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Abstract— This paper presents Bézier controller and observer
designs for T-S models with n local models. These designs are
based on the m-th multi-sum generalization of the Parallel
Distributed Compensation (PDC) and non-PDC control laws,
but where a Bézier interpolation of the gain matrices is
considered: the gain matrices are weighted by multivariate
Bernstein polynomials of the activation functions. This reduces
the number of gains from nm to (m+n−1)!/m!(n−1)! without
hindering the capabilities of the control law. For quadratic and
nonquadratic Lyapunov functions, the resulting stabilization
problems can be solved using simple LMIs. Some examples are
provided to illustrate numerically the reduced conservatism of
the optimization problems compared to the usual PDC and
non-PDC approaches.

I. INTRODUCTION

The Takagi-Sugeno (T-S) models [1] form a large class
of nonlinear systems which have attracted a lot of attention
in the literature due to their wide modeling capabilities,
and their convenience in order to solve nonlinear control
problems. Indeed, under the T-S framework, these control
problems can generally be stated as Linear Matrix Inequali-
ties (LMIs), which can be efficiently solved through convex
optimization techniques [2], [3].

This paper is concerned with the stabilization problem for
continuous-time T-S models of the following form{

ẋ(t) =
∑n

i=1 hi(θ) [Aix(t) +Biu(t)]

y(t) =
∑n

i=1 hi(θ)Cix(t)
(1)

with x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny the state, input
and output vector respectively, and θ ∈ Ω a scheduling vector
assumed throughout the paper to be exactly measured in real-
time. The (hi)1≤i≤n are the activation functions depending
on θ satisfying the convex sum properties, i.e.

hi(θ) ≥ 0,

n∑
i=1

hi(θ) = 1 (2)

For concision purposes, the activation functions h(θ) ≜
(h1(θ), . . . , hn(θ)) of the T-S model (1) are now denoted
h ≜ (h1, . . . , hn).

The stabilization of such models is generally handled
in the literature by considering the following Parallel Dis-
tributed Compensation (PDC) control law [4]

u(t) =

n∑
i=1

hiKix(t) (3)
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which has an estimator counterpart [2], [3] consisting in the
following T-S observer{

˙̂x(t) =
∑n

i=1 hi [Aix̂(t) +Biu(t) +Ki[ŷ(t)− y(t)]]

ŷ(t) =
∑n

i=1 hiCix̂(t)
(4)

The stabilization can also be handled with the following non-
PDC control law [5]

u(t) =

[
n∑

i=1

hiKi

] n∑
j=1

hjPj

−1

x(t) (5)

where V (x) = x⊤
[∑n

j=1 hjPj

]−1

x is used as a non-
quadratic Lyapunov function (NQLF) for the closed-loop
system. Similarly, the following non-PDC observer [3] can
be designed

˙̂x(t) =
∑n

i=1 hi

[
Aix̂(t) +Biu(t)

+[
∑n

j=1 hjPj ]
−1Ki[ŷ(t)− y(t)]

]
ŷ(t) =

∑n
i=1 hiCix̂(t)

(6)

using V (e) = e⊤
[∑n

j=1 hjPj

]
e as a NQLF to study the

convergence of the observation error e = x̂− x.
Each of these solutions involves the computation of a set

of gain matrices (Ki)1≤i≤n, resulting in an optimization
problem with more degrees of freedom compared to simpler
designs where a single constant gain matrix K is used. How-
ever, when this approach is still too conservative, meaning
when the set of gain matrices is not sufficient to ensure the
stability of the closed-loop system or of the observation error,
then, the “natural generalization” considered by the literature
consists in the introduction of multiple convex sums [6], [7],
e.g. the generalization of the PDC control law (3) uses the
multi-sum

n∑
i1=1

· · ·
n∑

im=1

hi1 . . . himKi1...im (7)

Since there are now nm gain matrices, this generalization has
the major inconvenience of vastly increasing the number of
decision variables of the optimization problem. Moreover,
a lot of the gains are actually superfluous, e.g., with n =
m = 2, it is easily noticed that K1,2 and K2,1 play a similar
role and could be replaced by a single gain of the form
L = (K1,2 +K2,1)/2:

