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Abstract Given a continuous-time Linear Parameter-Varying (LPV) system with a
sampled scheduling parameter and subject to an unknown input, this paper provides
– under some Lipschitz assumptions – an exact discretization of an extended system
which translates the sampled-data unknown input estimation problem into a discrete-
time LPV observer design problem with norm-bounded uncertainties. The bounds
developed in this process account for the inter-sample behavior of the scheduling
parameter, and allow for an estimation of some near-future observability Gramians,
from which it is possible to lower bound the number of samples for which the
unknown input is guaranteed to remain observable.

1 Introduction

The continuous-time Linear Parameter-Varying (LPV) representation is a powerful
tool to study a large class of nonlinear systems using a linear-like framework, which
generally facilitates controller and observer synthesis [18, 16]. It relies on the con-
struction of a scheduling parameter \ typically accounting for the non-linearities of
the initial system, and which is assumed to be continuously known or estimated in
real time. However, in practice, the values of \ are generally recovered at a fixed
sampling rate and are assumed to be held constant between two samples [20]. This
zero-order hold (ZOH) assumption made on the values of \ creates a sampled-data
problem which has already been discussed in the LPV literature [19, 15, 8].

The present paper considers a continuous-time LPV system subject to an unknown
input. Taking into consideration the sampled-data problem described above, an exact
discretization of an extended version of the system is given with consideration for the
uncertainties due to the ZOH assumption made on \. This discretization effectively
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translates the sampled-data unknown input estimation problem into a discrete-time
LPV observer design problem with norm-bounded uncertainties. To the authors’
knowledge, this is a new approach in the sampled-data literature. The exhibited
bounds on the uncertainties rely on some Lipschitz assumptions, which are similar
to the usual bounds put on the variations of \ that are typically found in the literature
of LPV systems. These bounds constitute a generalization of the ones found in [1],
the idea behind their proofs being similar.

Following the ideas of [1], the norm-bounded uncertainties of the exactly dis-
cretized extended-system allow for some real-time structural analysis. Specifically,
from the last known value of \, the observability Gramian of the extended discrete-
time LPV system can be estimated between two future instants, as if the values of \
were known in advance. In practice, this Gramian-estimation can be used to evaluate
in real time a number of samples for which the unknown input is guaranteed to remain
observable. To the authors’ knowledge, this is an uninvestigated question of the LPV
literature. Some results on the robust observability of discrete time varying systems
could arguably be leveraged to obtain similar bounds [17, 14], but the approach of
this paper is more straightforward, the uncertainties being treated here as ”yet to be
known” values.

The paper is organised as follows: Section 2 introduces the notations used through-
out the paper. Section 3 provides technical results, allowing for a smoother reading of
the next two sections. Section 4 translates the sampled-data unknown input estima-
tion problem into a discrete-time LPV observer design problem with norm-bounded
uncertainties. Section 5 estimates the near-future observability Gramians of the pre-
viously constructed system in order to lower-bound the number of samples left until
the unknown input observability of the initial system may be lost. Section 6 finally
provides an illustrative example. Some perspectives are discussed in Section 7 to
conclude the paper.

2 Notations

N is the set of natural numbers.K stands for R or C, resp. the set of real and complex
numbers. K𝑝×𝑞 denotes the set of matrices with 𝑝 rows, 𝑞 columns and coefficients
in K. ∥·∥ stands for the spectral norm. ` : K𝑝×𝑝 → R denotes the logarithmic
norm induced by the spectral norm. Given a matrix 𝐸 ∈ K𝑝×𝑝 , 𝐸∗ denotes its
conjugate transpose, 𝐸 positive-definite is denoted 𝐸 ≻ 0, and by definition `(𝐸) =
limℎ→0+

∥ 𝐼𝑝+ℎ𝐸 ∥−1
ℎ

where 𝐼𝑝 ∈ K𝑝×𝑝 stands for the identity matrix [6]. Given the
following continuous-time system ¤𝑥(𝑡) = 𝐴(𝑡)𝑥(𝑡) with 𝐴 : R→ K𝑛×𝑛 a continuous
function, the state transition matrix from 𝑡1 to 𝑡2 of such a system is often abstractly
denoted Φ (𝑡2, 𝑡1). However, this paper considers the state-transition matrix to be a
product integral, which is denoted in the following way [21, 4, 1]:

Φ (𝑡2, 𝑡1) =
𝑡2∏
𝑡1

𝑒𝐴(𝑠)𝑑𝑠 (1)
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3 Preliminary Results

Among the many properties of the logarithmic norm and of the product integral,
several of them play a crucial role in this document.

