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Abstract. The complexity problem of nonlinear dynamic systems appears in a great
number of scientific and engineering fields. The multi-model, also known as polytopic
approach, constitutes an interesting tool for modeling dynamic nonlinear systems, in the
framework of stability analysis and controller / observer design. A systematic procedure to
transform a nonlinear system into a polytopic one will be briefly presented and illustrated
by an academical example. This procedure gives the possibility of choosing between dif-
ferent polytopic structures, which is a degree of freedom used to ease the controllability,
observability, stability analysis studies. In addition to that, the system transformation into
polytopic form does not cause any information loss, contrarily to most existing studies in
the field.
In the second part of this chapter, a discussion about multiple time scale nonlinear systems,
also known as singularly perturbed systems is proposed, by eliminating some structural con-
straints and by performing the identification and the separation of the time-scales. Robust
observer synthesis with respect to internal/external perturbations, modeling parametriza-
tion errors and unknown inputs are presented for the estimation of different variables of
interest, the state variables.
The above-mentioned points will be applied to an activated sludge wastewater treatment
plant (WWTP), which is a complex chemical and biological process. The variations in
wastewater flow rate / composition and the time-varying bio-chemical reactions make this
process nonlinear. Despite the process nonlinearity and complexity, there is a need to con-
trol the quality of the water rejected in the nature by the WWTPs in order to achieve the
requirements of the European Union in terms of environmental protection. To this end, a
Benchmark, proposed by the European program COST 624 to asses the control strategies
of WWTPs, is used as an example in the present chapter.

1 Problem formulation

This chapter explains how the multi-model approach (also called polytopic [1] or Takagi-
Sugeno approach [27]) can be used to model dynamical nonlinear systems, for observer /
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controller design or fault diagnosis purposes.
It is known that the dynamical and the nonlinear attributes are features of most existing

technological or environmental processes. The modeling complexity problem is consequently
an important element in a great number of scientific and engineering fields. When dealing
with such systems, there is a necessity to develop systems operating over a wide range of
functioning conditions and handle, in a most simple way, this complexity. Generally, a
nonlinear system under the state space form is written as:

ẋ(t) =f(x(t), u(t)) (1a)

y(t) =g(x(t), u(t)) (1b)

where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu is the known input, y(t) ∈ Rny is the
measured output and where f and g are nonlinear functions depending on the states x and
inputs u. In real processes, these functions can be very complex and impossible to exploit
for control and diagnosis purposes.

In the last decades, the multi-model approach seems to be an interesting tool to deal
with complex nonlinear systems and thus has been intensively studied. It is the reason why
it has been chosen for our recent research studies.

The basic principle of the multi-model approach is to replace an unique global model,
as the one described by (1) -considered overly complex to be used as it is for different
objectives, such as control, observer synthesis or fault diagnosis- by a set of simpler linear
models defined as submodels. Roughly speaking, in the earlier works [27] each submodel
describes the behavior of the considered process around a particular operating point and,
thanks to a time varying interpolation mechanism between the different submodels, the
global multi-model structure represents the original nonlinear model. Since the submodels
are linear, it is an efficient way to address nonlinear problems by slightly adapting linear
techniques [17].

The multi-model formalism is consequently based on time-varying interpolation between
a set of linear sub-models. In the state space representation, the multi-model structure is
presented as follows:

ẋ(t) =

r∑
i=1

µi(z(t)) [Aix(t) +Biu(t)] (2a)

y(t) =

r∑
i=1

µi(z(t)) [Cix(t) +Diu(t)] (2b)

where r is the number of submodels, the weighting functions µi(z(t)) depend on the premise
variables z(t) and represent the weights of the submodels defined by the known matrices
(Ai, Bi, Ci, Di). The premise variables may depend on measurable signals (e.g. the system
inputs or outputs) and / or on unmeasurable signals (e.g. the system state variables).

The functions µi(z(t)) have the following properties:

r∑
i=1

µi(z(t)) = 1 and µi(z(t)) ≥ 0, ∀t ∈ R+ (3)

As mentioned in chapter 14 of [28], every nonlinear system can be written as a multi-model
on a compact set of the state space, by using the so-called sector nonlinearity approach,
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that will be later on presented. The drawback of this technique is that no systematic choice
of the premise variables has been realized. The choice of the premise variables plays a
central role in the derivation of a the multi-model, since it impacts the structure of the
submodels and thus on their use for performance analysis and observer / controller design.
Other techniques to obtain a multi-model exist, such as linearization of the nonlinear model
around one/several operating points, or dynamic linearization near arbitrary trajectory [16],
system identification using experimental data [9]. Nevertheless, these different techniques
are not general and systematical methodologies, depending, on one hand, on the choice of
operating points (trajectory), and on the other hand, on the available data.

