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Control engineers must constantly cope with new technological challenges to increase system
performance and reliability as well as users’ safety. Model-based automatic control is often employed
to meet these objectives and then one must use mathematical models to describe the system
behaviours. On the one hand these models must accurately represent the real system behaviours and
on the other hand they must be practically tractable. Usually, the mathematical model complexity
increases with the complexity of the physical phenomena to be captured, naturally reducing its ease
of use. As a result, a trade-off between precision and simplicity must be made. Several models with
different mathematical structures are proposed to cope with the modelling of complex systems.
Among these models, polytopic models (PMs), also known as linear parameter varying (LPV)
[1], multiple model [2] or Takagi-Sugeno (TS) [3] models, are able to accurately describe these
behaviours in a large operating range with an appropriate mathematical structure for automatic
control purposes (modelling, stability analysis, state estimation, control).

Roughly speaking the PM approach can be viewed as a smooth interpolation, using appropriate
weighting functions, between a set of linear time invariant (LTI) models. In the PM framework,
the mathematical system modelling is carried out through a decomposition of the system operating
space into several operating areas and the nonlinear system behaviour into each operating area
is then modelled thanks to a linear submodel as described in [4, 5, 6, 7, 8, 9] and for a recent
review in [10, 11]. Even if it is not the most efficient way to obtain a PM, an intuitive vision of
the PM approach is to imagine that the LTI models could be obtained by linearizing the nonlinear
system at given points, and the interpolation would be made according to the distances from the
operating point to these linearization points. The aggregation of these submodels with the help of
the weighting functions generates the PM representation of the considered system and consequently
a single nonlinear model is replaced by a set of linear submodels with an interpolation mechanism.
By appropriately choosing the number of submodels and the weighting functions, a large class of
nonlinear models can be represented with the PM structure. Therefore the PM approach offers also
a generic way allowing us to capture the nonlinear system behaviour in a large operating range as
shown later in the present paper.

The polytopic modelling problem can be summarized as how the operating space can be de-
composed and how the linear submodels can be obtained? Answers to these questions are provided
in a black-box modelling approach from experimental input/output data system using appropriate
identification techniques [9, 3, 12, 13] or in a white-box modelling approach from the nonlinear
equations describing the system phenomena [14, 15, 16] as presented in this paper. Since the in-
terpolation between submodels is time-varying, the whole polytopic model is a nonlinear model
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with a particular structure reducing the complexity analysis. In fact, the interpolated submodels
being linear and the weighting functions satisfying the so-called convex sum properties, some well-
known and efficient tools inspired of the linear system theory can be extended to nonlinear systems
represented by PMs without a specific analysis of nonlinearities.

The polytopic modelling is the backbone of all concepts presented in this chapter beginning by
the stability analysis. Indeed, stability conditions for PMs are a generalization of linear system
stability conditions. As shown in the next sections, stability conditions for PMs under a Linear
Matrix Inequality (LMI) formulation can be obtained using the Lyapunov theory [17, 18, 19, 20,
21, 22, 23]. These stability conditions are useful and constitute the starting point to controller
design [18, 24, 25] and observer synthesis [6, 26, 27, 28, 29, 30] for nonlinear systems represented by
a PM. The state feedback controller design problem is addressed by providing stability conditions
of the closed-loop system under a LMI form. When the state variables of the system are not
measurable, observer-based state estimation is often needed and therefore, some observer designs
are also presented in this chapter, for instance when unknown inputs, such as actuator faults, act
on the system. Pole clustering under LMI conditions allowing dynamic performance as well as
disturbance attenuation conditions are also presented. Finally, state feedback and state observer
designs are combined in a single architecture to obtain an active Fault Tolerant Control (FTC) to
preserve the closed-loop stability and performances of the system, even if some faults affect the
system components, for instance: sensors, actuators or internal components.

According to the foregoing, the purpose of this chapter is to provide a short overview on the use
of the PM approach to cope with the modelling, stability analysis, state feedback, state observer and
fault tolerant control of nonlinear systems. Indeed, polytopic models offer interesting mathematical
as well as practical properties:

1. A large class of nonlinear dynamic systems with bounded nonlinearities, at least on a compact
set of the state space, can be exactly written as a PM in a large operating range.

2. The specific analysis of nonlinearities of the investigated system is avoided thanks to the
mathematical structure of the PMs where the submodels are linear and the nonlinearities are
rejected in the weighting functions ensuring convex sum properties.

3. The use of PMs is interesting to extend tools developed in the linear framework to investi-
gate stability / performance analysis and controller / observer design for nonlinear systems
represented by PM.

4. The PM approach offers a large operating range of validity particularity needed in the FTC
framework since the fault incidence may deviate the system from its nominal operating point.

Due to these appealing properties of the PM approach, it is used in many engineering fields.
One may cite the automotive applications, such as constraints control in [31] or the vehicle lateral
dynamics estimation in experimental conditions [32]. The PM approach is successfully employed in
[33] and [25] to show a modelling application of a waste-water treatment plant or in wind turbine
estimation and control [34, 35]. In [36] the PM approach is also used to modelling a flexible one-link
robot.

The outline of this chapter is illustrated in figure 1. The first section, dedicated to the polytopic
modelling, is the starting point of all the further developments. Based on this mathematical form,
the stability analysis of PMs is addressed in the second section. Some sufficient stability conditions
are given in the LMI formalism and illustrated. Thanks to these stability conditions, robust state
feedback control design and state and unknown input observer design are respectively detailed in
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the third and fourth section. All these materials are steps to propose, in the fifth section, a FTC
strategy. This FTC design is applied in simulation to cope with the lateral stabilization of a vehicle.

Figure 1: Scope of the chapter.

1 Polytopic model based modelling

Nonlinear models describing real systems may be obtained from the physical laws, such as energy
conservation, chemical kinetics, or from measured data-based identification. In the first case, using a
white-box approach, the obtained model is often nonlinear and too complex to be used in controller
or observer designs. In the second case, using a black-box approach, nonlinear system identification
is still a challenging problem [11, 10, 7].

Roughly speaking, the polytopic model approach consists in replacing this single complex non-
linear model by a time-varying convex interpolation of a set of linear submodels. By appropriately
choosing the number of submodels and the weighting functions, a large class of nonlinear models
can be represented by a PM with a given prescribed precision. Therefore the PMs are known to
be universal approximators [37, 38, 2, 4, 13, 5, 6, 8, 9] and this mathematical representation offers
an interesting way to avoid the specific analysis of the nonlinearities of the model thanks to the
specific PM properties. In this way the PM approach reduces the complexity analysis and makes
it more practical for engineers.

Polytopic models can be obtained from identification procedure (black-box modelling) or from
transformations of a nonlinear model (white-box modelling). When input and output data of the
system are available, black-box modelling is well adapted and specific numerical optimization tech-
niques for PM identification are proposed [12, 13, 9] to cope with the estimation of the submodels
as well as weighting function parameters based on the optimization of a cost criterion. When a
mathematical nonlinear model of the system is available, a white-box modelling procedure to ob-
tain a PM can be followed. A simple way to obtain a PM form is based on multiple linearizations
using Taylor expansion of the nonlinear model around different operating points and consequently
the obtained PM is an approximation of the nonlinear model. Moreover, if the nonlinearities of
the model are bounded at least in a compact set, it is possible to rewrite a nonlinear model into a
PM form [33, 33, 15]. In this way, the obtained PM is an exact rewriting of the nonlinear model,
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meaning that the state trajectories of both models are equal. In this section, this last approach is
presented.

1.1 Polytopic model structure

Nonlinear dynamic deterministic systems can be represented using different forms of PMs as sum-
marized in [26, 9], among them, the polytopic model structure employed here is [3]

ẋ(t) =
r∑
i=1

µi(ξ(t)){Ai x(t) +Bi u(t)}, (1a)

y(t) =
r∑
i=1

µi(ξ(t))Ci x(t), (1b)

where x ∈ Rn is the state common to all submodels, u ∈ Rnu the control input, y ∈ Rny the output
and µi(.) are the weighting functions depending on the premise variable ξ(t) ∈ Rnξ .

