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Abstract: The problem of reducing vibrations during continuous hot-dip galvanizing process is
addressed. Using the finite difference method the concerned part of the steel production line is
modeled by a state space version of the axially moving strip equation which takes into account
disturbances that may affect its efficient functioning. The synthesis of an appropriate control
law for this process aims to reduce the impact of these disturbances and its implementation
requires a definition of the position and the number of the sensor/actuator allowing an optimal
reduction. Some numerical simulation of the steel strip behavior are presented and discussed for
different sources of vibrations with and without a control system.
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1. INTRODUCTION

In order to achieve a low carbon emission steel plant,
digital transformation and industry 4.0 can be the solution
by implementing the digital technologies as making steel
production fully automated to allow a good cummunica-
tion between the plant and its envoronment (the control
unit, sensors, actuators). This will contribute to improve
the product quality, the maintenance practise and reduced
energy consumption. Some analysis report of digital trans-
formation in steel sectors are detailed in Branca et al.
(2020)
In the present article, sensor and actuator placement is
applied to a galvanizing process in the steel industry repre-
sented on the figure 1. In the galvanizing lines, after being
heated and cooled in an annealing furnace, the steel strip is
immersed in a bath of liquid zinc and then dried by means
of nozzles projecting air in order to form a thin and regular
layer of zinc on the surface of the strip. The properties of
the steel depend on the thickness of the coating layer, so its
control is of great interest. However, a set of disturbances
creates vibrations on the strip which breaks uniformity
of distance between the strip surface and the gas wiping
dies and this can considerably degrade the quality of the
coating layer. To limit the impact of these disturbances,
in the literature some approaches are presented, a model-
based control method using a feedforward control of the
transervse strip profil as detailed in Saxinger et al. (2020),
a neural network-based coating weight controller is pre-
sented in (Pan et al., 2018), the simultaneous placement
of sensors and actuators strategy is investigated in this
paper in order to minimize or eliminate disturbances at

wiping zone under constraints of number and location of
components (due to physical or economic limitations) with
the preservation of the controllability and the observability
of the system.

The problem of rejection of disturbances is addressed
in many works, such as Daraji et al. (2018), I. Bruant
(2016), Li et al. (2012) and Potami (2008). In these cited
works, the results have been obtained with the help of
methodologies based on applied mathematics and control
engineering concepts like optimal component placement

Fig. 1. Schematic diagram of the galvanizing process



strategy Westermayer et al. (2009), Pfister. (2012), using
several approaches as gramian-based method Marx et al.
(2004), H2 and H∞ optimization approach Ambrosio et al.
(2012), Munz et al. (2014) also through dynamic output
feedback Argha et al. (2016) on different type of systems,
including large scale systems as treated by Sakha and
Shaker (2017) or Borairi and Soufian (2017).

The present paper is organized as follows. The first step,
detailed in the second section, is to develop a model of
the steel strip in the galvanizing line taking into account
the presence and propagation of vibrations. In the third
section, based on the obtained model, the key problem is
addressed: the search for the optimal placement of the sen-
sors and actuators to respectively efficiently measure the
strip vibrations and to minimize the vibrations magnitude
by an appropriate control law. Finally, before concluding,
the obtained numerical results are exposed and discussed
in the fourth section.

2. STRIP MODELING

The studied case is an axially moving strip supported
with touch and stabilizing rolls representing the boundary
conditions of the partial differential equation. The strip
under tension Nx, traveling at a velocity of v of length
L, is excited by a force F (ζ, w) from the wiping system
and cooling boxes. The latter are considered as sources
of vibration of the steel strip in addition to the rolls.
Applying the Hamilton principle, the governing equation
of the axially moving strip is derived as:
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where D, z(ζ, t), ζ, h, ρ, c are flexural rigidity, transver-
sal displacement, vertical position thickness of the strip,
volumic mass and damping coefficient.