Lemma 1 (Duhamel’s Formula)
Let 𝐸, 𝐹 : R→ K𝑝×𝑝 be two continuous functions. For all 𝑡1, 𝑡2 ∈ R

𝑡2∏
𝑡1

𝑒𝐸 (𝑠)𝑑𝑠 −
𝑡2∏
𝑡1

𝑒𝐹 (𝑠)𝑑𝑠 =

∫ 𝑡2

𝑡1

(
𝑡2∏
𝑢

𝑒𝐹 (𝑠)𝑑𝑠

)
(𝐸 (𝑢) − 𝐹 (𝑢))

(
𝑢∏
𝑡1

𝑒𝐸 (𝑠)𝑑𝑠

)
𝑑𝑢

(2)

Proof See Theorem 5.1 of [4]. □

Lemma 2 Let 𝐸 : R→ K𝑝×𝑝 be a continuous function. For all 𝑡1, 𝑡2 ∈ R such that
𝑡1 ≤ 𝑡2  𝑡2∏

𝑡1

𝑒𝐸 (𝑠)𝑑𝑠

 ≤ 𝑒

∫ 𝑡2
𝑡1

` (𝐸 (𝑠) )𝑑𝑠 (3)

Proof This result is a consequence of Grönwall’s lemma [3]. □

Lemma 3 If 𝐸 : R → K𝑝×𝑝 is a 𝐿𝐸-Lipschitz function, then `(𝐸 (·)) is also a
𝐿𝐸-Lipschitz function.

Proof For 𝑡1, 𝑡2 ∈ R

`(𝐸 (𝑡1)) = `(𝐸 (𝑡2) + 𝐸 (𝑡1) − 𝐸 (𝑡2))
≤ `(𝐸 (𝑡2)) + `(𝐸 (𝑡1) − 𝐸 (𝑡2))

⇒ `(𝐸 (𝑡1)) − `(𝐸 (𝑡2)) ≤ `(𝐸 (𝑡1) − 𝐸 (𝑡2)) ≤ ∥𝐸 (𝑡1) − 𝐸 (𝑡2)∥
(4)

interverting the role of 𝑡1 and 𝑡2 in the previous equations yields the same upper-
bound. Since 𝐸 is 𝐿𝐸-Lipschitz, combining (4) with its interverted counterpart
provides

|`(𝐸 (𝑡1)) − `(𝐸 (𝑡2)) | ≤ ∥𝐸 (𝑡1) − 𝐸 (𝑡2)∥ ≤ 𝐿𝐸 |𝑡1 − 𝑡2 | (5)

which concludes the proof. □

Lemma 4 Let 𝐸 : R → K𝑝×𝑝 be a 𝐿𝐸-Lipschitz function with for all 𝑡 ∈ R,
`(𝐸 (𝑡)) ≤ 𝜎 and let 𝜏 be defined by 𝜏 = 𝑡0 + 𝜎−` (𝐸 (𝑡0 ) )

𝐿𝐸
. For all 𝑡0, 𝑡1, 𝑡2 ∈ R such

that 𝑡0 ≤ 𝑡1 ≤ 𝑡2 𝑡2∏
𝑡1

𝑒𝐸 (𝑠)𝑑𝑠

 ≤


𝑒 (𝑡2−𝑡1 )𝜎 if 𝜏 ≤ 𝑡1

𝑒
𝑡2𝜎−𝑡1 (` (𝐸 (𝑡0 ) )−

𝐿𝐸
2 (2𝑡0−𝑡1 ) )− 1

2𝐿𝐸
(𝜎−` (𝐸 (𝑡0 ) )+𝐿𝐸 𝑡0 )2

if 𝜏 ∈ (𝑡1, 𝑡2)
𝑒 (𝑡2−𝑡1 )` (𝐸 (𝑡0 ) )+ 1

2 𝐿𝐸 (𝑡2
2 −𝑡

2
1 +2𝑡0 (𝑡1−𝑡2 )) if 𝜏 ≥ 𝑡2

(6)
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Proof Lemma 3 provides∫ 𝑡2