The relative contribution of the r submodels is quantified by the weighting functions µi(.) which
satisfy the convex sum constraints

0 ≤ µi(ξ) ≤ 1, ∀i = 1 . . . r and

r∑
i=1

µi(ξ) = 1. (2)

Defining the PM (1) with the weighting functions satisfying (2), the contribution of several submod-
els can be simultaneously taken into account with different weights over the range 0 to 1. Take note
that the so-called premise variable ξ(t) is used in order to take into account the current operating
point of the system. It is here assumed that ξ(t) is known and real-time accessible, currently the
inputs and/or measured state variables are employed as premise variables.

Polytopic models are employed since several years to cope with the modelling problem of systems
subject to a finite number of operating modes. The main idea is to describe each mode with the
help of a linear submodel and then interpolate these submodels using the weighting functions
µi. Very similar mathematical forms of the PM structure (1) can be found in the literature and
several designations have been used, according to the theoretical modelling context and the given
interpretation of these weighting functions. For instance, in the context of hybrid systems with finite
operation models different approaches are investigated in the literature, such as Piecewise affine
(PWA) or switched systems [39, 40, 41, 42], Markovian jump linear systems (MJLSs) [43], Multiple
model (MM) [18, 6, 26, 28, 29, 30]. For PWA systems the weighting functions µi take their values
in the pair {0, 1}, then only one submodel is taken into account at every time instant. For MJLSs
the weighting functions µi represent transition probabilities given by a homogeneous Markov chain
on a finite state space as presented in [43]. Polytopic models can also be built using the concept
of the fuzzy sets theory and the weighting functions µi are fuzzy rules or membership functions
employed as an inferred mechanism [3, 44]. Description of uncertain systems using the convex
polytopic uncertainty can be also accomplished with the help of this mathematical structure [45].
The same mathematical representation is also employed in the quasi-Linear Parameter Varying
(q-LPV) systems theory to model some parameter variations thanks to the weighting functions
[46, 1].

1.2 How to get a polytopic model using nonlinear sector transformation?

The nonlinear sector transformation (NST) presented here, also known as the convex polytopic
transformation, is certainly not an approximation of the original nonlinear system but is an equiv-
alent, and thus exact, rewriting of the original nonlinear model [15, 16, 33].
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For the sake of clarity, the way to obtain a PM is illustrated with the help of a continuous-time
scalar nonlinear model:

ẋ(t) = f(x(t), u(t))x(t) + g(x(t), u(t))u(t). (3)

The following modelling assumption is the backbone of the sector transformation:

Assumption 1 The functions f and g are bounded, i.e.

f ≤ f(x, u) ≤ f, g ≤ g(x, u) ≤ g, ∀x, ∀u (4)

for given distinct real numbers f , f , g and g.

This assumption is always satisfied at least on a compact set of x and u for continuous derivable
functions f and g. If (4) does not hold outside of the chosen compact set of x and u, the validity of
the PM is not guaranteed anymore and the state trajectories of the nonlinear model and the PM
are not the same. Under the assumption 1, the functions f and g in (3) can be written as

f(x, u) = µ11(x, u)f + µ12(x, u)f, (5a)

g(x, u) = µ21(x, u)g + µ22(x, u)g, (5b)

where the weighting functions µij(x, u) are

µ11(x, u) =
f − f(x, u)

f − f
, µ12(x, u) =

f(x, u)− f
f − f

, (6a)

µ21(x, u) =
g − g(x, u)

g − g
, µ22(x, u) =

g(x, u)− g
g − g

(6b)

and satisfy the convex sum properties

µi1(x, u) + µi2(x, u) = 1, 0 ≤ µij(x, u) ≤ 1, i, j = 1, 2. (7)

Consequently, the continuous-time scalar nonlinear model (3) can be written as

ẋ(t) =
2∑
i=1

µ1i(x, u)aix(t) +
2∑
j=1

µ2j(x, u)bju(t) (8)

with a1 = f , a2 = f , b1 = g and b2 = g. In order to have the same weighting functions in (8), the
first (resp. second) sum of (8) can be multiplied by µ21 +µ22 = 1 (resp. µ11 +µ12 = 1) and thanks
to the convex sum properties (7), the PM form (8) becomes

ẋ(t) =

4∑
i=1

µi(x, u){Aix(t) +Biu(t)} (9)

that is clearly the same form than (1a), with the weighting functions µi(x, u)

µ1(x, u) = µ11(x, u)µ21(x, u), (10a)

µ2(x, u) = µ11(x, u)µ22(x, u), (10b)

µ3(x, u) = µ12(x, u)µ21(x, u), (10c)

µ4(x, u) = µ12(x, u)µ22(x, u) (10d)
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satisfying the convex sum properties (2) and with the submodel matrices defined by A1 = A2 = f ,

A3 = A4 = f , B1 = B3 = g and B2 = B4 = g. The extension of this approach to vector differential
equations with more than two nonlinearities is straightforward and can be found in [16].

It is important to mention that, if the nonlinearities of the functions f and g are not globally
bounded on the state and input space, the polytopic model (9) only provides the exact response of
the nonlinear system (3) in the chosen compact set defined by (4) which often introduces bounds of x
and u. The state bound estimation for nonlinear systems according to the applied input u(t) remains
a difficult task because jointly depends on the control input, its dynamic and those of the system.
There are however some tractable approaches allowing one to enclose the reachable set of the
system states. In [47], the authors propose a µ-formulation which consists in transforming the state
bounds estimation problem to a singularity problem. In [48] the problem is solved by computing
an over-approximation of reachable sets. In [49], the proposed method uses additional physical
information to improve enclosures with a minor additional cost. Outside this compact, the validity
of the PM is not guaranteed which constitutes the main limit of the presented modelling technique.
Fortunately, in most real applications, the states are bounded, implying bounded nonlinearities and
the assumption 1 is then verified.

1.3 A modelling example

The polytopic modelling procedure is illustrated on a bioreactor model borrowed from [50]. The
bioreactor consists of a microbial culture where a single biomass X grows on a single substrate P ,
where the maintenance and decay processes are neglected. The process is described by the following
nonlinear differential equations:

Ṡ(t) = D(t)(Sin(t)− S(t))− kλ S(t)

K + S(t)
X(t), (11a)

Ẋ(t) = −D(t)X(t) + λ
S(t)

K + S(t)
X(t) (11b)

where D(t) is the known dilution rate, Sin(t) is the input substrate concentration and where the
kinetic rate is given by a Monod’s law parametrized by the maximum specific growth rate λ and the
saturation constant K. It is here assumed that the dilution rate is bounded by D(t) ∈ [Dmin Dmax].

In order to turn the system (11) into a PM form using the NST, it is first rewritten as:[
Ṡ(t)

Ẋ(t)

]
=

[
−f(D(t)) −kλg(S(t))

0 λg(S(t))− f(D(t))

] [
S(t)
X(t)

]
+

[
f(D(t))

0

]
Sin(t), (12)

where the bounded system nonlinearities are defined by

f(D(t)) = D(t), (13a)

g(S(t)) =
S(t)

K + S(t)
(13b)

The dilution rate is bounded, then obviously so is f(D(t)) = D(t). Moreover the substrate con-
centration S(t) is a positive growth and so is the constant K, consequently the Monod’s law
g(S(t)) ∈ [0 1]. Thus, the modelling assumption 1 of bounded nonlinearities is satisfied

a1 ≤ f(D(t)) ≤ a2, b1 ≤ g(S(t)) ≤ b2 (14)
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with a1 = Dmin, a2 = Dmax, b1 = 0 and b2 = 1 and the NST method can be applied. It is interesting
to mention that, in this example, the nonlinearities f and g are globally bounded. Consequently,
the PM formulation of the nonlinear model is valid on the whole state and input spaces.