An analytic multi-modeling procedure with a motivated choice of the premise variable
is presented in [18] and will be used as a nucleus point for modeling in this chapter. The
proposed methodology avoids the inconveniences of the previously mentioned existing works:
the choice of the linearization points is not necessary. and the transformation is realized
without loss of information. Indeed, the obtained system has exactly the same dimension
(simplification of MM systems by model order reduction is dealt in [14]) and state trajectory
as the initial system. The complexity reduction comes from the fact that many analysis and /
or design methods dedicated to linear systems have been extended to MM systems, and thus
can be used to deal with nonlinear systems. The main points of these analytical rewriting
technique will be described, illustrated and discussed in section 2.

2 Analytic procedure to obtain multi-model structure

This part is dedicated to the general methodology of transforming a given nonlinear model
(1) into a multiple model. The transformation is realized without loss of information, the
obtained system has exactly the same state trajectory as the initial system. The proposed
method is analytical, and the obtained multi-model is equivalent to the initial nonlinear
system.

Given a nonlinear system (1) with bounded nonlinearities, a multi-model state represen-
tation (2) can be obtained. This multi-model representation constitutes a linear parameter
varying (LPV) system because the convex combinations of constant matrices calculated
from the polytopes vertices give rise to matrices with variable parameters. The vertices
are obtained using the convex polytopic transformation (CPT), given by the lemma 1. The
constant matrices define the submodels and the nonlinearities are rejected into the submodel
weighting functions. The multi-model obtained with this method is not unique: it depends
on the choice of the lower and upper bounds of the nonlinearities used in the CPT and on
the factorization used to rewrite the nonlinear system as an LPV model.

Lemma 1 Convex Polytopic Transformation [29, 28]
Let h(z(t)) be a bounded and continuous function from [z0, z1] to R, with z0, z1 ∈ Rq

and q = dim(z). Then, for all h1 ≥ maxz{h(z)} and h2 ≤ minz{h(z)}, there exist two
nonnegative functions F1 and F2

F1(z(t)) =
h(z(t))− h2
h1 − h2

F2(z(t)) =
h1 − h(z(t))

h1 − h2
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such that:
F1(z(t)) + F2(z(t)) = 1

h(z(t)) = F1(z(t)) · h1 + F2(z(t)) · h2

Let us briefly give the important points of the general method to obtain a multi-model
structure from a nonlinear formulation, and afterwards illustrate this method by an aca-
demical example.

2.1 Analytical method

Firstly, using a direct factorization of the state x and the input u, the system (1) is trans-
formed into a quasi-linear parameter varying (quasi-LPV) form:

ẋ(t) =A(x(t), u(t))x(t) +B(x(t), u(t))u(t) (4a)

y(t) =C(x(t), u(t))x(t) +D(x(t), u(t))u(t) (4b)

This form is a state and control pseudo-affine representation.
Secondly, the nonlinear entries of the matrices A, B, C and/or D in the variables x and

u are considered as “premise variables” and denoted zj(x, u) (j = 1, ..., q). Several choices
of these premise variables are possible due to the existence of different quasi-LPV forms (for
details on the selection procedure see [17]). To each quasi-LPV form, a premise variable set
corresponds.

Thirdly, a convex polytopic transformation is performed for all the premise variables
(j = 1, ..., q); thus the premise variables will be split into two parts, as follows:

zj(x, u) =Fj,1(zj(x, u)) zj,1 + Fj,2(zj(x, u)) zj,2 (5)

where the scalars zj,1, zj,2 are defined by

zj,1 = max
x,u
{zj(x, u)} (6a)

zj,2 = min
x,u
{zj(x, u)} (6b)

and where the partition functions Fj,1(zj), Fj,2(zj) involved in (5) are:

Fj,1(zj(x, u)) =
zj(x, u)− zj,2
zj,1 − zj,2

(7a)

Fj,2(zj(x, u)) =
zj,1 − zj(x, u)

zj,1 − zj,2
(7b)

Remark 1 For q premise variables, r = 2q submodels will be obtained.

