLES

The LMI problems (18) and (19) are investigated using
the relaxation scheme found in [19] with p = 3, and solved
numerically using MOSEK 10.1 with default settings.

A. Example 1: investigating the maximum decay rate heuris-
tic

Fig. 3. Closed-loop state space, τ = 0.004, no maximum decay rate α

Consider the following nonlinear second-order system:

ÿ(t) = sin(2πy(t))(y(t) + ẏ(t)) + uS(t) (21)



Fig. 4. Closed-loop state space, with minimal τ = 0.18 found for α = 15

where the input uS(t) is saturating outside the set S =
[−1, 1] (which gives µS(u) = |u|). This system is rewritten
as the exact T-S model (22) using Theorem 1:

ẋ(t) =

2∑
i=1

2∑
k=1

hi(θ)h
τ
k(u(t))[Aix(t) +Bi,ku(t)] (22)

with x =
[
x1 x2

]⊤
=
[
y ẏ

]⊤
, θ = y = x1,

uS = act(u)u, A1 =

[
0 1
1 1

]
, A2 =

[
0 1
−1 −1

]
,

B1,1 = B2,1 =
[
0 1

]⊤
, B1,2 = B2,2 = τB1,1, and

with the following activation functions:

h1(x1) = (1 + sin(2πx1))/2, h2(x1) = 1− h1(x1) (23)

In order to stabilize the system, a PDC state feedback law
of the form (15) is calculated at several values of τ through
the LMI (18) of Theorem 2, both with and without imposing
a maximum decay rate α/2 through (19). The closed loop
state space of (21) is plotted on Figures 3 and 4 with the
“exact region” and guaranteed region of attraction Xτ and
Eλ∗ of (22). In both cases, the blue trajectories show an
actual region of attraction much larger that the guaranteed
one.

Numerically, as long as no maximum decay rate is im-
posed through the LMI (19), it seems that τ can be chosen
arbitrarily in (0, 1) with an unclear effect on the volume
of the guaranteed domain of attraction Vol(Eλ∗). However,
adding a maximum decay rate unambiguously makes the
minimization problem of τ relevant to obtain a large vol-
ume for the guaranteed domain of attraction, with no clear
correlation between the choice of α and the largest value of
Vol(Eλ∗) (Figure 5).
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Fig. 5. Volume of the guaranteed domain of attraction Vol(Eλ∗ ) depending
on τ at several values of α

B. Example 2: investigating the number of local models

The T-S model (22) is modified so u(t) ∈ R2, S =

[−1, 1]2, A1 =

[
0 1
a b

]
, A2 =

[
0 1
−a −b

]
, Bi,1 = I2

and Bi,2 = τI2, with a, b ∈ R. Using the same LMI as pre-
viously, but imposing (19) on both columns of Bi,1 because
of the input redundancy, the conservatism of computing a
saturated PDC controller is investigated using:

• this paper representation of S (2r = 4 local models),
• the usual literature representation (22r = 8 local mod-

els).

Fig. 6. Feasibility spaces, τ = 0.11, α = 15

Fixing (τ, α) = (0.11, 15), Figure 6 compares for sev-
eral values of a, b the conservatism of both representations
through the feasibility space of the LMI computing a satu-
rated PDC controller. Unsurprisingly, the feasibility space is



larger using the proposed representation with 4 local models
than with 8. This was easily anticipated since the LMI
problem with 4 local models is included in the LMI problem
with 8 local models.
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Fig. 7. Volume of the guaranteed domain of attraction Vol(Eλ∗ ) depending
on τ at several values of α, with (a, b) = (2.2, 1)

Fixing (a, b) = (2.2, 1), Figure 7 investigates the heuristic
of imposing (19) to obtain a large domain of attraction.
Again, this heuristic tends to make the minimization of τ
relevant to obtain a large volume for the guaranteed domain
of attraction. However, the improvement is smaller for the
T-S system with 8 local models than with 4 local models.
It can be conjectured that the multiplication of local models
naturally constraints the optimization problem, making the
minimization of τ more effective on its own, without having
to impose new LMI conditions. It is worth highlighting that
the guaranteed domain of attraction is also smaller by using
4 models than 8 models, but this disadvantage needs to be
put into perspective: this is not a comparison of the actual
domain of attraction, but a comparison of an easily computed
theoretical guarantee for the PDC controller.

VI. CONCLUSIONS AND PERSPECTIVES

This paper has presented a novel T-S representation
of a large class of saturated actuators by leveraging the
Minkowski functional associated with the saturating set.
Contrary to previous works which solely considers orthotopic
or ellipsoidal saturations, this representation is valid for
all convex saturations. Moreover, very few local models
are needed, which drastically reduces the number of LMI
in the usual local stabilization conditions for a PDC state
feedback law. Furthermore, a heuristic method to enhance the
chances of achieving a large guaranteed domain of attraction

is provided and numerically examined on two examples.
This work can easily be expanded to other control law,
such as the non-PDC or the output feedback approaches.
In the end, guaranteeing a large domain of attraction in the
design of a saturated control for a nonlinear system remains
a complex issue. Hopefully, this paper opens the way to
some new efficient approaches to the problem within the
T-S framework.
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