2∑
i1=1

2∑
i2=1

hi1hi2Ki1,i2 = h2
1K1,1 + 2h1h2L+ h2

2K2,2

(8)



where h2
1, 2h1h2, and h2

2 can be considered as new activation
functions following the usual convex sum properties (2). The
T-S literature has already addressed the redundancy of multi-
sums in order to obtain relaxed LMI conditions of stability
and stabilization by regrouping redundant terms [6], [8].
However, to the authors’ surprise, no explicit formula was
ever given in the T-S literature to rewrite the multi-sum (7)
in a non-redundant manner, leaving this rewriting process to
be handled either manually or algorithmically.

This paper is concerned with replacing the redundant
multi-sum by its explicit non-redundant expression from the
very beginning, skipping the usual regrouping and rewriting
step. In doing so, the authors bring to light the geometric
nature of the multi-sum relaxation, which turns out to be a
simple Bézier interpolation scheme, a fact not discussed in
the literature yet. The explicit Bézier writing reduces the
number of gains from nm to (m + n − 1)!/m!(n − 1)!
without hindering the capabilities of the control law or of
the observer.

The geometric idea behind the writing introduced in this
paper is the following: if the gain matrices (Ki)1≤i≤n are
interpreted as the vertices of a “gain polytope”, then, the
approach of this paper consists in adding “control points”
to the gain polytope which can deform its shape using a
Bézier interpolation scheme. The shape of the gain polytope
becomes “malleable” with a degree of flexibility given by
the number of control points considered.

Note that other approaches exist to the stabilization and
observation problem for T-S models, such as using more
involved observers and PDC / non-PDC control laws [2], [3],
[9], using dynamical controllers [10], [11], and modifying the
Lyapunov function used [12], [13], [14]. Nevertheless, these
approaches remain out of the scope of this paper.

The paper is organized as follows: in Section II, some
definitions and notations are introduced. Section III pro-
vides two preliminary results on the Bernstein polynomials.
Section IV contains the main results of this document,
i.e. the LMI conditions allowing for the computation of
the gain matrices of the Bézier controllers and observers.
In this section, both Quadratic Lyapunov Functions (QLF)
and NQLF are considered. Section V provides numerical
examples of the previous LMI conditions, illustrating the
reduced conservatism of the Bézier approach. Finally, some
conclusions and perspectives are discussed in Section VI.

II. DEFINITIONS & NOTATIONS

N, R, R≥0 stand resp. for the set of non-negative integers,
real numbers and non-negative real numbers, and for k,m ∈
N, Jk,mK ≜ {r ∈ N, k ≤ r ≤ m}. Let i, j ∈ J1, nK

0 ≜ (0, . . . , 0) ∈ Nn (9)

1i ≜ (0, . . . , 0, 1︸︷︷︸
i-th coordinate

, 0, . . . , 0) ∈ Nn (10)

δi,j ≜ 1 if i = j, 0 else (11)

Nn
m ≜ {k ∈ Nn :

∑n
i=1 ki = m}, and ∆n−1 ≜{

X ∈ Rn
≥0 :

∑n
i=1 Xi = 1

}
stands for the (n − 1)-

simplex of Rn. Let k ≜ (k1, . . . , kn) ∈ Nn
m.

(
m
k

)
≜ m!

k1!...kn!
stands for the multinomial coefficient.

Given X ≜ (X1, . . . , Xn) ∈ ∆n−1, Xk denotes the
monomial Xk1

1 . . . Xkn
n , Bm

k (X) ≜
(
m
k

)
Xk stands for the

k-th multivariate Bernstein polynomial of degree m.
Rn×m stands for the set of real matrices with n rows and

m columns. Given M ∈ Rn×m, M⊤ stands for the transpose
of M , and if m = n, then H(M) ≜ M + M⊤. Given a
symmetric matrix M = M⊤ ∈ Rn×n, M positive definite
(resp. negative definite) is denoted M ≻ 0 (resp. M ≺ 0).