2.1 Numerical solution

The numerical solution of this type of equation can be
obtained by transforming a partial difference equation into
an ordinary difference equation by discretizing the spatial
variables ζ by the finite difference method. The derivatives
of the equation are approximated by differential quotients
based on the Taylor series expansions. The equation (1)
becomes of the following form:

z̈i =a1zi+2 + a2zi+1 + a3zi + a4zi−1 + a5zi−2
a6żi+1 + a7żi + a8żi−1 + a9fact + a10fdist

(2)

where the index i denotes the number of the discretization
point on the vertical axis. The equations (2) of the system
can be written as:{

ẋ(t) = Ax(t) +Buu(t) +Bww(t)
y(t) = Cx(t)

(3)

with x =

(
z
ż

)
, z ∈ Rn, u ∈ Rp , w = [w1, w2, ...] ∈ Rnw ,

A,Bu, Bw, C are the state, the input, the disturbance and
the output matrices.

For the boundary conditions, the top and the bottom edges
are determined by z(ζ, t), where the followings Dirichlet’s
conditions are used:

• the bottom of the strip is: z(0, t) = w1(t),
• the top of the strip is: z(L, t) = w2(t).

3. SENSOR/ACTUATOR POSITIONING STRATEGY
FOR PERTURBATION EFFECT REDUCTION

As stated in the preamble, the objective assigned to this
study is the reduction of the disturbance influence on the
galvanizing process. The disturbances here result from the
steel strip vibrations. Knowing that the system has already
been designed to mechanically reduce the impact of these
vibrations on its functioning, it remains to design a control
law also capable of contributing to this reduction. The
problem involves several aspects to be taken into account
simultaneously related on the one hand to the sensors
and actuators to be used and on the other hand to the
control law itself. Concerning the sensors and actuators,
two aspects come into consideration: their hardware design
and their positioning on the system, this second point
being the one considered here.

It is thus a question of finding the location of the sensor(s)
allowing an optimal estimation of the disturbance affecting
the system, the optimality remaining to be defined. For the
actuator(s), it is a question of determining their location
in order to optimally reduce the effect of the disturbance,
the optimality also remaining to be defined. The choice
of the directions of influence of the sensors and actuators
are defined in a first synthesis sequence, the structure and
parameters of the control law are then to be defined.

Hardware and software constraints could be added to
this design. Indeed, for obvious cost reasons, the number
of sensors and actuators may be limited. In addition,
technical constraints could prohibit the positioning of
sensors and actuators in particular locations. As far as
the software aspect is concerned, for reasons of computing
capacity and time response, one can also imagine that the
structure of the control law is constrained. In what follows,
for the sake of clarity, these constraints will not be taken
into account.

With regard to the possible positioning of sensors and
actuators, two sets of positions are defined :

Ea = {ζa,1, ζa,2, . . . , ζa,P }
Es = {ζs,1, ζs,2, . . . , ζs,Q} (4)

The set P(Ea), of dimension 2P , of the parts of Ea allows
to consider all the actuator positioning situations and
consequently allows to define the set of control matrices Bu

associated to it. The same comment can be made about the
set of positions Es and the related matrices C. The result is
2P+Q actuator and sensor placement possibilities. From a
practical point of view, the physical constraints prohibiting
some sensor/actuator positions may limit the cardinal of
these sets. Moreover, in order to limit the computational
burden especially in the case of large scale systems, integer
optimization tools such as branch and bounds methods
may be used. In the following, and this does not prejudice
the essence of the proposed method, we limit ourselves to



choosing a sensor among the P and an actuator among
the Q, which restricts to P ×Q placement possibilities.

The problem to be solved is therefore the following: which
is (are) the best r-subset(s) of a given set of q sensors and
p actuators, where r ≤ n ? Beforehand, it is necessary to
define what is meant by best and this in relation to the
quantification of the perturbation influence reduction.

The dynamic system under consideration is equipped with
a u control and subjected to a w perturbation which act
respectively on the system through two matrices Bu and
Bw :

ẋ(t) = Ax(t) + [b1 b2 . . . bP ]︸ ︷︷ ︸
Bu

u(t) +Bww(t)

y(t) = [c1 c2 . . . cQ 0 . . . 0]
T︸ ︷︷ ︸

C

x(t), y ∈ Rm (5)

The expression (5) involves two parameters (p, q) which
define where the command u and the sensors y respectively
intervene. This formulation thus takes into account the
possibility for the command to act on the dynamics of the
system in different positions Bu(p) = bp, p = 1, .., P . In the
same way the parameter q indicates the possible choices
of sensors defining the measured outputs of the system
C(q) = cq, q = 1, .., Q.