𝑡1

`(𝐸 (𝑠))𝑑𝑠 ≤
∫ 𝑡2

𝑡1

min(`(𝐸 (𝑡0) + 𝐿𝐸 (𝑠 − 𝑡0), 𝜎)𝑑𝑠 (7)

and since 𝑠 ↦→ `(𝐸 (𝑡0)) + 𝐿𝐸 (𝑠 − 𝑡0) is increasing, it follows

(7) ≤ min
𝑠∈ (𝑡1 ,𝑡2 )

(𝑠 − 𝑡1)`(𝐸 (𝑡0)) +
1
2
𝐿𝐸 (𝑠2 − 2𝑡0𝑠 − 𝑡21 + 2𝑡0𝑡1) + (𝑡2 − 𝑠)𝜎

= min
𝑠∈ (𝑡1 ,𝑡2 )

𝑎𝑠2 + 𝑏𝑠 + 𝑐
(8)

The minimum of 𝑎𝑠2+𝑏𝑠+𝑐 being reached for 𝜏 = −𝑏/2𝑎, the sharpest upper-bound
of (7) depends on whether 𝜏 belongs to (𝑡1, 𝑡2) or not. The results are then applied
to Lemma 2, providing (6) and thus concluding the proof. □

Remark 1 The first and last upper-bounds of (6) stay true for all values of 𝜏, contrary
to the second upper-bound which only holds when 𝜏 ∈ (𝑡1, 𝑡2).

Lemma 5 If 𝐸 : R→ K𝑝×𝑞 and 𝐹 : R→ K𝑝×𝑟 are 𝐿𝐸 and 𝐿𝐹-Lipschitz functions
respectively, then for all 𝑘 ∈ N, the following function is (𝐿𝐸 + 𝐿𝐹)-Lipschitz

𝐺𝑘 : R→ K(𝑞+𝑟+𝑘 )×(𝑞+𝑟+𝑘 )

𝑡 ↦→

𝐸 (𝑡) 𝐹 (𝑡) 0

0 0 𝐼𝑘
0 0 0


(9)

Proof Given 𝑡1, 𝑡2 ∈ R, the following inequalities hold

∥𝐺𝑘 (𝑡1) − 𝐺𝑘 (𝑡2)∥ =
𝐺∗

𝑘 (𝑡1) − 𝐺∗
𝑘 (𝑡2)

 = sup
∥𝑥 ∥=1



𝐸∗ (𝑡1) − 𝐸∗ (𝑡2) 0
𝐹∗ (𝑡1) − 𝐹∗ (𝑡2) 0

0 0

 𝑥


≤ sup
∥𝑥1 ∥=1

[ 𝐸∗ (𝑡1) − 𝐸∗ (𝑡2) 0
]
𝑥1

 + sup
∥𝑥2 ∥=1

[ 𝐹∗ (𝑡1) − 𝐹∗ (𝑡2) 0
]
𝑥2


= ∥𝐸 (𝑡1) − 𝐸 (𝑡2)∥ + ∥𝐹 (𝑡1) − 𝐹 (𝑡2)∥ ≤ (𝐿𝐸 + 𝐿𝐹) |𝑡1 − 𝑡2 |

(10)

which concludes the proof. □

Lemma 6 Let 𝐸 : R → K𝑝×𝑝 be a 𝐿𝐸-Lipschitz function with for all 𝑡 ∈ R,
`(𝐸 (𝑡)) ≤ 𝜎. For all 𝑡0, 𝑡1, 𝑡2 ∈ R such that 𝑡0 ≤ 𝑡1 ≤ 𝑡2. 𝑡2∏

𝑡1

𝑒𝐸 (𝑠)𝑑𝑠 − 𝑒 (𝑡2−𝑡1 )𝐸 (𝑡0 )

 ≤ min

{ 1
2𝐿𝐸

(
𝑡22 − 𝑡21 + 2𝑡0 (𝑡1 − 𝑡2)

)
𝑒 (𝑡2−𝑡1 )𝜎 ,(

𝑒
1
2 𝐿𝐸 (𝑡2

2 −𝑡
2
1 +2𝑡0 (𝑡1−𝑡2 )) − 1

)
𝑒 (𝑡2−𝑡1 )` (𝐸 (𝑡0 ) )