The two partitions will contribute to the construction of submodels and to the corresponding
weighting functions. Then, the weighting functions are defined by some products of the
original functions Fj,σji

, according to:

µi(x, u) =

q∏
j=1

Fj,σji
(zj(x, u)) (8)
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Considering definition (7a)-(7b), the reader should remark that these functions respect the
conditions (3). In definition (8), the indexes σji (i = 1, ..., 2q and j = 1, ..., q) are equal to
1 or 2 and indicates which partition of the jth premise variable (Fj,1 or Fj,2) is involved in
the ith submodel.
The constant matrices Ai (i = 1, ..., 2q) are obtained by replacing the premise variables zj
in the matrix A with the scalars defined in (6a)-(6b):

Ai = A(z1,σ1
i
, ..., zq,σqi ) (9)

The form (2) is obtained by similarly defining the matrices Bi, Ci and Di.
The multi-model is consequently a convex combination of linear submodels, the nonlin-

earity of the initial system being transferred into the weighting functions related to each
sub-model.

2.2 Academical example

Let us consider the following nonlinear system:

ẋ1 = cos(x1)x2 + x31u (10a)

ẋ2 =
1
√
x2
x1 + x21x2 (10b)

Firstly, the system (10) can be represented in a quasi-LPV form:

ẋ = A(x, u) x+B(x, u) u

Several state- and control-affine quasi-LPV forms can be obtained: for the first state equation
(10a), this separation is clear because of the product between the function cos(x1) and the
second state variable x2. For the second term, x31u, we can either affect the nonlinearity
x31 in the control matrix B (11), or distribute this nonlinearity among the state vector (x1
component) and the state matrix A (12):

A(x) =

[
0 cos(x1)
1√
x2

x21

]
B(x) =

[
x31
0

]
(11)

A(x, u) =

[
x21u cos(x1)
1√
x2

x21

]
B(x) =

[
0
0

]
(12)

For the second state equation (10b), at least two possible decompositions are observed.
The most obvious decomposition is obtained by factorizing the two terms by x1 and x2
respectively (11). Another possibility is to factorize the right hand terms of (10b) only by
x1, reducing in this way the number of premise variables to three (13).

A(x) =

[
0 cos(x1)

1√
x2

+ x1x2 0

]
B(x) =

[
x31
0

]
(13)

In the following we only focus on the derivation of the MM form. The choice criteria between
the possible forms (11), (12) and (13) will be discussed later.
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Considering (13), the premise variables linked to the chosen quasi-LPV form are:

z1(x) = cos(x1)
z2(x) = x31
z3(x) = 1√

x2
+ x1x2

(14)

Secondly, the convex polytopic transformation is applied, for each premise variable zj(x)
(j = 1, ..., 3) for x1 ∈ [−2π, 2π] and x2 ∈ [0.1, 12]. Then, using lemma 1, each premise
variable will be partitioned into two parts:

z1(x) = F1,1(z1) · z1,1 + F1,2(z1) · z1,2 (15a)

z2(x) = F2,1(z2) · z2,1 + F2,2(z2) · z2,2 (15b)

z3(x) = F3,1(z3) · z3,1 + F3,2(z3) · z3,2 (15c)

where Fj,1(zj(x)) and Fj,2(zj(x)) are defined using lemma 1. For example:

F1,1(z1(x)) =
cos(x1)− z1,2
z1,1 − z1,2

(16)

and so on. The bounds zj,1 and zj,2 are chosen as in (6). The functions Fj,1 and Fj,2
respectively represent the first and the second partition of each premise variable. Let us
note that A(x) involves z1 and z3 as premise variables, while z2 is involved in B(x). Then,
the matrices A and B will be evaluated at the vertices of the polytopes defined by the
partitions of the premise variables involved in these matrices.
Applying the convex polytopic transformation (lemma 1) to z1 (15a), it follows:

A(z1, z3) =

[
0 z1(x)

z3(x) 0

]
= F1,1(x)

[
0 z1,1

z3(x) 0

]
+ F1,2(x)

[
0 z1,2

z3(x) 0

]
Applying the convex polytopic transformation (lemma 1) to z3 (15c), it follows:

A(z1, z3) = F1,1F3,1(x)

[
0 z1,1
z3,1 0

]
+ F1,2F3,1(x)

[
0 z1,2
z3,1 0

]
+F1,1F3,2(x)

[
0 z1,1
z3,2 0

]
+ F1,2F3,2(x)

[
0 z1,1
z3,2 0

]
As indicated in (2), the same weighting functions have to multiply the matrices A, B and
C. In order to also include the partitions of the premise variable z2, involved in B(z2) but
not in A(z1, z3), the matrix A is multiplied by F2,1(x) + F2,2(x) = 1:

A(z1, z3) = F1,1(x)F2,1(x)F3,1(x)

[
0 z1,1
z3,1 0

]
+ F1,2(x)F2,1(x)F3,1(x)

[
0 z1,2
z3,1 0

]
+F1,1(x)F2,2(x)F3,1(x)

[
0 z1,1
z3,1 0

]
+ F1,2(x)F2,2(x)F3,1(x)

[
0 z1,2
z3,1 0

]
+F1,1(x)F2,1(x)F3,2(x)

[
0 z1,1
z3,2 0

]
+ F1,2(x)F2,1(x)F3,2(x)

[
0 z1,2
z3,2 0

]
+F1,1(x)F2,2(x)F3,2(x)

[
0 z1,1
z3,2 0

]
+ F1,2(x)F2,2(x)F3,2(x)

[
0 z1,2
z3,2 0

]
(17)
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The same transformations are performed on the matrix B(z2):

B(z2) =

[
z2(x)

0

]
=

[
z2,1F2,1(x) + z2,2F2,2(x)

0

]
=F2,1(x)

[
z2,1
0

]
+ F2,2(x)

[
z2,2
0

]
= [F1,1(x) + F1,2(x)] [F3,1(x) + F3,2(x)]

{
F2,1(x)

[
z2,1
0

]
+ F2,2(x)

[
z2,2
0

]}
(18)

Finally, from (17) and (18) one obtains:

A(z1, z3) =

8∑
i=1

µi(x)Ai, B(z2) =

8∑
i=1

µi(x)Bi (19)

where µi(x) are combination of Fj,k(x) (j = 1, 2, 3 and k = 1, 2) and where

A1 = A3 =

[
0 z1,1
z3,1 0

]
A2 = A4 =

[
0 z1,1
z3,2 0

]
A5 = A7 =

[
0 z1,2
z3,1 0

]
A6 = A8 =

[
0 z1,2
z3,2 0

]
B1 = B2 = B5 = B6 =

[
z2,1
0

]
B3 = B4 = B7 = B8 =

[
z2,2
0

] (20)

After this example it is interesting to present a systematic way of constructing the matrices
Ai and Bi. For example, to determine A3 and B3, the triplet σ3 = (1, 2, 1) is used. This
triplet codes the variable partitions occurring in the 3rd submodel and σk3 denotes the kth

value in the triplet σ3. According to the expression of A3 and B3, these matrices may be
denoted: A3 = A(z1,σ1

3
, z3,σ3

3
) and B3 = B(z2,σ2

3
), where z1,σ1

3
, z2,σ2

3
and z3,σ3

3
are the scalars

defined in (6). In a more general way, Ai and Bi (i = 1, ..., 8) are denoted:

Ai = A(z1,σ1
i
, z3,σ3

i
)

Bi = B(z2,σ2
i
)

Those notations are consistent with (20). Associated to A3 and B3, the definition of (19) is
obtained by using the triplet σ3. Indeed :

µ3(x) = F1,σ1
3
(x)F2,σ2

3
(x)F3,σ3

3
(x) (21)

Each function defining a premise variable being partitioned into two functions, there are 23

submodels and 23 weighting functions. To each submodel i corresponds a triplet σi which
codes the variable partitions occurring in it. After multiplying the functions representing
these partitions, the weighting function µi(x) corresponding to the ith submodel is obtained.
To express the constant matrices Ai and Bi, characterizing each submodel i (i = 1, ..., 8),
we use the quasi-LPV form (13) of the system (10), where A(x, u) and B(x, u) were defined
in (13).