According to the foregoing, f(D(t)) and g(S(t)) can be expressed according to (5) using the
functions µij defined by (6) and the nonlinear model (11) can be rewritten as[

Ṡ(t)

Ẋ(t)

]
=

[
−
∑2

i=1 µ1i(D(t))ai −kλ
∑2

j=1 µ2j(S(t))bj
0 λ

∑2
j=1 µ2j(S(t))bj −

∑2
i=1 µ1i(D(t))ai

] [
S(t)
X(t)

]
+

[∑2
i=1 µ1i(D(t))ai

0

]
Sin(t). (15)

In (15), some terms depend on the weighting functions µ1i while others depend on the functions
µ2j . In order to have the PM form, a single summation using the same weighting functions should
be obtained with the help of the convex sum property

∑2
i=1 µji = 1 for j = 1, 2 as follows[

Ṡ(t)

Ẋ(t)

]
=

2∑
j=1

µ2j(S(t))
2∑
i=1

µ1i(D(t))

{[
−ai −kλbj

0 λbj − ai

] [
S(t)
X(t)

]
+

[
ai
0

]
Sin(t)

}
. (16)

Finally, the nonlinear model (16) is rewritten into a polytopic model form (1) by considering the
following weighting functions

µ1(D(t), S(t)) = µ11(D(t))µ21(S(t)), (17a)

µ2(D(t), S(t)) = µ11(D(t))µ22(S(t)), (17b)

µ3(D(t), S(t)) = µ12(D(t))µ21(S(t)), (17c)

µ4(D(t), S(t)) = µ12(D(t))µ22(S(t)) (17d)

and the following submodel matrices

A1 =

[
−a1 −kλb1

0 λb1 − a1

]
A2 =

[
−a1 −kλb2

0 λb2 − a1

]
B1 =

[
a1
0

]
(18a)

A3 =

[
−a2 −kλb1

0 λb1 − a2

]
A4 =

[
−a2 −kλb2

0 λb2 − a2

]
B3 =

[
a2
0

]
(18b)

with B2 = B1, B4 = B3.
The simulations of the original nonlinear model (11) as well as the obtained PM are shown in

figure 2. The parameter values are the following: k = 3, λ = 0.12, K = 0.8, Dmin = 0.3 and
Dmax = 0.45. It can be seen that, under the considered assumptions, the state trajectories of the
PM and of the nonlinear model are exactly the same, since the PM obtained using the NST is a
rewriting of the nonlinear model and not an approximation. This simple example clearly shows
that the NST is an appropriate mathematical tool to transform a nonlinear model into a PM form
in a compact sector.

1.4 Partial conclusion and discussion

Some general remarks can be stated about the polytopic modelling approach. The PM obtained by
the NST does not cause any loss of information from the original model in the considered compact
set. All the above presented results can be extended in a straightforward way to cope with the
discrete-time case. In both cases, the number r of submodels will increase with the number q
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Figure 2: The bioreactor input Sin(t) (top left) and the weighting functions µi(D(t), S(t)), for
i = 1, . . . , 4 (top right). The nonlinear functions f(D(t)) (middle left) and g(S(t)) (middle right).
Time evolutions of S(t) (bottom left) and X(t) (bottom right) obtained by simulating the original
nonlinear model (blue line) and the PM (dashed red lines).

of nonlinearities considered following the polynomial rule r = 2q. A large number of submodels
increases the numerical burden of the stability conditions given in the next section.

Using the NST, the premise variables ξ(t) in the weighting functions µi(ξ(t)) depend on the
same variables as the nonlinearities. Consequently, the premise variable ξ(t) can be either real-
time measured (for example u or y) or unmeasured variables (for instance x). In the previously
considered example, the premise variable ξ(t) was assumed to be real-time measurable. Of course,
observer / controller design will be more difficult when ξ(t) is an unmeasured variable and solutions
to cope with this problem are proposed in [28, 29, 30, 33, 25].

Notice that other polytopic model structures can also be employed, such as the so-called de-
coupled or heterogeneous approach where the PM is obtained by blending the outputs of a set of
LTI models [4, 6, 9], but these approaches are out of the scope of the present paper. Finally, the
PM order reduction can be performed using a descriptor approach as proposed by [51], in order to
decrease the dimension of the state vector and design a controller of reasonable order for a complex
process.

2 Polytopic model stability

Analyzing the stability of nonlinear models is an important topic to design control laws, state ob-
servers, etc. However, even if several results are proposed in the literature, a systematic approach
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to cope with this problem is not available because a specific analysis of the nonlinearities is of-
ten unavoidable [52]. Thanks to the PM approach, the stability analysis can be envisaged in a
systematic way.

As previously mentioned, a PM provides an exact representation of a nonlinear model in an
operating range. Consequently, the PM is nonlinear and stability criteria established for linear
systems, such as eigenvalue location, can no longer be applied. Furthermore, the stability of the
linear submodels is not a sufficient condition for the stability of the PM. Indeed, the PM state
trajectory depends on the weighting functions: the values of the weighting functions can cause
instability even if all the submodels are stable.

In order to illustrate this interesting stability result, an autonomous polytopic model with two
submodels is considered

ẋ(t) =
2∑
i=1

µi(ξ(t))Aix(t), x(0) 6= 0, (19)

where the numerical values of matrices Ai ∈ R2×2 are inspired of [39, 40]

A1 =

[
−1 10
−100 −1

]
and A2 =

[
−1 10
−10 −1

]
. (20)

It is interesting to remark that the two considered submodels defined by A1 and A2 are stable since
their eigenvalues are respectively −1 ±

√
1000i and −1 ± 10i. One should note that in [39, 40]

switched systems are considered and then only one submodel is taken into account at each instant-
time. In the present example however the two submodels can be considered at each instant-time
according to the weighting functions µi(ξ(t))

µi(ξ(t)) = ωi(ξ(t))/

2∑
j=1

ωj(ξ(t)), i = 1, 2, (21a)

ωi(ξ(t)) = exp
(
−(ξ(t)− ci)2/σ2

)
, i = 1, 2, (21b)

where ξ(t) is the premise variable. The scalars ci and σ are defined to shape the weighting functions
in the operating space. Two different interpolations are studied. In the first case, the premise
variable ξ(t) is defined by

ξ(t) = x1(t)x2(t) (22)

In the second one, ξ(t) is given by

ξ(t) = −x1(t)x2(t), (23)

In both cases the scalars are the following: c1 = 0.15, c2 = −0.15 and σ = 0.9.
The phase trajectories of each stable submodel are shown in figure 3 considering the initial

condition x(0) = [1 1]T . According to the premise variable choice, given by (22) or (23), a stable
behaviour is obtained in the first case while an unstable behaviour is obtained in the second one,
as can be seen respectively on the bottom left and bottom right parts of the figure 3.

This example shows that the stability of all individual submodels is not sufficient to draw a
conclusion about the PM stability since the interpolation of the submodels through the weighting
functions affects the PM stability. Thus appropriate stability tools must be proposed for polytopic
models. Results for PM stability can be obtained from the Lyapunov’s second method [52]. This
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method allows us to check the stability of nonlinear systems, without computing its state trajectory,
by searching a so-called Lyapunov candidate function, depending on the state variables, that is non
negative and decreasing.

In the PM framework, stability conditions based on the Lyapunov theory may be expressed as
a LMI optimization problem. The conservatism level of the LMI problem to be numerically solved
is mainly related to the choice of the candidate Lyapunov function as well as the number and the
dimension of the submodels. In this section, some LMI conditions ensuring the PM stability in a
compact set for any blending of weighting functions are presented with the help of two kinds of
candidate Lyapunov functions.
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Figure 3: Examples of stability results for polytopic models. Phase portrait of the stable submodels
A1 and A2 (top left and right). Phase portrait of the PM in the case 1 (bottom left) and in the
case 2 (bottom right).

2.1 Analyzing the polytopic model asymptotic stability

Let us illustrate the simplest procedure to obtain asymptotic stability conditions for an autonomous
PM

ẋ(t) =
r∑
i=1

µi(ξ(t))Aix(t), x(0) 6= 0, (24)

where the weighting functions µi satisfy the convex sum properties (2). First, the following
quadratic candidate Lyapunov function is considered

V (x(t)) = xT (t)Px(t) P > 0 P = P T (25)
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Then, its time-derivative along the system trajectory (24) is given by

V̇ (x(t)) = xT (t)
r∑
i=1

µi(ξ(t))
{
ATi P + PAi

}
x(t). (26)

Let us emphasize that even if the values of the weighting functions are not a priori available,
thanks to the convex sum properties (2), the existence of a decreasing positive function V , ensuring
asymptotic stability of (24) in the modelling compact set, reduces to finding a matrix P satisfying
the following set of LMIs

ATi P + PAi < 0, P = P T > 0 for i = 1 . . . r. (27)

If a common Lyapunov matrix P , solution of the LMI set (27), can be found, it implies that the
PM (24) is asymptotically stable. Nevertheless, since the LMI conditions (27) are only sufficient,
it is not possible to conclude about the (un)stability if no solution is found.