III. PRELIMINARY RESULTS

The Bézier interpolation scheme relies on weighting “con-
trol points” (Γi)i∈Nn

m
by the multivariate Bernstein poly-

nomials of degree m with parameters X ≜ (X1, . . . , Xn)
belonging to the (n − 1)-simplex. Formally, the interpo-
lation of (Γi)i∈Nn

m
at X ∈ ∆n−1 is given by Γ(X) =∑

i∈Nn
m
Bm
i (X)Γi. Note that they are as many multivariate

Bernstein polynomial of degree m as they are elements in
Nn

m, a number given by counting the weak n-composition of
m.

Lemma 1: Nn
m has (m+ n− 1)!/m!(n− 1)! elements.

Proof: See the “stars and bars” proof in [15] (p26).
The number of elements of Nn

m is compared below to
the expression nm for several values of (n,m), providing
the amount of useless gains economized using a Bézier
interpolation framework rather than a multi-sum.

(n,m) (m+ n− 1)!/m!(n− 1)! nm

(3, 3) 10 27
(3, 4) 15 81
(3, 5) 21 243
(6, 3) 56 216
(6, 4) 126 1296
(6, 5) 252 7776

Among the many properties of the multivariate Bernstein
polynomials [16], two of them are crucial to this document,
and are examined before proceeding to the main results.

Lemma 2: The multivariate Bernstein polynomials of de-
gree m ∈ N satisfy the convex sum properties on the (n−1)-
simplex

∀X ∈ ∆n−1,

{
∀k ∈ Nn

m : Bm
k (X) ≥ 0∑

i∈Nn
m
Bm
i (X) = 1

(12)

Proof: The sign property follows from the definition
of the (n − 1)-simplex and of the multivariate Bernstein
polynomials. The multinomial theorem provides the sum
property

∑
i∈Nn

m

(
m
i

)
Xi = [X1 + · · ·+Xn]

m
= 1 (X ∈

∆n−1).
Lemma 3: Given the sets of control points (Γi,j)i∈Nn

m

with j ∈ J1, nK, for all X ∈ ∆n−1

n∑
j=1

Xj

∑
i∈Nn

m

Bm
i (X)Γi,j =

∑
i∈Nn

m+1

Bm+1
i (X)

n∑
j=1

ij
m+ 1

Γi−1j ,j

(13)
Proof: Given i ∈ Nn, if there exists k ∈ J1, nK such

that ik < 0, then it is considered that
(
m
i

)
= 0. The following



equalities stand and prove (13)
n∑

j=1

Xj

∑
i∈Nn

m

(
m

i

)
XiΓi,j =

∑
i∈Nn

m

n∑
j=1

(
m

i

)
Xi+1jΓi,j

=
∑

i∈Nn
m+1

n∑
j=1

(
m

i− 1j

)
XiΓi−1j ,j

=
∑

i∈Nn
m+1

(
m+ 1

i

)
Xi

n∑
j=1

(
m

i− 1j

)(
m+ 1

i

)−1

Γi−1j ,j

=
∑

i∈Nn
m+1

(
m+ 1

i

)
Xi

n∑
j=1

ij
m+ 1

Γi−1j ,j

Remark 1: This property can be viewed as a generaliza-
tion of the “degree elevation property” of the multivariate
Bernstein polynomials (see section 1.4 of [17]).

IV. THE BÉZIER CONTROLLERS AND OBSERVERS

This section deals with the LMI formulations of the
optimization problems allowing for the computation of the
set of gains (Ki)i∈Nn

m
providing respectively:

• the exponential stability of (1) under the Bézier gen-
eralization of the PDC control law (3), as well as the
exponential stability of the observation error between
the state of (1) and the state of the Bézier generalization
of the T-S observer (4);

• the exponential stability of (1) under the Bézier gener-
alization of the non-PDC control law (5), as well as the
exponential stability of the observation error between
the state of (1) and the state of the Bézier generalization
of the T-S observer (6).