7



2.3 Choice Criteria for Quasi-LPV Form

Most of the existing results concerning performance analysis or observer / controller design
for MM systems are based on the solution of linear matrix inequalities (LMI) obtained by
using the Lyapunov method. Because of the convex sum property of the weighting func-
tions, the LMI are only evaluated at the polytope vertices (Ai, Bi, Ci, Di) and the weighting
functions do not occur in the resolution of the LMIs [28, 29]. Only the matrices Ai, Bi, Ci
and Di are involved in the LMIs. Moreover, it should be highlighted that the LMI for-
mulation generally results in sufficient conditions, since only the convex sum properties of
the weighting functions are used. As a consequence, even if all the quasi-LPV models are
exact equivalent rewritings of the original nonlinear system, the analysis or design results
(obtained from an LMI procedure) may not be identical for all the possible MM forms that
can be built from a given nonlinear system. That is why the choice of the premise variable
set and the corresponding submodels is a critical point in the MM form derivation and it is
essential to propose choice criteria for the MM structure [17, 18] in order to obtain the most
suitable MM form and thus reduce the complexity of a nonlinear system.

First of all, in the framework of controller/observer design, the controllability/observability
of the system under MM form should be ensured. A necessary -but not sufficient- condi-
tion for LMI-based designs is that all the submodels are controllable/observable, thus, the
quasi- LPV forms producing submodels that are not controllable/observable must be elimi-
nated. For instance, in the previous example, the form (12) with Bi = 0, is not suitable for
controller design since all the submodels are uncontrollable.

The number of LMI constraints used for analysis and design is directly linked to the
number of submodels: it is linear or polynomial in r [28]. Obviously, the larger this number
of LMI constraints is, the less likely a solution to the LMI optimization exists. Also from a
computational point of view, it is thus useful to chose the quasi-LPV form with a minimal
r, that is to say with a minimum number of premise variables.

In addition to that, the observer/controller design for MM with premise variables de-
pending on the state variables is a lot more complex than if the premise variables are known
[8, 7, 19, 32]. As a consequence, MM form with premise variables depending on a minimal
number of state variables is preferable.

2.4 Multiple time scale case

Real systems can have multiple time scale dynamics. In this case, the singular perturbation
theory is often used to systematically identify the different time scales and to decompose
the system dynamics according to them [23, 11]. Nevertheless, it is generally not trivial to
model a process under the standard singularly perturbed form. One of the main tasks to
realize is the identification and separation of the so-called slow and fast dynamics. In [6]
this identification / separation is realized for a particular biological process by comparing its
kinetic parameters. But this approach is dedicated to biological processes that are far from
encompassing all nonlinear systems. So, more general methods to identify different time
scales were proposed in [24]. These methods are based on the evaluation of the jacobian
eigenvalues of the linearized system and will be used here.

8



After the separation of the multiple-time scale dynamics, the standard singularly per-
turbed form is obtained. In the limit case, when the singular perturbed parameter tends
towards zero, a reduced form can be derived, with a dynamic part expressed by ordinary
differential equations and a static part expressed by analytic equations, allowing to reduce
the complexity of the model and simplifying its use, for control, estimation and diagnosis.

2.4.1 The singularly perturbed form.

The standard formulation of the singular perturbed systems with two-time scales and un-
known inputs (UI) can be expressed as follows:

εẋf (t) = ff (xs(t), xf (t), u(t), d(t), θ(t), ε) (22a)

ẋs(t) = fs(xs(t), xf (t), u(t), d(t), θ(t), ε) (22b)

y(t) = g(x(t), u(t), d(t)) (22c)

where x = [xf , xs]
T , xs ∈ Rns and xf ∈ Rnf are respectively the slow and fast state

variables, u ∈ Rnu the input vector, d ∈ Rnd the unknown input vector, θ ∈ Rnθ the
modeling uncertainty, y ∈ Rny the output vector, ff ∈ Rnf , fs ∈ Rns , g ∈ Rny and ε is a
small and positive scalar, known as singular perturbed parameter.

Model uncertainty θ(t) generally refers to a difference between the model and the real
system. It can be caused by imperfect knowledge or changes of the process or of its operating
conditions. It can also be due to malfunctions acting on the process parameters. The
unknown inputs d(t) allow to model external disturbances or unmeasured inputs of the
system. The nonlinear dynamic model with two time scales (22) takes these internal and
external uncertainties into account.