The main drawback of quadratic stability conditions (27) is that a single common matrix P
for all submodels must be obtained to conclude about the PM stability, increasing in this way the
conservatism level of the solution. This conservatism can be reduced by replacing the quadratic
candidate Lyapunov function (25) by a parameter dependent candidate Lyapunov function, such
as [53]

V (x(t)) = xT (t)P (ξ(t))x(t) (28)

with

P (ξ(t)) =
r∑
i=1

µi(ξ(t))Pi, Pi > 0, Pi = P Ti (29)

which generalizes the quadratic candidate Lyapunov function where Pi = P is imposed. This
Lyapunov function introduces some degrees of freedom thanks to the matrices Pi and consequently
the obtained stability results may be less conservative. Notice however that the time-derivative of
V (x(t)) involves the time-derivative of the weighting functions

V̇ (x(t)) = xT (t)

r∑
i=1

µ̇i(ξ(t))Pix(t) + xT (t)

r∑
i=1

µi(ξ(t))
{
ATi Pi + PiAi

}
x(t) (30)

and upper bounds on the variation rate of the weighting functions must be computed. Based on
the parameter dependent candidate Lyapunov function (28), the following LMI stability condition
is proposed in [53]

Pi +X ≥ 0, 1 ≤ i ≤ r (31a)
r∑

k=1

φk(Pk +X) +
1

2

{
ATi Pj + PjAi +ATj Pi + PiAj

}
< 0, 1 ≤ i ≤ j ≤ r (31b)

where X is a symmetric matrix, Pi are positive definite symmetric matrices and where φk are the
upper bound of the time derivative of the weighting functions: |µ̇k(ξ(t))| ≤ φk. As illustrated in
[53], the LMI conditions (31) allow to reduce the conservatism. In the literature, the relaxation of
the stability conditions is also investigated based for example on some factorizations performed on
the weighting functions [19, 20, 21], introducing additional slack variables [54, 55], etc. These last
techniques are beyond the scope of this chapter and in the sequel, for the sake of simplicity, only
quadratic candidate Lyapunov functions will be employed.
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2.2 Analyzing the polytopic model exponential stability

The previous asymptotic stability conditions can be extended to investigate the exponential stability
in order to guarantee a decay rate for the system state, which is of great importance to quantify
dynamic performances in state feedback control and observer designs. Thanks to this decay rate,
the convergence speed of the system state and/or state estimation error can be imposed. As stated
in [45], if the candidate Lyapunov function (25) satisfies

V̇ (x(t)) + 2αV (x(t)) < 0 (32)

then the decay rate, quantifying the convergence speed toward zero, is bounded by α > 0. Namely
the system state is bounded by

||x(t)|| ≤ ||x(0)||

√
λmax(P )

λmin(P )
e−αt, (33)

where λmin(P ) (resp. λmax(P )) denotes the minimum (resp. maximum) eigenvalue of P and
consequently the convergence speed of x towards zero is bounded by the value of the decay-rate α.
By considering the inequality (32) instead of V̇ (x(t)) < 0 and following the previous developments,
the asymptotic stability conditions (27) are replaced by

(Ai + αI)TP + P (Ai + αI) < 0, P = P T > 0, α > 0, for i = 1 . . . r. (34)

Maximizing the convergence speed by simultaneously seeking P and the maximal α under con-
straints (34) gives rise to Bilinear Matrix Inequalities (BMIs). A simple way to linearize the BMI
problem (34) is to use an iterative dichotomic procedure, where at each step α is fixed and P is
sought to solve the LMI. The procedure is stopped when the maximal α such that there exists a
solution in P is found. Notice also that specific solvers can be employed based for example on
methods proposed in [56, 57].

It is interesting to remark that the LMIs (27) for asymptotic stability and the BMIs (34) for
exponential stability define particular regions of the complex plane. In fact, the LMIs (27) define
the region given by the open left half-plane, while the BMIs (34) define the left half-plane delimited
by <(z) < −α. The definition of other regions of the complex plane using LMIs is also possible and
may introduce other dynamic specifications such as minimum damping ratio as presented by [58].

2.3 Analyzing the polytopic model stability with L2-gain performance

In many real-life cases, disturbances, such as noise, act on the system. These disturbances can be
taken into consideration by considering the PM as

ẋ(t) =
r∑
i=1

µi(ξ(t)){Aix(t) + Eid(t)}, (35)

where x(t) ∈ Rn is the state, d(t) ∈ Rnd is a disturbance signal with bounded L2-norm: ‖d‖22 <∞
and where the weighting functions µi satisfy the convex sum properties (2).

The impact of d(t) on the state is quantified by the L2-gain from d(t) to x(t) and the robust
stability problem is then to keep the asymptotic stability of the PM when the disturbance is nil
and also to ensure

‖x‖22 ≤ γ
2 ‖d‖22 for d(t) 6= 0 and x(0) = 0 , (36)
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where γ > 0 is the upper bound of the L2-gain from d(t) to x(t) to be minimized.
In order to maintain some dynamic performances, such as convergence speed towards zero, while

ensuring robustness to disturbance like (36), one should seek to jointly obtain the decay rate α > 0
of (33) and the attenuation level γ > 0 of (36). This stability problem can be tackled similarly
to the previous stability problems by considering for example a quadratic Lyapunov function (25)
satisfying the following condition [45]

V̇ (x(t)) < −2αV (x(t))− xT (t)x(t) + γ2dT (t)d(t). (37)

Finally, the PM (35) satisfies the robust stability constraint (37) if the following conditions hold[
P (Ai + αI) + (Ai + αI)T P + I PEi

(PEi)
T −γ2 I

]
< 0, i = 1 . . . r (38)

for a matrix P = P T > 0, a prescribed decay rate α > 0 and an attenuation level γ > 0. Notice that
(38) is an extension of the well-known bounded real lemma for linear time invariant systems [45].
In several control or observer problem designs, the condition (38) is employed to simultaneously
minimize the attenuation level γ (by defining a new LMI variable γ̄ = γ2) and maximize the decay
rate α. In this way, a trade-off between robustness and dynamic performances can be obtained.

2.4 Stability analysis example

The previous bioreactor example (11) can be considered again to illustrate the stability analysis
of a PM. Using the LMI conditions (27), one can verify that the input free system is globally
quadratically stable. It is illustrated by the phase portrait displayed on the figure 4, where initial
conditions (S(0), X(0)) ∈ [0 2.5]× [0 1.5] were considered and where it can be seen that (S,X) =
(0, 0) is an equilibrium point. Using (34), it can also be checked that the input free PM is globally
exponentially stable, with a maximum decay rate α = 0.855.

Figure 4: Phase portrait of the bioreactor example for (S(0), X(0)) ∈ [0 2.5]× [0 1.5].
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2.5 Partial conclusion and discussion

In this section, the stability analysis of PM is presented with the use of the Lyapunov theory.
Thanks to the PM formulation, the complexity of the problem is reduced since the specific analysis
of the nonlinearities is avoided. According to the chosen candidate Lyapunov functions sufficient
stability conditions are given by a set of LMIs. If the obtained stability conditions are not under
a LMI form, some techniques such as state augmentation [59] or the descriptor approach [60], [23]
may allow to linearize the BMIs and also to introduce additional variables. Then the solution is
provided by widespread softwares.

Note that the stability conditions are only sufficient since several Lyapunov functions could be
employed and it is not possible to draw conclusions about the (un)stability if no solution is found
to the LMI problem. Consequently, a key topic in the PM stability analysis is the conservatism
reduction which, despite active and on going researches, remains an open problem.

One of the main goals of stability analysis is its extension to the controller and/or observer
designs, as it will be shown in next sections.

3 State feedback design based on polytopic models

In this section, stabilizing state feedback for nonlinear systems is investigated with the PM ap-
proach. The stability conditions previously presented can be employed for controller design, by
ensuring the asymptotical convergence toward the origin and/or the robust stability of the closed-
loop PM.