These controllers and observers are based on a Bézier-
simplex interpolation scheme, where the activation functions
serve as the interpolating parameters belonging to the (n−1)-
simplex, i.e. h ≜ (h1, . . . , hn) ∈ ∆n−1. The LMI for-
mulations of the resulting optimization problems are given
respectively by Theorem 1 (Bézier-PDC controller design)
and Corollary 1 (Bézier-PDC observer design) for a QLF,
and by Theorem 2 (Bézier-non-PDC controller design) and
Corollary 2 (Bézier-non-PDC observer design) for NQLFs.

A. The Bézier-PDC approach

The following results hold for a Bézier-PDC control law

u(t) =
∑
i∈Nn

m

Bm
i (h)Kix(t) (14)

and for its observer counterpart
˙̂x(t) =

∑n
j=1 hj [Aj x̂(t) +Bju(t)]

+
∑

i∈Nn
m
Bm
i (h)Ki[ŷ(t)− y(t)]

ŷ(t) =
∑n

j=1 hjCj x̂(t)

(15)

considered with the QLF: V (x) = x⊤Px, with P = P⊤ ≻
0.

Theorem 1: Given m ∈ N, the system (1) is exponentially
stable under the control law (14) if there exists X = X⊤ ≻ 0

and Mi such that the LMIs (16) are satisfied for all i ∈
Nn

m+1.

n∑
j=1

ij
m+ 1

H(AjX +BjMi−1j
) ≺ 0 (16)

The controller gains are given by Ki = MiX
−1.

Proof: The dynamic of the closed-loop system is given
by

ẋ(t) =

n∑
j=1

hj

Aj +
∑
i∈Nn

m

Bm
i (h)BjKi

x(t) (17)

which, thanks to Lemma 2 and Lemma 3, can be written as

ẋ(t) =

n∑
j=1

hj

∑
i∈Nn

m

Bm
i (h) [Aj +BjKi]x(t)

=
∑

i∈Nn
m+1

Bm+1
i (h)

n∑
j=1

ij
m+ 1

[Aj +BjKi−1j ]x(t)

(18)

The usual results on quadratic stability for T-S models [4],
[18] can finally be applied to the convex sum above. System
(1) is exponentially stable under the control law (14) if the
following conditions are satisfied

∀i ∈ Nn
m+1 :

n∑
j=1

ij
m+ 1

H(PAj + PBjKi−1j
) ≺ 0 (19)

the proof is concluded by a left and right multiplication of
(19) by X = P−1.

Corollary 1: Given m ∈ N, the observation error between
the state of (1) and the state of the observer (15) is exponen-
tially stable if there exists P = P⊤ ≻ 0 and Mi such that
the LMIs (20) are satisfied for all i ∈ Nn

m+1.

n∑
j=1

ij
m+ 1

H(PAj +Mi−1j
Cj) ≺ 0 (20)

The observer gains are given by Ki = P−1Mi.
Proof: The dynamic of the error e(t) = x̂(t)− x(t) is

given by

ė(t) =

n∑
j=1

hj

Aj +
∑
i∈Nn

m

Bm
i (h)KiCj

 e(t) (21)

From here, the proof follows the same steps as for Theo-
rem 1, without the final left and right multiplication by P−1.

Remark 2: The separation principle stated in [19] and [20]
still holds for this controller and observer design, hence it is
possible to use the LMIs given above in order to compute
an observer-based state feedback control law.



B. The Bézier-non-PDC approach

The previous results can be extended to a Bézier-non-PDC
control law

u(t) =

∑
i∈Nn

m

Bm
i (h)Ki

Q(h)x(t) (22)

considered with the NQLF: V (x) = x⊤Q(h)x, as well as to
its observer counterpart

˙̂x(t) =
∑n

j=1 hj [Aj x̂(t) +Bju(t)]

+Q(h)
∑

i∈Nn
m
Bm
i (h)Ki[ŷ(t)− y(t)]

ŷ(t) =
∑n

j=1 hjCj x̂(t)