In the limit case where ε → 0, the degree of the system (22) degenerates from nf + ns
to ns, and the system is approximated by the following reduced system:

Ēẋ(t) =

[
ff (xf (t), xs(t), u(t), d(t), θ(t), 0)
fs(xf (t), xs(t), u(t), d(t), θ(t), 0)

]
= f(x(t), u(t), d(t), θ(t)) (23a)

y(t) = g(x(t), u(t), d(t)) (23b)

with Ē defined by:

Ē =

[
0nf 0
0 Ins

]
(24)

In order to obtain the standard singularly perturbed form (23) from a classical nonlinear
modeling (1), the identification and separation of slow and fast dynamics is the key point
[6, 26]. The mathematical homotopy method for the linearized system, proposed by [30]
and later improved by [24], is used to link each state variable with an eigenvalue. By
comparing the eigenvalues, the biggest (respectively the smallest) ones will be associated
with the slowest (respectively fastest) dynamics. Note that the linearized system is only
used to identify the slow and fast dynamics, but not for the observer design. An equivalent
MM representation will be used for this purpose, as presented in the previous section 2.1.
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2.4.2 The homotopy method.

Based on the eigenvalue analysis of the linearized system, the homotopy method allows the
identification and separation of the slow and fast dynamics [24].
Let us consider the linearization of the nonlinear system (1) around various equilibrium
points (x0, u0):

ẋ(t) = A0x(t) +B0u(t) (25)

where A0 =
∂f(x, u)

∂x

∣∣
(x0,u0) and B0 =

∂f(x, u)

∂u

∣∣
(x0,u0) .

Ordering the eigenvalues of A0 according to λ1 ≤ λ2 ≤ ... ≤ λnx , the biggest (resp. smallest)
eigenvalue corresponds to the slowest (resp. fastest) dynamic. The separation is performed
by fixing a threshold τ , such that: λ1 ≤ ... ≤ λnf << τ ≤ λnf+1 ≤ ... ≤ λn.
If every eigenvalue can be connected to a given state variable, thus the dynamics of every
state can be quantitatively estimated. The homotopy method requires to consider a system
such that there exists an obvious relation between the eigenvalues and the states, as for
example the diagonalized matrix of the jacobian matrix A0. Further details on this method
will be given in section 4 with the application to the WWTP.

2.4.3 Singular multi-models.

A singular MM can be derived from a nonlinear singular systems in a similar way than the
MM has been obtained from the nonlinear systems (1) in section 2. The singularly perturbed
systems presented under a MM form with unknown inputs and modeling uncertainty has
the following form:

Ē ẋ(t) =

r∑
i=1

µi(x(t), u(t)) [Ai(θ(t))x(t) +Bi(θ(t))u(t) + Eid(t)] (26a)

y(t) = Cx(t) +Du(t) +Gd(t) (26b)

where the weighting functions µi(x, u) depend on the unmeasurable state variables x ∈ Rnx
and on the input variables u ∈ Rnu . The variables d ∈ Rnd are the unknown inputs,
θ(t) ∈ Rnθ the modeling uncertainty and y ∈ Rny the output variables. The matrices Ei,
C, D and G are known real matrices and Ai(θ(t)), Bi(θ(t)) are time varying matrices.
The matrix Ē can be a singular matrix (i.e. rank(Ē) ≤ nx). The functions µi(x, u)
respect the convexity conditions. Since in most practical situations, the sensor location and
characteristics do not depend on the operating conditions, it is realistic to consider linear
time invariant output equation (26b). This assumption is satisfied by the WWTP considered
as an application in this chapter.

2.5 Modeling uncertainties as UI in MM.

In most studies [32, 33, 21] the modeling uncertainties are norm bounded and are expressed
additively in the state matrix of the dynamic nonlinear model [21]. In this chapter, more
general class of modeling uncertainties is assumed.
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Let us consider that the uncertainties θ(t) = [θ1(t), θ2(t), · · · θnθ (t)]
T

occur linearly in Ai
and Bi (26):

Ai(θ(t)) =Ai,0 +
∑
j∈IA

θj(t)Ai,j , Bi(θ(t)) = Bi,0 +
∑
j∈IB

θj(t)Bi,j (27)

The components θj(t) of the vector θ(t) are time-varying parameters. The index set IA, with
nA = card(IA), (resp. IB , with nB = card(IB)) gathers the indexes of the components of
the vector θ(t) that are involved in the matrices Ai(θ(t)) (resp. Bi(θ(t))). Obviously, these
sets satisfy the following property: IA ∪ IB = Iθ, where Iθ = {1, ..., nθ}. Moreover, θAj (t),

for j = 1, . . . , nA (resp. θBj (t), for j = 1, . . . , nB) denote the components of θ(t) involved in
Ai(θ(t)) (resp. Bi(θ(t))). The matrices Ai,0, Bi,0, Ai,j (i = 1, · · · , r and j ∈ IA) and Bi,j
(i = 1, · · · , r and j ∈ IB) are constants known matrices.