3.1 Classic state feedback design

Let us consider the PM (1a) with the static state feedback control law

u(t) = −Kx(t), (39)

where the K ∈ Rnu×n is the state feedback gain to be found in order to ensure the stability of the
following closed-loop system obtained from (1a) and (39)

ẋ(t) =
r∑
i=1

µi(ξ(t)) {Ai −BiK}x(t). (40)

Thanks to the established stability condition (34), the exponential stability with a decay rate α > 0
is ensured for the closed-loop PM, if the following matrix inequalities hold

(Ai + αI −BiK)TP + P (Ai + αI −BiK) < 0, α > 0, for i = 1 . . . r (41)

for a symmetric positive definite matrix P ∈ Rn×n. Let us remark that (41) is not a LMI since it
involves the product of unknown parameters P , Kand α. However, defining Q = QT = P−1 > 0
and M = KQ and for a given α > 0, (41) is equivalent to the following LMI in Q and M

Q(Ai + αI)T + (Ai + αI)Q−MTBT
i −BiM < 0, for i = 1 . . . r (42)

and the state feedback gain is obtained by K = MQ−1 for a given α > 0.
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3.2 Robust state feedback design with L2-gain performance

When a disturbance acts on the PM, it can be represented by

ẋ(t) =
r∑
i=1

µi(ξ(t)) {Aix(t) +Biu(t) + Eid(t)}, (43)

where x(t) ∈ Rn, u(t) ∈ Rnu and d(t) ∈ Rnd is a L2 bounded disturbance. The goal is to design
a robust state feedback control law (39) such that the impact of the disturbance d(t) on the state
x(t) is lowered by minimizing the attenuation level γ > 0 in (36). The disturbed closed-loop PM is
then

ẋ(t) =

r∑
i=1

µi(ξ(t)) {(Ai −BiK)x(t) + Eid(t)} . (44)

The obtained PM is similar to (35) and the robust stability condition (38) can be employed to
design the state feedback control by finding P and K satisfying the set of BMIs[

P (Ai −BiK + αI) + (Ai −BiK + αI)TP + I PEi
(PEi)

T −γ2I

]
< 0, i = 1 . . . r (45)

for a matrix P = P T > 0 and a given decay rate α > 0. As previously mentioned, (45) is a BMI.
Nevertheless, using the well-known Schur complement [45] and the variable change M = KQ, (45)
can be equivalently rewritten as the following LMI[

AiQ+QATi −BiM − (BiM)T + 2αQ+ EiE
T
i Q

Q −γ2I

]
< 0, i = 1 . . . r, (46)

where the state feedback gain is given by K = MQ−1 for a prescribed decay rate α with a matrix
Q = QT > 0. In this problem the attenuation level γ must be minimized (by minimizing the LMI
variable γ = γ2) to reduce the impact of d(t) on the state x(t), while α > 0 should be maximized
to introduce dynamic performances of the closed-loop.

3.3 Robust state feedback control design: LMI problem programming and sim-
ulation

The goal here is to design a robust state feedback control for the following disturbed nonlinear
system

ẋ1(t) = −0.2x1(t) + x2(t) + 0.2x21(t)u(t) + 0.4d(t), (47a)

ẋ2(t) = −x1(t) + 0.2 sin(x1(t))x2(t) + u(t) + 0.2d(t) (47b)

According to the technique presented in the modelling section, the nonlinear system (47) can be ex-
actly rewritten into a PM form, for x1 ∈ [−2.5 2.5], by applying the nonlinear sector transformation
to the two following nonlinearities

f(x1(t)) = sin(x1(t)), (48a)

g(x1(t)) = x21(t). (48b)

By considering x1 ∈ [−2.5 2.5], the nonlinear functions (48) are bounded by

a1 ≤ f(x1(t)) ≤ a2, b1 ≤ g(x1(t)) ≤ b2 (49)
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with a1 = −1, a2 = 1, b1 = 0 and b2 = 6.25. Similarly to what was performed on the previous
example, the nonlinear model (47) is rewritten into a polytopic model (43) with the submodel
matrices

A1 =

[
−0.2 1
−1 0.2a1

]
A3 =

[
−0.2 1
−1 0.2a2

]
B1 =

[
0.2 b1

1

]
B2 =

[
0.2 b2

1

]
E1 =

[
0.4
0.2

]
(50)

with A2 = A1, A4 = A3, B3 = B1, B4 = B2, E2 = E1, E3 = E1 and E4 = E1. The disturbance d(t)
acting on the system states is a pseudo-random noise drawn from the standard normal distribution.
Two decay rates are considered α = 0 and α = 0.3 corresponding to different dynamic specifications
of the closed-loop response.

An example of programming the LMI problem (46) is given in the Program 3.1. In this program,
the PM matrices are defined and thanks to the Yalmip interface [61] the LMIs are declared in
a simple way. The set of LMIs is solved with Matlab coupled with the SeDuMi solver [62] to
compute the state feedback gain K. The robust gain K is computed considering a decay rate
α and minimizing the attenuation level γ =

√
γ. For α = 0 the minimum attenuation level is

γ = 0.58, while the minimum admissible attenuation level is γ = 2.58 for α = 0.3. This example
shows that the robustness and the dynamic performances objectives cannot simultaneously be
satisfied, a trade-off between them is necessary.

Figure 5 shows the open-loop response as well as the closed-loop ones obtained with the robust
state feedback gain computed for each considered decay rate. The considered initial conditions is
x(0) = [2 − 1]T which belongs the modelling compact set. As expected, it can be seen on the
figure 5 that the larger decay rate α = 0.3 allows one to have a faster closed-loop response. The
counterpart of this faster response is a loss of robustness to the disturbance and the requirement
of higher values of u(t) as illustrated in figure 6. Figure 6 also shows the time-evolution of the
nonlinear function g(t) = x21(t) which remains bounded by (49).

Program 3.1 Matlab code source to programming the LMI problem (46)

% Matlab example s t a t e feedback des ign
% submodel parameters
a1=−1;a2=1;b1=0;b2=6.25; beta=−0.2;
% submodel matr i ce s
A1=[beta 1;−1 −beta ∗a1 ] ; A3=[beta 1;−1 −beta ∗a2 ] ; A2=A1 ; A4=A3 ;
B1=[−beta ∗b1 ; 1 ] ; B2=[−beta ∗b2 ; 1 ] ; B3=B1 ; B4=B2 ;
I=eye (2 , 2 ) ;%i d en t i t y matrix d e f i n i t i o n
alpha=0.3%pre s c r i b ed decay ra t e

Q = sdpvar (2 , 2 , ' symmetric ' ) ; M = sdpvar (1 , 2 , ' f u l l ' ) ;%matr i ce s to be found
gamma=sdpvar (1 , 1 , ' f u l l ' ) ; % at tenuat ion l e v e l to be minimized
LMI1=[A1∗Q+Q∗A1 '−B1∗M−(B1∗M ) '+2∗alpha∗Q+E1∗E1 ' Q ; Q ' −gamma∗I ]
LMI2=[A2∗Q+Q∗A2 '−B2∗M−(B2∗M ) '+2∗alpha∗Q+E1∗E1 ' Q ; Q ' −gamma∗I ]
LMI3=[A3∗Q+Q∗A3 '−B3∗M−(B3∗M ) '+2∗alpha∗Q+E1∗E1 ' Q ; Q ' −gamma∗I ]
LMI4=[A4∗Q+Q∗A4 '−B4∗M−(B4∗M ) '+2∗alpha∗Q+E1∗E1 ' Q ; Q ' −gamma∗I ]
F = [ Q > 0 .01∗ I , LMI1<0, LMI2<0, LMI3<0, LMI4 <0] ;%LMI problem
solvesdp (F , gamma) ;
Qf = double ( Q ) ; Mf = double ( M )
K=Mf∗ inv ( Qf ) %obtained s t a t e feedback gain
gamma=double (gamma) %obtained at tenuat ion l e v e l
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Figure 5: Robust state feedback control results. Open-loop response of the nonlinear system (top),
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3.4 Partial conclusion and discussion

As seen in this section, even when disturbances act on the system, the stability conditions of the
closed-loop system can be employed to design a state feedback controller by solving a LMI problem.
Moreover, some desired closed-loop performances can be defined by specifying a minimum decay
rate or more generally by ensuring the pole clustering of the closed-loop dynamics in some specific
regions of the complex plane.