(23)

considered with the NQLF: V (x) = x⊤Q−1(h)x, where
Q−1(h) =

∑n
k=1 hkPk and Pk = P⊤

k ≻ 0 for all k ∈ J1, nK.
Theorem 2: Given m ∈ N and ϕk ∈ R≥0 such that |ḣk| ≤

ϕk for all k ∈ J1, nK, the system (1) is exponentially stable
under the control law (22) if there exists Pk = P⊤

k ≻ 0 and
Ki such that the LMIs (24) are satisfied for all i ∈ Nn

m+2

n∑
j=1

[
ϕjPj +

n∑
k=1

ik(ij − δj,k)

(m+ 2)(m+ 1)
H(Ti−1j−1k,j,k)

]
≺ 0

(24)

where Ti,j,k = [AjPk +BjKi].
Proof: Thanks to Lemmas 2 and 3, the closed-loop

dynamic of (1) with (22) is given by

ẋ(t) =
∑

i∈Nn
m+1

Bm+1
i (h)Ãix(t) (25)

where Ãi =
∑n

j=1
ij

m+1 [Aj + BjKi−1j
Q(h)]. The usual

results on nonquadratic stability for T-S models [5], [18]
provide the exponential stability of (1) under the control law
(22) if R ≺ 0, where

R = Q̇(h) +
∑

i∈Nn
m+1

Bm+1
i (h)H(Q(h)Ãi) (26)

By congruence, R ≺ 0 holds if and only if S(h) =
Q−1(h)RQ−1(h) ≺ 0, with

S(h) = − ˙[Q−1](h)+
∑

i∈Nn
m+1

Bm+1
i (h)H(ÃiQ

−1(h)) (27)

where ˙[Q−1](h) = −Q−1(h)Q̇(h)Q−1(h) =
∑n

k=1 ḣkPk.
Moreover, the following equalities hold:∑

i∈Nn
m+1

Bm+1
i (h)ÃiQ

−1(h)

=
∑

i∈Nn
m+1

Bm+1
i (h)

n∑
j=1

ij
m+ 1

[AjQ
−1(h) +BjKi−1j

]

=

n∑
k=1

hk

∑
i∈Nn

m+1

Bm+1
i (h)Γi,k

(28)

with Γi,k =
∑n

j=1
ij

m+1 [AjPk + BjKi−1j
]. Thanks to

Lemma 3, this provides

(28) =
∑

i∈Nn
m+2

Bm+2
i (h)

n∑
k=1

ik
m+ 2

Γi−1k,k

=
∑

i∈Nn
m+2

Bm+2
i (h)

n∑
j=1

n∑
k=1

ik(ij − δj,k)

(m+ 2)(m+ 1)
Ti−1j−1k,j,k

(29)
with Ti,j,k = [AjPk + BjKi]. Finally, |ḣk| ≤ ϕk provides
the LMIs of the theorem and concludes its proof.

Corollary 2: Given m ∈ N and ϕk ∈ R≥0 such that
|ḣk| ≤ ϕk for all k ∈ J1, nK, the observation error between
the state of (1) and the state of the observer (23) is expo-
nentially stable if there exists Pk = P⊤

k ≻ 0 and Ki such
that the LMIs (30) are satisfied for all i ∈ Nn

m+2

n∑
j=1

[
ϕjPj +

n∑
k=1

ik(ij − δj,k)

(m+ 2)(m+ 1)
H(Ti−1j−1k,j,k)

]
≺ 0

(30)

where Ti,j,k = [PkAj +KiCj ].
Proof: The error dynamic e(t) = x̂(t) − x(t) is given

by
ė(t) =

∑
i∈Nn

m+1

Bm+1
i (h)Ãie(t) (31)

where Ãi =
∑n

j=1
ij

m+1

[
Aj +Q(h)Ki−1jCj

]
. From here,

the proof follows the same steps as for Theorem 2, without
the left and right multiplication by Q−1(h).