The two parameters p and q are directly related to ac-
tuator and sensor positioning. In the following these two
parameters must be optimally chosen.

Remark 1. A more general situation could take into ac-
count the possibility that the disturbance could impact
the system dynamics in different ways through different
directions E(r), with r playing a role analogous to p and
q. This is particularly the case in the rapid cooling section
before the zinc bath, where the strip is cooled and excited
by high-speed gas jets. This cooling is necessary, but the
position in the space of the cooling box is not unique and
therefore the impact of its position could be taken into
account (to see more Renard, M. and Beaujard, K. (2009)).

We are now interested in active vibration control. The aim
is to minimize the effect of the w disturbance by optimally
positioning the sensor (parameter p) and the actuator of
the system (parameter q).

Remark 2. In Potami (2008), the author proposes to
simplify the problem because of the computational cost
by adopting an assumption of collocation of the sen-
sor/actuator couple, by imposing p = q. Here, for the
presentation of our method, we propose to keep the general
case and thus to relax this hypothesis.

3.1 Observed state feedback control law

In the present paper the system is controlled by an
observed state feedback control law. The applied control
law is thus defined by:

u(t) = −Kx̂(t) (6)

where the observed state denoted x̂ is provided by a
Luenberger observer described by:

˙̂x(t) = (A− LC(q))x̂(t) +Bu(p)u(t) + Ly(t) (7)

where x̃(t) = x(t)− x̂(t) and p denotes the location of the
actuator providing the control. The two gains K and L are
to be determined.
In its augmented form, the system (7) can also be written:{

ẋa(t) = Aa(p, q)xa(t) +Ba w(t)
y(t) = Caxa(t) + ν(t)

(8)

with xa(t) =

(
x(t)
x̃(t)

)
, Ba =

[
Bw

Bw

]
, Ca = [C 0 ], C select

all displacements states z, ν(t) measurement noise and

Aa(p, q) =

(
A−Bu(p)K(p) Bu(p)K(p)

0 A− L(q)C(q)

)
The Kalman filter gain L is given by:

L(q) = XlC
T (q)V −1 (9)

where Xl is the solution of the following Riccati equation:

AXl +XlA
T −XlC

T (q)R−1C(q)Xl +Qw = 0 (10)

where Qw = BwWBT
w is related to the disturbance

distribution and where W , V are the spectral densities
of w(t), ν(t) respectively. The feedback gain K is given
by:

K(p) = M−1BT
u (p)Xk (11)

where Xk is the solution of the following Riccati equation:

ATXk +XkA−XkBu(p)M−1BT
u (p)Xk + S = 0 (12)

with a quadratic cost function defined as:

Φ =

∫ ∞
0

(
‖ x(t) ‖2S + ‖ u(t) ‖2M

)
dt (13)

where ‖ x(t) ‖2S is defined by: ‖ x(t) ‖2S= x(t)TSx(t) and
the same for ‖u(t)‖2M .

3.2 Observer and controller synthesis

The expression (7) describes the dynamics of the aug-
mented state. Since the objective of the control is to
reduce the influence of the w disturbance on the state of
the system, its state matrix Aa(p, q) must be adequately
structured. If the choice of the positions p and q is made,
then the gains K and L of the controller and the observer
should be adjusted. For each value of p and q, the control
efficiency must be quantified. Several performance indexes
may be used as the H2 or H∞-norms of the closed-loop
system. The chosen optimality criterion here is the H2-
gain as discussed bellow.