The use of a common state feedback gain K in the control law (39) increases the conservatism,
then a solution to the LMI problem (42) or (46) may not be found. An interesting way to relax this
conservatism is to add some degree of freedom in the controller design by considering the following
so-called parallel distributed compensation (PDC) control law [17]

u(t) = −
r∑
i=1

µi(ξ(t))Kix(t). (51)

An intuitive way to see this control law structure is to consider that each submodel (Ai, Bi) needs a
different controller gain Ki to be stabilized. In this case, the closed-loop PM is defined by a double
sum

ẋ(t) =

r∑
i=1

r∑
j=1

µi(ξ(t))µj(ξ(t)) {Ai −BiKj}x(t). (52)

Studying the stability of (52) with a quadratic Lyapunov function (25) gives rise to BMI because of
the coupling between the controller gains and the Lyapunov matrix P . Nevertheless, some variable
changes or the descriptor approach allow one to obtain tractable LMI [17, 23].

4 Observer state design based on polytopic models

In most of the cases, the whole system state vector is not measured due to economic or technological
reasons. The lack of physical sensors to measure system states should be compensated by a virtual
sensor, also known as state observers [63]. Based on a mathematical model of the system, the
observer is designed in order that, fed with the known inputs and the measured outputs of the
system, it provides a state estimate that converges toward the actual system state. This estimation
must be provided in a large operating range of the nonlinear system and for that the PM approach
is employed here.

4.1 Classic proportional state observer design

First, the state observer design is presented considering the following PM

ẋ(t) =

r∑
i=1

µi(ξ(t)) {Aix(t) +Biu(t)}, (53a)

y(t) = Cx(t) (53b)

with x(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rny . The premise variable ξ(t) is supposed to be real-time
measurable. The polytopic proportional state observer can be defined as

˙̂x(t) =

r∑
i=1

µi(ξ(t)) {Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))}, (54a)

ŷ(t) = Cx̂(t), (54b)
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where the observer gains Li ∈ Rn×ny must be found to ensure the convergence towards zero of the
estimation error e(t) defined by e(t) = x(t) − x̂(t) thanks to the proportional correction given by
the observer gains Li. From (53) and (54), the state estimation error dynamics can be expressed
as

ė(t) =
r∑
i=1

µi(ξ(t)) {Ai − LiC} e(t). (55)

Similarly to the previous controller design, the stability of (55) can be studied with a quadratic
Lyapunov function (25). It leads us to establish the following LMI conditions of the convergence
of x̂ towards x

(Ai + αI)TP + P (Ai + αI)− CTNT
i −NiC < 0, α > 0, for i = 1 . . . r (56)

with P = P T > 0 ∈ Rn×n and Ni = PLi ∈ Rn×ny . The observer gains are given by Li = P−1Ni

for a given decay rate α > 0.

4.2 Simultaneous robust state and unknown input estimation

In several situations, all the inputs acting on a system are not measurable and thus some of them
cannot be provided to the state observer. These unmeasurable inputs are often called unknown
inputs (UI) and are often employed to model faults or neglected dynamics, etc. Let us now consider
the PM with UI and disturbance

ẋ(t) =
r∑
i=1

µi(ξ(t)) {Aix(t) +Biu(t) + Eid(t) + Fif(t)}, (57a)

y(t) = Cx(t) +Gd(t) +Rf(t), (57b)

where x(t) ∈ Rn is the state, u(t) ∈ Rnu the known input, y(t) ∈ Rny the output, d(t) ∈ Rnd the
disturbance and f(t) ∈ Rnf the UI.

Here the main goals are, on the one hand not only to provide an estimation of the state but also
of the UI, and on the other hand to minimize the disturbance impact on these estimations. The
robust simultaneous estimation of the state and the UI of a system is a key problem in numerous
automatic control problems [64, 65]. An attractive way to obtain the simultaneous state and UI
estimation is provided by the Proportional-Integral Observer (PIO). A PIO is an extension of
the proportional state observer (well-known as Luenberger observer) employed to simultaneously
compute state and UI estimations [66, 52]. The PIO can provide the UI estimate under the two
following assumptions

Assumption 2 The unknown input signal f(t) is a constant signal.

Assumption 3 The disturbance is a L2-bounded signal with ‖d‖22 <∞.

The proposed polytopic PIO structure is given by [27]

˙̂x(t) =

r∑
i=1

µi(ξ(t))
{
Aix̂(t) +Biu(t) + Fif̂(t) + Li(y(t)− ŷ(t))

}
, (58a)

˙̂
f(t) =

r∑
i=1

µi(ξ(t))L̃i(y(t)− ŷ(t)), (58b)

ŷ(t) = Cx̂(t) +Rf̂(t), (58c)
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where x̂(t) ∈ Rn is the estimated state and f̂(t) ∈ Rnf the estimate of the unknown input f(t). The
matrices Li ∈ Rn×ny and L̃i ∈ Rnf×ny are the observer gains to be designed. The integral action of
the PIO, introduced by (58b), can be considered as a state augmentation allowing to estimate not
only the system state, but also the UI. The robustness properties of the PIO are investigated in
[66, 52] and the PIO has been successfully employed in order to cope with state and UI estimation
[67, 68, 69].

The PIO existence conditions are obtained by considering the dynamics of the state and UI
estimation errors, respectively denoted e(t) and ef (t), and defined by

e(t) = x(t)− x̂(t), ef (t) = f(t)− f̂(t). (59)

Using (57), (58) and (59), the time-derivative of the estimation errors are then given by

ė(t) =

r∑
i=1

µi(ξ(t))
{

(Āi − L̄iC̄)e(t) + (Ēi − L̄iG)d(t)
}
, (60)

where

e(t) =

[
e(t)
ef (t)

]
, Āi =

[
Ai Fi
0 0

]
, L̄i =

[
Li
L̃i

]
, C̄ =

[
CT

RT

]T
, Ēi =

[
Ei
0

]
. (61)

The robust PIO design problem can thus be formulated as finding the augmented matrices L̄i such
that the estimation error e(t) vanishes to zero when no disturbances affect the system and such
that the influence of d(t) on e(t) is minimized. This influence is quantified by the L2-gain from d(t)
to e(t).

The robust PIO design turns into finding L̄i such that

lim
t→∞

e(t) = 0 for d(t) = 0, (62a)

‖e‖22 ≤ γ
2 ‖d‖22 for d(t) 6= 0 and e(0) = 0 , (62b)

where γ > 0 is the upper bound of the L2-gain from d(t) to e(t) to be minimized. Condition
(62a) ensures the state estimate convergence towards the state variable despite the UI f(t). This
condition will be satisfied by imposing the exponential convergence of the estimation error to
ensure a minimum decay rate and thus to improve dynamic performances of the PIO. Condition
(62b) ensures the disturbance attenuation on the state estimation. The PIO observer design can
be tackled similarly to the previous robust stabilization problem.

Finally, the PIO (58) based on the PM (57), under constraints (62), is obtained if there exists
a symmetric, positive definite matrix P and matrices Mi (for i = 1, ..., r) minimizing γ > 0 under
the LMIs for a prescribed α > 0[

∆i + ∆T
i + I P Ēi −MiG(

PĒi −MiG
)T −γ I

]
< 0, i = 1 . . . r, (63)

where ∆i = P (Āi +αI)−MiC̄. The observer gains are given by L̄i = P−1Mi and the upper bound
of the L2-gain from d(t) to e(t) is given by γ =

√
γ.

4.3 PIO design and simulation

The goal here is to illustrate the joint state and UI estimation for the nonlinear system (47) using
a PIO. For that purpose, it is assumed that x1(t) is the only measured state and x2(t) should
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Figure 7: System and Proportional-Integral Observer interconnection considered in the example.

be estimated. The input u(t) of the system is affected by a piecewise constant UI, such as an
actuator fault f(t), to be estimated. On the other hand, an additive noise d(t) acts on the output,
as represented by the figure 7.

The PM (57) is then defined by the matrices (50), Ei = 0, Fi = Bi, C = [1 0], G = 0.4 and
R = 0. The noise is a pseudo-random noise drawn from the standard normal distribution.