V. ILLUSTRATIVE EXAMPLES

A. The Bézier-PDC approach

To illustrate the conservatism reduction brought by the
Bézier-PDC controller design, the following T-S model
(taken from [21], [8]) is considered

S(a,b) : ẋ(t) =

3∑
i=1

hi[Ai(a)x(t) +Bi(b)u(t)] (32)

with A1 =

[
1.59 −7.29
0.01 0

]
, A2 =

[
0.02 −4.64
0.35 0.21

]
,

A3 =

[
−a −4.33
0 0.05

]
, B1 = [1 0]⊤, B2 = [8 0]⊤, B3 =

[6 − b − 1]⊤, together with the QLF: V (x) = x⊤X−1x,
with X = X⊤ ≻ 0.

In the following, the stabilization problem of S(a,b) is
considered at several values of (a, b) ∈ R2 for the control
laws u(t) = Km(h)x(t), with m ∈ J0, 2K and

K0(h) =K000 (33)
K1(h) =h1K100 + h2K010 + h3K001 (34)

K2(h) =h2
1K200 + h2

2K020 + h2
3K002 + 2h1h2K110

+ 2h1h3K101 + 2h2h3K011 (35)

For m = 2, nm − (m + n − 1)!/m!(n − 1)! = 3 redundant
gain matrices have been economized compared to the usual



multi-sum approach, i.e. 6 useless decision variables. It is
recalled that:

N3
0 ={(0, 0, 0)}, N3

1 = {(1, 0, 0); (0, 1, 0); (0, 0, 1)},
(36)

N3
2 ={(2, 0, 0); (0, 2, 0); (0, 0, 2); (1, 1, 0); (1, 0, 1);

(0, 1, 1)}, (37)

N3
3 ={(3, 0, 0); (0, 3, 0); (0, 0, 3); (2, 1, 0); (2, 0, 1);

(1, 2, 0); (0, 2, 1); (1, 0, 2); (0, 1, 2); (1, 1, 1)} (38)

Following from the results of Theorem 1, the LMI conditions
to compute the Bézier-PDC feedback K2(h) are given by

∀i ∈ J1, 3K : H(AiX +BiM000+2·1i
) ≺ 0 (39)

1

3
H(2[A1X +B1M110] + [A2X +B2M200]) ≺ 0 (40)

1

3
H(2[A1X +B1M101] + [A3X +B3M200]) ≺ 0 (41)

1

3
H([A1X +B1M020] + 2[A2X +B2M110]) ≺ 0 (42)

1

3
H(2[A2X +B2M011] + [A3X +B3M020]) ≺ 0 (43)

1

3
H([A1X +B1M002] + 2[A3X +B3M101]) ≺ 0 (44)

1

3
H([A2X +B2M002] + 2[A3X +B3M011]) ≺ 0 (45)

1

3
H

(
3∑

i=1

[AiX +BiM111−1i ]

)
≺ 0 (46)

The feedback K0(h) and the PDC feedback K1(h) are
computed with the LMI conditions given by Theorem 1 as
well.

Fig. 1. Stabilizability (a, b)-regions of S(a,b) with a PDC control law
computed with the LMI conditions of Theorem 1

Figure 1 illustrates the (a, b)-regions for which a solution
is found to the LMIs given above. The (a, b)-region gets

larger as m increases. This demonstrates the increased capa-
bilities of the Bézier-PDC control law compared to the usual
PDC approach.

B. The Bézier-non-PDC approach

To illustrate the conservatism reduction brought by the
Bézier-non-PDC controller design, the following T-S model
is considered

T(ϕ1,ϕ2) : ẋ(t) =

2∑
i=1

hi[Aix(t) +Biu(t)] (47)

with

A1 =


2 −10 3 1 5
2 0 1 2 4
−1 0 −5 0 −2
1 0 5 0 −1
−1 5 4 3 1

 B1 =


1 0
0 1
0 1
1 1
−2 0



A2 =


0 5 2 −1 1
1 2 1 −2 −1
−1 0 −10 −1 −1
1 0 −10 1 −1
4 5 −1 −2 5

 B2 =


0 1
0 2
1 −1
1 −2
1 1


under the assumptions |ḣ1| ≤ ϕ1 and |ḣ2| ≤ ϕ2, together
with the NQLF: V (x) = x⊤[h1P1 + h2P2]

−1x, with sym-
metric P1, P2 ≻ 0.