3.3 Optimal positioning of the sensor/actuator pair

Remember that the purpose of the control associated with
the placement of the sensor/actuator pair is to reduce
the influence of the disturbance on the state (or part of
the state) of the system. With (7), the transfer function
reflecting this influence is :

Txaw(p, q, s) = (sI −Aa(p, q))−1Ba (14)

and the values of p and q (related to the choice of the
sensor/actuator pair) jointly influence the dynamics and
the gain of this transfer function. An adequate setting
of p and q should therefore satisfy two constraints: (i)
a ”fast” dynamic and (ii) a ”low” static gain ; in the
following, the second constraint will be preferred. The
parameterization of the gain Txaw(p, q, s) as a function
of p and q thus explains the role of the sensor/actuator



pair on the reduction of the impact of the disturbance. In
view of (14), an analytical expression of the gain Txaw(p, q)
is complex to explain as a function of p and q. For this
reason, the search for the sensor/actuator pair is based on
a numerical procedure. For that, one can initially calculate
the H2-norm of the transfer Txaw(p, q, s):

‖ Txaw(p, q) ‖22= trace
(
BT

a X̃(p, q)Ba

)
(15)

where X̃(p, q) is the solution of the following Lyapunov
equation:

Aa(p, q)T X̃(p, q) + X̃(p, q)Aa(p, q) + CT
a Ca = 0 (16)

The use of the expression (7) then proceeds by a numerical
evaluation of the norm ‖ Txaw(p, q) ‖22 as a function of p
and q. As previously indicated, if the analysis is limited
to a sensor among P and an actuator among Q, there are
thus P × Q configurations to be tested, the one qualified
as optimal corresponds to the minimum of the norm with
respect to p and q:

{p̂, q̂} = argminp,q ‖ Txaw(p, q) ‖22 (17)

Algorithm (1) summarizes the different steps of the pro-
posed approach for the synthesis of the optimal control
allowing an attenuation of the effect of disturbances. The
optimal control synthesis encompasses the optimal place-
ment of a sensor/actuator couple.

Algorithm 1 Sensor/actuator positioning

for q =1 to Q do
for p= 1 to P do

Compute gains K and L from (9)-(13)
Update a system (8)

Solve (16) in respect to X̃(p, q)
Compute the norm ‖ Txaw(p, q) ‖22 (15)

end for
end for

Using ‖ Txaw(p, q) ‖22 solve (17) to obtain the optimal
positionning p̂, q̂

Remark 3. Partial attenuation of the effects of the distur-
bance.
With the previous formulation (8), the influence of the
perturbation is taken into account on all the components of
the augmented state vector. The user may prefer to focus
this influence on certain components of this state za. It is
then sufficient to define the vector za(t) = Cza xa(t) as the
output of the system (8) where Cza selects the components
za of the state xa on which one wishes to pay attention
in terms of influence of the perturbation w. In this case,
the matrix Tzaw(p, q) is then substituted to the matrix
Txaw(p, q) and its norm can then be analyzed as previously
according to the values of p and q.

Remark 4. Reduction of the calculation load: collocation
constraint.
Despite the proposed limitation of placing only one sensor
among P and only one actuator among Q, the number of
candidate positions is P ×Q. A collocation technique can
be considered as envisaged in the remark (2). It seems more
relevant to adopt a matching or preference technique based
on the a priori definition of sensor/actuator pairs that
are eligible for technical or financial reasons for example.
The table 1 gives an example of matching between 5

sensors ci, i = 1, . . . , 5 and 3 actuators ai, i = 1, . . . , 3.
As examples, the actuator a1 can only be used with
the sensors c1 or c4, no actuator can be used with the
sensor c2. Given these a priori pairings, the number of
sensor/actuator pairs to be tested is limited.

Table 1. Sensor/actuator pairings

c1 c2 c3 c4 c5
a1 × . . × .
a2 . . × × .
a3 × . . × ×

4. NUMERICAL RESULTS AND DISCUSSION

In this section, some results are presented. The presented
case study is split in three steps. In order to be maximally
robust to the disturbances, the first step consists in de-
termining the worst disturbance source on the strip. The
second step consists in applying the proposed algorithm
for sensor and actuator location. The third step is the
comparison of the system responses with and without the
considered observed state feedback control.