For the PIO design, a trade-off between convergence speed of estimation errors and robustness
of the estimation to the disturbance is obtained using the following parameters α = 0.1, γ = 0.4.
The observer gains L̄i obtained by solving the LMI problem (63) are

L̄1 =

13.02
16.30
11.60

 , L̄2 =

24.61
31.21
23.67

 , L̄3 =

10.55
12.94
9.27

 , L̄4 =

22.23
27.97
21.42

 . (64)

The estimation results provided by the designed PIO are shown in figure 8. Notice that the
initial condition of the system is x(0) = [2 − 1.8]T , while the one of the PIO is zero. These figures
show the performances of the joint state and actuator fault estimations even when a noise acts on
the output.

4.4 Partial conclusion and discussion

In this section, observer designs are presented to provide nonlinear state estimation as well as UI
estimation in a large operating range. The first observer, namely the proportional observer, only
provides the system state estimate. The presented LMI condition (56) can easily be modified to
handle a disturbance acting on a system. The second observer (PIO) generalizes the first one
since simultaneous estimation of the state and the UI is possible. Here, the considered UI is
constant or having small time variations ḟ(t) ≈ 0. Improvements to the given PIO, in order to
take into consideration a more general class of UI, for example a polynomial form with respect
to time f(t) = a0 + a1t + a2t

2 + . . . + ant
n, can be obtained following a similar approach using a

Proportional Multi-Integral Observer with (n + 1) integral terms in the dynamic equation of the
observer, as presented in [27].
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Figure 8: Estimation results provided by the Proportional-Integral Observer. The faulty input
signal u(t) + f(t) is plotted on the top, the state x(t) and their estimates x̂(t) on the middle and
f(t) and f̂(t) at bottom.
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When the UI is considered as a fault, the PIO can be used to provide fault detection, isolation
and estimation of faults acting on the system. The fault estimate can also be used online in the
control law design to counteract the fault effect on the system trajectory. This is the aim of the
Fault Tolerant Control (FTC) detailed in the next section.

5 Active Fault Tolerant Control

Several approaches have been developed in recent years in the framework of fault tolerant control
(FTC) design, which can be classified into two categories: passive FTC and active FTC [70, 71].
Even if FTC for linear systems have been intensively treated [72, 73, 74], FTC for nonlinear systems
remains a challenging problem and the PM approach is a promising way to tackle it.

In the previous sections, some results about modelling, stability analysis, state feedback design
and state observer with unknown input estimation design were presented using PM. This section
shows how these results can be combined in an interesting way to cope with the FTC of nonlinear
systems. The state feedback controller and the PIO providing state and unknown input estimation
can be combined into an unified Active Fault Tolerant Controller architecture. The term active
means that the control signal is automatically reconfigured when a fault occurs thanks to the fault
detection identification and estimation (FDIE) provided by the PIO. The FDIE information, such
as the time of occurrence of a fault (detection), fault location (isolation) and fault magnitude (es-
timation) are taken into account in the controller design to generate a control signal that preserves
the system stability and performance.

The design of the FTC proposed here is based on the polytopic model representation

ẋ(t) =

r∑
i=1

µi(ξ(t)) {Aix(t) +Bi(uc(t) + fa(t))}, (65a)

y(t) = Cx(t) +Rfs(t), (65b)

where x(t) ∈ Rn, uc(t) ∈ Rnu , y(t) ∈ Rny , fa(t) ∈ Rnu and fs(t) ∈ Rny . The faults fa(t) and
fs(t) respectively act on the actuators and the sensors. These faults can be considered as unknown
inputs (UI) acting on the system and they are here assumed to be constant.
As depicted in figure 9, the investigated FTC uses the state and UI estimates provided by the
previously studied PIO to build the control input uc(t) (67e) applied to the controlled system.
The control law is then designed to perform reference state tracking, i.e. in order to minimize the
system state trajectory deviation caused by the faults using the robust stability condition. The
state trajectory deviation is defined with regard to a reference state trajectory xr(t), provided by
the following fault-free reference PM

ẋr(t) =

r∑
i=1

µi(ξ(t)) {Aixr(t) +Biur(t)} (66)

fed with the reference input ur(t) and where xr(t) is the state of the nominal (healthy) fault-free
polytopic model.
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Figure 9: Fault tolerant controller architecture.

The active FTC, depicted in figure 9, is written as

˙̂x(t) =
r∑
i=1

µi(ξ(t))
{
Aix̂(t) +Bi(uc(t) + f̂a(t)) + Li(y(t)− ŷ(t))

}
, (67a)

ŷ(t) = Cx̂(t) +Rf̂s(t), (67b)

˙̂
fa(t) =

r∑
i=1

µi(ξ(t))H
a
i (y(t)− ŷ(t)), (67c)

˙̂
fs(t) =

r∑
i=1

µi(ξ(t))H
s
i (y(t)− ŷ(t)), (67d)

uc(t) = −
r∑
i=1

µi(ξ(t))Ki(x̂(t)− xr(t))− f̂a(t) + ur(t). (67e)

Equations (67a) and (67b) are related to the state estimation of the system and it can be noticed
that the fault estimates f̂a(t) and f̂s(t) are employed to improve the state estimation. The fault
estimations f̂a(t) and f̂s(t) are obtained using the same strategy as employed by the PIO already
presented with the help of (67c) and (67d).

The goal of the FTC (67) is to ensure reference state tracking, such that the faulty system state
x converges toward the reference state xr even when faults act on the system. For that purpose,
the following tracking and estimation errors are defined

ex(t) = x(t)− xr(t), ē(t) =

 x(t)− x̂(t)

fa(t)− f̂a(t)
fs(t)− f̂s(t)

 , (68)

where ex(t) is the tracking error between the system state and the reference model state. Since
constant faults are considered, the closed-loop system can be written as the autonomous PM[

˙̄e(t)
ėx(t)

]
=

r∑
i=1

µi

[
Āi − L̄iC̄ 0[

BiKj Bi 0
]

Ai −BiKj

] [
ē(t)
ex(t)

]
, (69)
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where the matrices Āi, L̄i and C̄ are

Āi =

Ai Bi 0
0 0 0
0 0 0

 , L̄i =

LiHa
i

Hs
i

 , C̄ =

CT0
RT

T . (70)

Then the active FTC design problem can be formalized as finding the gains Li, H
a
i , Hs

i and Ki

such that the autonomous closed-loop system (69) is stable.
The stability of the autonomous PM (69) can be investigated with the help of a quadratic

Lyapunov function, following the same steps as in the proof of Theorem 1 of [29] and using the
relaxation scheme proposed in [20]. Finally, the FTC design reduces to find matrices Q = QT > 0,
P1 = P T1 > 0, X2 = XT

2 > 0, K̄i and Z̄i satisfying the following sufficient LMI conditions for a
given positive λ > 0 {

Ξii < 0 i = 1, ..., r
1
r−1Ξii + Ξij + Ξji < 0 i < j

, (71)

where the symmetric matrix Ξij is defined by

Ξij =

−2λdiag(Q,X2, Iny) ∗ ∗[
BiK̄j BiX2 0

]
He(AiQ−BiK̄j) ∗

λIn+nu+ny 0 He(P1Āi − ZiC)

 , (72)

where diag(Q,X2, Iny) denotes a block diagonal matrix with Q, X2 and Iny on its diagonal entries
and where He(X) = X + XT , for any square matrix X. Finally, after solving (71), the observer
and controller gains are obtained from[

LTi (Ha
i )T (Hs

i )T
]T

= P−11 Zi, Ki = K̄iQ
−1, i = 1 . . . r. (73)

5.1 FTC applied to vehicle lateral dynamics

The FTC (67) is applied to ensure the lateral dynamic stability of a vehicle. In hard driving
manoeuvres the vehicle lateral stability may be lost, then the vehicle spins and the driver loses the
control. In these critical situations, appropriate automatic corrective actions to maintain vehicle
stability can be generated using specific control strategies. Here, the purpose of the FTC strategy
is to provide a stabilizing yaw moment at the center of gravity (CoG) of the vehicle to keep the
vehicle stable even when faults act on the vehicle, as depicted by figure 10. The PM approach
is here applied to design a FTC strategy in the whole vehicle operating range, in particular for
different longitudinal velocities.