}
(11)

Proof The proof of the first inequality can be found in [1]. The second inequality only
relies on the Lipschitz asumption on 𝐸 . Given 𝑡0, 𝑡1, 𝑡2 ∈ R such that 𝑡0 ≤ 𝑡1 ≤ 𝑡2,
Lemma 1 provides
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𝑡2∏
𝑡1

𝑒𝐸 (𝑠)𝑑𝑠 − 𝑒 (𝑡2−𝑡1 )𝐸 (𝑡0 ) =
𝑡2∏
𝑡1

𝑒𝐸 (𝑠)𝑑𝑠 −
𝑡2∏
𝑡1

𝑒𝐸 (𝑡0 )𝑑𝑠

=

∫ 𝑡2

𝑡1

(
𝑡2∏
𝑢

𝑒𝐸 (𝑡0 )𝑑𝑠

)
(𝐸 (𝑢) − 𝐸 (𝑡0))

(
𝑢∏
𝑡1

𝑒𝐸 (𝑠)𝑑𝑠

)
𝑑𝑢

=

∫ 𝑡2

𝑡1

𝑒 (𝑡2−𝑢)𝐸 (𝑡0 ) (𝐸 (𝑢) − 𝐸 (𝑡0))
(

𝑢∏
𝑡1

𝑒𝐸 (𝑠)𝑑𝑠

)
𝑑𝑢

(12)
then, by submultiplicativity of the operator norm and the Lipschitz asumption on 𝐸

∥ (12) ∥ ≤ 𝐿𝐸

∫ 𝑡2

𝑡1

𝑒 (𝑡2−𝑢)` (𝐸 (𝑡0 ) ) (𝑢 − 𝑡0)
 𝑢∏

𝑡1

𝑒𝐸 (𝑠)𝑑𝑠

 𝑑𝑢 (13)

the third upper-bound of Lemma 4 is finally applied, providing

∥ (12) ∥ ≤ 𝐿𝐸

(∫ 𝑡2

𝑡1

(𝑢 − 𝑡0)𝑒
1
2 𝐿𝐸 (𝑢2−2𝑡0𝑢)𝑑𝑢

)
𝑒−

1
2 𝐿𝐸 (𝑡2

1 −2𝑡0𝑡1 )+(𝑡2−𝑡1 )` (𝐸 (𝑡0 ) )

= 𝐿𝐸

(
1
𝐿𝐸

𝑒
1
2 𝐿𝐸 𝑡2 (𝑡2−2𝑡0 ) − 1

𝐿𝐸

𝑒
1
2 𝐿𝐸 𝑡1 (𝑡1−2𝑡0 )

)
𝑒−

1
2 𝐿𝐸 𝑡1 (𝑡1−2𝑡0 )+(𝑡2−𝑡1 )` (𝐸 (𝑡0 ) )

=

(
𝑒

1
2 𝐿𝐸 (𝑡2

2 −𝑡
2
1 +2𝑡0 (𝑡1−𝑡2 )) − 1

)
𝑒 (𝑡2−𝑡1 )` (𝐸 (𝑡0 ) )

(14)
which concludes the proof. □

Remark 2 If 𝑡1 < 𝜏 < 𝑡2, with 𝜏 given in Lemma 4, a sharper (but very involved)
upper-bound to (11) can be found.

4 An Exact Discretization of sampled LPV Systems subject to an
Unknown Input

This section deals with the state and unknown input estimation of a sampled LPV
system of the following form

¤𝑥(𝑡) = 𝐴(\ (𝑡))𝑥(𝑡) + 𝐹1 (\ (𝑡)) 𝑓 (𝑡)
𝑦(𝑡) = 𝐶 (𝑡)𝑥(𝑡) + 𝐹2 (𝑡) 𝑓 (𝑡)

(15)

where 𝑥(𝑡) ∈ K𝑛𝑥 is the state of the system, 𝑦(𝑡) ∈ K𝑛𝑦 is its output, 𝑓 (𝑡) ∈ K𝑛 𝑓 is
its unknown input and \ (𝑡) ∈ K𝑛\ is a sampled scheduling parameter measured in
real time. Note that the coefficients of 𝐶 (𝑡) and 𝐹2 (𝑡) are assumed to be known at all
time 𝑡, hence, these matrices are not \-dependent. This section provides a discrete
representation of this system which takes into account the intrinsic uncertainties that
come with the sampling of \.
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Polynomial Unknown Input Assumption: 𝑓 is a polynomial function of degree
𝑞 − 1 (hence for all 𝑡, the 𝑞-th derivative of 𝑓 (𝑡) is null).