Now, the stabilization problem of T(ϕ1,ϕ2) is considered
at several values of (ϕ1, ϕ2) ∈ R2

≥0 for the control laws
u(t) = Km(h)[h1P1 + h2P2]

−1x(t), with m ∈ J0, 3K and

K0(h) =K00 (48)
K1(h) =h1K10 + h2K01 (49)

K2(h) =h2
1K20 + 2h1h2K11 + h2

2K02 (50)

K3(h) =h3
1K30 + 3h2

1h2K21 + 3h1h
2
2K12 + h3

2K03 (51)

For m = 3, nm − (m + n − 1)!/m!(n − 1)! = 4 redundant
gain matrices have been economized compared to the usual
multi-sum approach, i.e. 40 useless decision variables. It is
recalled that:

N2
0 ={(0, 0)}, N2

1 = {(1, 0); (0, 1)}, (52)

N2
2 ={(2, 0); (1, 1); (0, 2)}, (53)

N2
3 ={(3, 0); (2, 1); (1, 2); (0, 3)}, (54)

N2
4 ={(4, 0); (3, 1); (2, 2); (1, 3); (0, 4)} (55)

N2
5 ={(5, 0); (4, 1); (3, 2); (2, 3); (1, 4); (0, 5)} (56)

Let R(ϕ) = −ϕ1P1−ϕ2P2. Following from the results of
Theorem 2, the LMI conditions to compute the Bézier-non-
PDC feedback K3(h)[h1P1 + h2P2]

−1 are given by

∀i ∈ J1, 2K : H(AiPi +BiK00+3·1i
) ≺ R(ϕ) (57)

1

5
H(3[A1P1 +B1K21] + [A1P2 +B1K30]

+[A2P1 +B2K30]) ≺ R(ϕ) (58)



1

5
H([A1P2 +B1K03] + [A2P1 +B2K03]

+3[A2P2 +B2K12]) ≺ R(ϕ)
(59)

1

10
H(3[A1P1 +B1K12] + 3[A1P2 +B1K21]

+3[A2P1 +B2K21] + [A2P2 +B2K30]) ≺ R(ϕ)
(60)

1

10
H([A1P1 +B1K03] + 3[A1P2 +B1K12]

+3[A2P1 +B2K12] + 3[A2P2 +B2K21]) ≺ R(ϕ)
(61)

The feedback K0(h)[h1P1+h2P2]
−1, the non-PDC feedback

K1(h)[h1P1 + h2P2]
−1 and the Bézier-non-PDC feedback

K2(h)[h1P1 + h2P2]
−1 are computed with the LMI condi-

tions given by Theorem 2 as well.

Fig. 2. Stabilizability (ϕ1, ϕ2)-regions of T(ϕ1,ϕ2) with a non-PDC
control law computed with the LMI conditions of Theorem 2

Figure 2 illustrates the (ϕ1, ϕ2)-regions for which a solu-
tion is found to the LMIs given above. The (ϕ1, ϕ2)-region
gets larger as m increases. This demonstrates the increased
capabilities of the Bézier-non-PDC control law compared
to the usual non-PDC approach. The region difference is
however less pronounced than in the previous example.
The authors explain this variation by the T-S model only
having two local models, which makes the stabilization
problem easily solvable. Given a NQLF, the Bézier-non-
PDC approach solves some of the stabilization problems with
solutions that were not already solved by the usual non-PDC
approach, and there are not many of them.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, new less conservative controllers and ob-
servers for T-S models have been provided. Their designs
are based on a Bézier interpolation scheme of gain matrices.
Simple LMI formulations of the resulting stabilization prob-
lems have been provided for QLFs and NQLFs. It should

be noted that the LMI conditions given in this paper could
be relaxed further, e.g. by using the results from [8]. The
extension of this Bézier approach remains to be investigated
for discrete-time T-S models, as well as for T-S models with
an unmeasurable scheduling vector.
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