The FTC strategy is based on the single track vehicle model that is a simplified dynamic model
for the lateral vehicle motion [75]. The lateral position y and the vehicle yaw angle ψ are the
two degrees of freedom of this model as depicted in figure 11. This model is obtained by applying
Newton’s second law of motion and by considering some assumptions, such as, non road bank angle,
same steering angle for both front wheels and lateral tyre forces in their linear region. Finally, the
state space nonlinear model of the single track vehicle is [75]

[
v̇y(t)

ψ̈(t)

]
=

 −Cf+Cr
mvx(t)

−afCf−arCr
mvx(t)

− vx(t)

−afCf−arCr
Izvx(t)

−a2fCf+a
2
rCr

Izvx(t)

[vy(t)
ψ̇(t)

]
+

[
Cf
m

afCf
Iz

]
δf (t) +

[
0
1
Iz

]
Mz(t), (74a)

y(t)=
[
0 1

] [
vy(t) ψ̇(t)

]T
, (74b)
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Figure 10: Fault tolerant control for vehicle lateral stability.

Figure 11: Single track model.

where vy(t) and ψ̇(t) respectively denote the lateral velocity and the yaw rate. The driver acts on
the vehicle through the steering angle δf (t) considered as a measured input, that is not computed
by the FTC controller but may be provided to it. In fact, the controlled input to stabilize the
vehicle yaw motion is the stabilizing yaw moment Mz(t) generated by a differential braking on the
rear wheels. The measured output is the yaw rate ψ̇(t) which is provided by the inertial unit. The
estimation of the lateral velocity is then needed to use a state feedback control. It can be noted
that the longitudinal velocity vx(t), measured in real-time, is time-varying and consequently the
model (74) is nonlinear. All variables and parameters used in this model are summarized in the
Table 1.

The first goal is to obtain a PM representation of the single track vehicle model (74). From
(74a), two time-varying terms vx(t) and 1/vx(t) are considered and the premise variable is the
longitudinal velocity vx(t) 6= 0. Since the longitudinal velocity is bounded by vx ≤ vx(t) ≤ vx,
then the two nonlinearities f and g defined by f(vx(t)) = vx(t) and g(vx(t)) = 1/vx(t) are also
bounded: f ≤ f(vx(t)) ≤ f and g ≤ g(vx(t)) ≤ g. Applying the NST, see (5) and (6), to f(vx(t))
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Table 1: Variables and parameters of the single track vehicle model

Time-varying variables

ψ̇ Yaw rate
vx , vy Longitudinal and lateral velocities

Constant parameters

m = 1700kg , Iz = 2454kgm2 Vehicle mass and inertia
af = 1.1m, ar = 1.44m Distances from the front and rear axle

to the center of gravity
Cf = 61000N/rad, Cr = 48000N/rad Stiffness coefficients of the front

and rear tyres

and g(vx(t)), the following fault free PM is obtained

ẋ(t) =

4∑
i=1

µi(vx(t)) {Aix(t) +BMz(t) + Eδf (t)} , (75a)

y(t) = Cx(t), (75b)

The state is defined by x(t) =
[
vy(t) ψ̇(t)

]T
, Mz(t) is the control input and the matrices of the

four submodels are

A1 =

[
β11f β12f − g
β21f β22f

]
, A2 =

[
β11f β12f − g
β21f β22f

]
, (76a)

A3 =

[
β11f β12f − g
β21f β22f

]
, A4 =

[
β11f β12f − g
β21f β22f

]
, (76b)

B =

[
0
1
Iz

]
, E =

[
Cf
m

afCf
Iz

]
. (76c)

with β11 = −Cf+Cr
m , β12 = −afCf−arCr

m , β21 = −afCf−arCr
Iz

, β22 = −a2fCf+a
2
rCr

Iz
. The weighting

functions are given by

µ1(vx(t)) = µ11(vx(t))µ21(vx(t)), (77a)

µ2(vx(t)) = µ11(vx(t))µ22(vx(t)), (77b)

µ3(vx(t)) = µ12(vx(t))µ21(vx(t)), (77c)

µ4(vx(t)) = µ12(vx(t))µ22(vx(t)). (77d)

An actuator fault fa(t) affecting the controlled input Mz(t) is considered here. Consequently
the faulty stabilizing moment provided by the controller is given by Mz(t) = uc(t) + fa(t), where
fa(t) can be considered as an UI to be estimated. No sensor faults fs(t) are considered. The
fault-free reference model is

ẋr(t) =

4∑
i=1

µi(vx(t)) {Aixr(t) + Eδf (t)} . (78)

The gains of the observer and the FTC are obtained by solving the LMI conditions given in (71).
The time-varying longitudinal velocity and the steering angle are depicted in figure 12. It can be
noticed that since the longitudinal velocity is not constant, the system is nonlinear.
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Figure 12: Longitudinal velocity and steering angle measurements.

Figure 13 shows that the state variables are correctly estimated and that the trajectory tracking
is efficient despite the action of the fault. As seen on figure 14, the fault magnitude estimation is
also correct. The reference tracking results obtained with the FTC are depicted, in the (x, y) plane,
in figure 15. For comparison, the faulty vehicle states without FTC are also depicted in this figure.
As it can be noticed on the figure 13, the lateral velocities vy(t) of the vehicle without FTC and of
the reference model are different. Consequently the faulty vehicle trajectory without FTC clearly
deviates from the reference one on figure 15. Thanks to the presented FTC, the fault estimate allows
us to adapt the control law to the occurring fault to ensure a good reference trajectory tracking
(see again the figure 15) and thus improve the dynamic vehicle behaviour. It clearly illustrates the
benefits of the PM-based active FTC to cope with lateral vehicle stabilization.

5.2 Partial conclusion and discussion

In this section the polytopic model approach is employed to propose an efficient architecture for
FTC. The design of the proposed FTC is based on LMI conditions. It can be pointed out that the
structure of the FTC law aims to control the state of the faulty system in order to follow a reference
state trajectory generated by a nominal reference model. This FTC can be modified in order to
realize output trajectory tracking in the presence of faults. What has been done so far in the
present paper requires the assumption that the premise variables ξ(t) are measurable in real-time
and fault-free. This approach can be extended for systems having faulty premise variables. For
example, if the premise variables µi(.) depend on the output of the system, then the sensor faults
also affect these variables. Therefore, the reference model, the real system and the observer do not
share the same premise variables and the design problem becomes more complex but solutions are
proposed in [29, 30].
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Figure 13: Reference states and faulty system states with and without fault tolerant control.

6 Overall conclusion

This chapter presents some results of the PM approach to cope with the modelling, the stability
analysis, the state feedback control, the state and unknown input estimations and finally the fault
tolerant control of nonlinear systems. The backbone of all the presented results is the capacity of
the PM structure to represent nonlinearities in a selected operating range of the system. In this
operating range the nonlinear model of the system can be exactly rewritten as a PM and thanks to
this procedure the specific analysis of each nonlinearity can be avoided. Notice however that the
number of required submodels polynomially increases with the number of nonlinearities taken into
consideration. It obviously causes numerical difficulties and can be considered as the main limit
of the approach. On the other hand, all proposed results are obtained provided that the system
states remain in the selected operating range. Fortunately, in most real applications, the states are
bounded which means that the nonlinearities are also bounded, especially when the systems are in
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Figure 15: Reference trajectory (blue line) and faulty vehicle trajectory without FTC (black dots)
and with FTC (red dashed line).

closed-loop.
Based on the polytopic modelling approach, stability conditions are formulated in terms of

Linear Matrix Inequalities (LMI). In fact, even if the global PM is a nonlinear model, the Lyapunov
method for stability analysis leads to LMI, due to the linearity of the submodels. According to
the used Lyapunov function less conservative conditions can be found. The relaxation of these
conditions is today an open problem in particular for a large number of submodels.

The LMI stability conditions are then used to design robust state feedback controllers in order
to stabilize the system at the origin. Desired closed-loop performances can be defined by specifying
a desired decay rate and the state feedback gain can also be optimized to reduce the impact of
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a disturbance on the system state. In a similar way, observer designs providing an estimation of
the state even in the presence of unknown inputs are also exposed. These unknown inputs can
be for example faults acting on the actuators or sensors. The presented extended observer (PIO)
provides an estimation of the time of occurrence of the fault as well as of its magnitude. Finally
by taking benefits of modelling, control and estimation advances for PM, it is then proposed to
design a fault-tolerant controller fed with the simultaneous state and unknown input estimates.
The benefits of the active fault tolerant controller based on the PM approach are illustrated in an
example consisting of the stabilization of the lateral dynamics of a vehicle.
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