A common way [5, 9, 23] to reconstruct the unknown input 𝑓 (𝑡) of (15) consists in
finding an observer for the augmented LPV system

¤𝑧(𝑡) = 𝐴(\ (𝑡))𝑧(𝑡)
𝑦(𝑡) = 𝐶 (𝑡)𝑧(𝑡)

(16)

with 𝑧(𝑡) =



𝑥(𝑡)
𝑓 (𝑡)

𝑓 (1) (𝑡)
...

𝑓 (𝑞−1) (𝑡)


𝐴(\ (𝑡)) =



𝐴(\ (𝑡)) 𝐹1 (\ (𝑡)) 0 . . . 0
0 0 𝐼𝑛 𝑓

. . . 0
...

...
...

. . .
...

0 0 0 . . . 𝐼𝑛 𝑓

0 0 0 . . . 0


, (17)

𝐶 (𝑡) =
[
𝐶 (𝑡) 𝐹2 (𝑡) 0 . . . 0

]
(18)

If the evolution of \ were exactly known between 𝑡1 and 𝑡2, it would be possible
to perfectly find 𝑧(𝑡2) based on the values of 𝑧(𝑡1) and \ through the relation
𝑧(𝑡2) =

(∏𝑡2
𝑡1
𝑒𝐴(\ (𝑠) )𝑑𝑠

)
𝑧(𝑡1).

Sampling Assumption: In practice, \ is measured at a sampling period 𝑇𝑠 , and
its values are not only unknown in the future, but also unknown in-between two
samples.

For all 𝑘, 𝑚, 𝑛 ∈ Nwith 𝑛 ≥ 𝑚, \ (𝑘𝑇𝑠) now represents the last known value of \. The
exact discretization of (16) accounting for these future and inter-sample uncertainties
is given by

𝑧𝑘+𝑛 =

(
𝑒 (𝑛−𝑚)𝑇𝑠𝐴(\𝑘 ) + Δ𝑘,𝑛,𝑚

)
𝑧𝑘+𝑚

𝑦𝑘+𝑚 = 𝐶𝑘+𝑚𝑧𝑘+𝑚

(19)

where Δ𝑘,𝑛,𝑚 ∈ K𝑛𝑧×𝑛𝑧 stands for a norm-bounded matrix of uncertainties (with
𝑛𝑧 = 𝑛𝑥 + 𝑞𝑛 𝑓 ), and where for all 𝑝 ∈ N, 𝑧𝑝 = 𝑧(𝑝𝑇𝑠), 𝑦𝑝 = 𝑦(𝑝𝑇𝑠), \𝑝 = \ (𝑝𝑇𝑠)
and 𝐶 𝑝 = 𝐶 (𝑝𝑇𝑠).

Remark 3 As a side note, notice how the peculiar structure of 𝐴(\𝑘) provides for all
𝑠 ∈ R

𝑒𝑠𝐴(\𝑘 ) =

[
𝑒𝑠𝐴(\𝑘 )

∫ 𝑠

0 𝑒 (𝑠−𝑢)𝐴(\𝑘 )
[
𝐹1 (\𝑘) 0 . . . 0

]
𝑒𝑢𝑁 𝑑𝑢

0 𝑒𝑠𝑁

]
(20)

with 𝑁 ∈ K𝑞𝑛 𝑓 ×𝑞𝑛 𝑓 the nilpotent matrix 𝑁 =

[
0 𝐼 (𝑞−1)𝑛 𝑓

0 0

]
.