The first step consists to find the worst distribution of
disturbances which maximally influences the propagation
of vibrations on a steel strip. For u = 0, equation (3)
becomes : {

ẋ(t) = Ax(t) +Bww(t)
y(t) = Cx(t)

(18)

The idea is to find the value of the matrix Bw(pw) that
maximizes the effect of w(t), which leads to find the
spatial component that amplifies the effect of vibrations
quantified by its 2-norm:

{ζ̂w} = argmax ‖ Txw(ζw) ‖22 (19)

The 2-norm is evaluated by the following expression :

‖ Txw(ζw) ‖22= trace
(
CXw(ζw)CT

)
(20)

where Xw(ζw) is the solution of the Lyapunov equation :

AXw(ζw) +Xw(ζw)AT +Bw(ζw)BT
w(ζw) = 0 (21)

For a strip of length L = 40m, the two rolls have more
impact on the propagation of vibrations (the values are
normalized ‖ Txw(ζ)bottom ‖22= 1, ‖ Txw(ζ)top ‖22= 0.99).

On the figure 2 are shown the variation of the 2-norm
depending on the location ζ on the strip without the
boundary conditions.

Fig. 2. Values of the normalized 2-norm depending on the
placement of disturbances.



Remark 5. Since the top and bottom roll vibration are the
most impacting on the steel strip (see 2), only these cases
will be studied. The middle of the band represents the
third worst possible location for disturbance.

The second step consists to find the optimal placement
of actuators and sensors on a strip to design the optimal
observer-based controller.

On the figure 3 are gathered some values of the 2-norm
according to the locations of the actuators and sensors.
These values are normalized by the maximal obtained
value. Many locations are possible since n = 113 but
for the sake of clarity the figure 3 only displays some
representative curves among the 113 possible ones. Each
curve represents, for a given placement of a sensor, the
variation of the 2-norm depending on the location of the
actuators.
The steel strip is excited by vibrations of the rolls with
real disturbances values of a galvanizing line.

• Case A : Only the bottom roll are excited (first
column of Bw).
• Case B : The top and the bottom rolls are excited

(first and second column of Bw).

The optimal placement obtained for a single sensor and
a single actuator in case A and B is at {popt, qopt} =
{1, 1} and for 2 actuators and 2 sensors in case A and
B is at {popt, qopt}A = {{1, 2}, {1, 2}}, {popt, qopt}B =
{{1, 113}, {1, 113}} respectively.

(a) Case A.

(b) Case B.

Fig. 3. Values of normalized 2-norm of the system accord-
ing to the placement of the sensors and actuators.

In the third step, the behavior of the strip is compared in
three different cases: in the open loop case only affected
by disturbances and in two closed loop settings with one

or two actuator(s) and sensor(s) in the wiping zone. For
the system with 1 actuator and 1 sensor, as previously
mentioned the optimal location is {popt, qopt} = {1, 1}. In
the closed loop setting with 2 actuators and 2 sensors, the
optimal location is {popt, qopt}A and {popt, qopt}B .

Remark 6. As it can be seen on the figure 4, the control
based on the proposed optimal sensor and actuator loca-
tion efficiently reduces the steel strip vibrations caused by
the bottom (and top) roll(s) in both cases.

(a) Case A.

(b) Case B.

Fig. 4. Comparison of the system responses with and
without active vibration control (top: without control,
middle: controlled with 1 sensor and 1 actuator,
bottom: controlled with 2 sensors and 2 actuators.

5. CONCLUSION AND PERSPECTIVE

The aim of this paper is to jointly handle with the
placement of sensors and actuators as well as the synthesis
of a feedback control for the reduction of disturbances.
The proposed approach analyzes the influence of the
position of the sensor / actuator on the estimation of
the disturbance and to reduce its impact on the state
of the system. The first numerical results obtained after
simulation of the vibratory state of a galvanizing process
give realistic positions of the sensor / actuator couple.
The continuation of this work covers different directions
with the priority of using a two-dimensional model of the
galvanizing process and the establishment of numerical
results at the placement of several sensors and actuators.
In the short term, tests on a pilot site in the ongoing
instrumentation phase will be carried out for the purpose
of validating the proposed approach.
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