If 𝐴(\ (·)) and 𝐹1 (\ (·)) are assumed to be 𝐿𝐴-Lipschitz and 𝐿𝐹1 -Lipschitz re-
spectively – which is a similar assumption to the usual bounds put on the variations
of \ that are typically found in the literature of LPV systems – then the following
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bounds are easily deduced from Lemmas 5 and 6Δ𝑘,𝑛,𝑚

 ≤
(
𝑒

1
2 (𝐿𝐴+𝐿𝐹1 ) (𝑛2−𝑚2+2𝑘 (𝑚−𝑛))𝑇2

𝑠 − 1
)
𝑒 (𝑛−𝑚)𝑇𝑠` (𝐴(\𝑘 ) ) (21)

Moreover, if the logarithmic norm of 𝐴(\ (·)) is also upper-bounded by 𝜎 ∈ R –
which is a similar assumption to the usual bounds put on the values of \ (see Lemma
1 of [10]) – then the following bounds are also verifiedΔ𝑘,𝑛,𝑚

 ≤ 1
2

(
𝐿𝐴 + 𝐿𝐹1

) (
𝑛2 − 𝑚2 + 2𝑘 (𝑚 − 𝑛)

)
𝑇2
𝑠 𝑒

(𝑛−𝑚)𝑇𝑠𝜎 (22)

Depending on the context, one of the previous upper-bounds might be sharper than
the other. One may also boundΔ𝑘,𝑛,𝑚 inside a polytope, or more specifically between
two matrices in a component-wise approach, which can be achieved by shifting the
Lipschitz assumption from 𝐴(\ (·)) and 𝐹1 (\ (·)) to \ (·) directly.

Finally, to reconstruct the unknown input 𝑓 (𝑡) while taking into account the
intersample behavior of \, it is possible to build a robust observer [22, 13, 12, 7, 11]
for the discrete-time uncertain LPV system (19) taken with 𝑛 = 1 and 𝑚 = 0.

5 Anticipating the Loss of Unknown Input Observability

In this section, the possible loss of unknown input observability of the system (15)
is anticipated using a sufficient condition of finite-time observability for (19) in
a near future. This sufficient condition is based on upper-bounding, in terms of
spectral norm, the difference between the observability Gramian of (19) and the
observability Gramian of (19) taken without its uncertainties (i.e. with Δ𝑘,𝑛,𝑚 = 0).
These Gramians are denoted 𝑊Δ

𝑘
and 𝑊𝑘 respectively, where \𝑘 still stands for the

last known value of the scheduling parameter. On one hand, 𝑊Δ
𝑘

evaluated between
(𝑘 + 𝑚)𝑇𝑠 and (𝑘 + 𝑛)𝑇𝑠 can be expressed by:

𝑊Δ
𝑘,𝑛,𝑚 =

𝑛−1∑︁
𝑟=𝑚

(
𝑒 (𝑟−𝑚)𝑇𝑠𝐴

∗ (\𝑘 ) + Δ∗
𝑘,𝑟 ,𝑚

)
𝐶
∗
𝑘+𝑟𝐶𝑘+𝑟

(
𝑒 (𝑟−𝑚)𝑇𝑠𝐴(\𝑘 ) + Δ𝑘,𝑟 ,𝑚

)
=

𝑛−1∑︁
𝑟=𝑚

©«
(𝑘+𝑟 )𝑇𝑠∏
(𝑘+𝑚)𝑇𝑠

𝑒𝐴(\ (𝑠) )𝑑𝑠
ª®¬
∗

𝐶
∗
𝑘+𝑟𝐶𝑘+𝑟

©«
(𝑘+𝑟 )𝑇𝑠∏
(𝑘+𝑚)𝑇𝑠

𝑒𝐴(\ (𝑠) )𝑑𝑠
ª®¬

(23)

hence, 𝑊Δ
𝑘,𝑛,𝑚

can only be fully computed if \ (𝑡) is perfectly known for all 𝑡 ∈
[(𝑘 + 𝑚)𝑇𝑠 , (𝑘 + 𝑛)𝑇𝑠], that is to say: in the future, and without sampling. On the
other hand, 𝑊𝑘 evaluated between (𝑘 + 𝑚)𝑇𝑠 and (𝑘 + 𝑛)𝑇𝑠 can be easily computed
using:

𝑊𝑘,𝑛,𝑚 =

𝑛−1∑︁
𝑟=𝑚

𝑒 (𝑟−𝑚)𝑇𝑠𝐴
∗ (\𝑘 )𝐶

∗
𝑘+𝑟𝐶𝑘+𝑟 𝑒

(𝑟−𝑚)𝑇𝑠𝐴(\𝑘 ) (24)
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The augmented system (19) is observable between (𝑘 + 𝑚)𝑇𝑠 and (𝑘 + 𝑛)𝑇𝑠 if
and only if 𝑊Δ

𝑘,𝑛,𝑚
≻ 0 [2]. Moreover, following the ideas of [1], if the error

𝑒𝑘,𝑛,𝑚 =
(𝑊Δ −𝑊)𝑘,𝑛,𝑚

 is upper-bounded by a constant 𝑀𝑘,𝑛,𝑚 ∈ R, then

𝑊𝑘,𝑛,𝑚 − 𝑀𝑘,𝑛,𝑚𝐼𝑛𝑧 ≻ 0 ⇒ 𝑊Δ
𝑘,𝑛,𝑚 ≻ 0 (25)

Hence, 𝑊𝑘,𝑛,𝑚 − 𝑀𝑘,𝑛,𝑚𝐼𝑛𝑧 ≻ 0 is a sufficient condition of unknown input observ-
ability for (15) between (𝑘 +𝑚)𝑇𝑠 and (𝑘 + 𝑛)𝑇𝑠 . The upper-bound 𝑀𝑘,𝑛,𝑚 is easily
deduced from Lemma 4, Lemma 6, and the following inequality [1]:

𝑒𝑘,𝑛,𝑚 ≤
𝑛−1∑︁

𝑟=𝑚+1

©«

(𝑘+𝑟 )𝑇𝑠∏
(𝑘+𝑚)𝑇𝑠

𝑒𝐴(\ (𝑠) )𝑑𝑠

 + 𝑒 (𝑟−𝑚)𝑇𝑠` (𝐴(\𝑘 ) )ª®¬
Δ𝑘,𝑟 ,𝑚

 𝐶𝑘+𝑟

2

(26)
This approach generalizes the upper-bound found in [1], and extends the resulting
structural analysis [1] to unknown input observability of sampled LPV systems.

Following from the previous results, a lower-bound to the number of samples for
which the unknown input is guatanteed to remain observable is given by

𝑚∗ (\𝑘) = max{𝑚 ∈ N : ∃𝑛 > 𝑚,𝑊𝑘,𝑛,𝑚 − 𝑀𝑘,𝑛,𝑚𝐼𝑛𝑧 ≻ 0} (27)

where \𝑘 is still assumed to be the last known value of \.

6 Illustrative Example

The following second order unknown input LPV system is considered

¤𝑥(𝑡) =
[
−10 0
\2 (𝑡) −15

]
𝑥(𝑡) +

[
\1 (𝑡)

0

]
𝑓 (𝑡)

𝑦(𝑡) =
[

4 1
1 5

]
𝑥(𝑡)

(28)

where \ ∈ [0, 60] × [−60, 60] is assumed to be a scheduling vector (with 𝐿𝐴 = 2,
𝐿𝐹1 = 3) sampled at 𝑇𝑠 = 0.03𝑠, and the unknown input is assumed to be constant,
hence 𝑓 (1) (𝑡) = 0. The values of 𝑚∗ (\𝑘) for (28) with 𝑘 = 0 are plotted on Figure 1.
Despite the conservativeness of the bounds used to compute 𝑚∗ (\𝑘), some values of
\ guarantee the observability of the unknown input for at least the next 11 samples.
These results are encouraging since they were computed without consideration for
the structure of the extended system 𝐴(\𝑘), which tends to have a large logarithmic
norm `(𝐴(\𝑘)).



Anticipating the Loss of Unknown Input Observability for Sampled LPV Systems 9

Fig. 1 𝑚∗ (\ ) , a lower-bound to the number of samples for which the unknown input observability
of (28) is guatanteed

7 Conclusion and perspectives

In this paper, given a continuous-time LPV system with a sampled scheduling
parameter and an unknown input, and under a Lipschitz assumption, the sampled-
data unknown input estimation problem has been translated into a discrete-time LPV
robust observer design problem. The bounds that were developed in the process
allowed for an estimation of some near-future observability Gramians, from which a
lower-bound to the number of samples for which the unknown input is guatanteed to
remain observable was exhibited. The obtained results could be further enhanced by
taking into consideration the structure of the extended system 𝐴(\𝑘), in particular by
using Equation (20) in the computation of the Gramian estimation error. Moreover,
the extension of this work to sampled systems with a non-constant sampling period
remains to be investigated.
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