These uncertainties cause changes in the model parameters and may impact on the
system stability. They are called multiplicative faults since they appear as product terms
in (26). The main goal in the state estimation framework, is to minimize the influence
of these parameter changes on the state estimation error. To this aim, these time-varying
parameters can be considered as unknown inputs, by augmenting d(t). Substituting the
uncertain matrices (27) in (26) yields to:

Ēẋ(t) =

r∑
i=1

µi(z(t))

Ai,0 +
∑
j∈IA

θj(t)Ai,j

x(t)

+

Bi,0 +
∑
j∈IB

θj(t)Bi,j

u(t) + Eid(t)

 (28)

y(t) = Cx(t) +Du(t) +Gd(t)

Defining the augmented UI and its incidence matrices by:

d̄(t) =
[
(θA1 (t)x(t))T . . . (θAnA(t)x(t))T (θB1 (t)u(t))T . . . (θBnB (t)u(t))T dT (t)

]T
F̄i =

[
Ai,1 . . . Ai,nA Bi,1 . . . Bi,nB Ei

]
Ḡ =

[
0 . . . 0 0 . . . 0 G

]
the uncertain MM with UI can be written as the following MM (with an augmented UI but
no uncertain terms):

Ēẋ(t) =

r∑
i=1

µi(x(t), u(t))
[
Ai,0x(t) +Bi,0u(t) + F̄id̄(t)

]
y(t) = Cx(t) +Du(t) + Ḡd̄(t) (29)

3 Observer synthesis for singular multi-models

As seen in the previous section, the singular MM approach is a powerful tool to represent two
time scale nonlinear systems, at least on a compact set of the state space (chapter 14 of [28],
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[17]). It should be highlighted that although the CPT naturally leads to MM with premise
variables depending on the state variable, and thus being unmeasurable, most of the existing
works on MM consider measured premise variables. Only a few works are devoted to MM
with unmeasurable premise variables (UPV) depending on the state variables [7, 19, 20, 3].
Since state estimation is known to be a crucial step in process control or diagnosis, thus
observer design for singular MM affected by unknown input (UI) with UPV is of interest.

On the one hand, some works are devoted to state estimation of nonsingular MM with
UPV [32, 2, 8], which is not trivial since the weighting functions used to synthesize the
observer cannot depend on the state variables and will involve their estimates. On the other
hand, many works deal with observer design for singular systems (see the book [31] and the
references therein) and some of them are dedicated to state estimation of singular MM with
UI [15], but the premise variables are supposed to be measured.

Here an unknown input observer (UIO) for descriptor MM with UPV is proposed. The
proposed observer is a nonsingular MM in order to simplify the implementation. The ex-
istence conditions of the observer are expressed through linear matrix inequalities (LMI)
by using the Lyapunov method and the L2 approach. The LMI approach has been chosen
since it is well known to be a convenient tool to formulate various design objectives (stabil-
ity, norm-bound, etc) [4]. In the following, the system under consideration is a singularly
perturbed nonlinear system with two time scales (23), rewritten as a singular MM with UI
and UPV(29).

Hypothesis 1 The model (29) satisfies the following rank condition

rank(W ) = rank

([
W
Y

])
(30)

where, denoting the Kronecker product by ⊗, W and Y are defined by:

W =

 Ē 0nx×nd F̄1 · · · F̄r
C Ḡ 0ny×nd · · · 0ny×nd

0rny×nx 0rny×nd Ir ⊗ Ḡ

 (31a)

Y =
[
Inx 0nx×nd 0nx×rnd

]
(31b)

In order to simplify its implementation, the proposed following observer is chosen to be a
nonsingular MM, even if the system to estimate is singular, :

ξ̇(t) =

r∑
i=1

µi(x̂, u) [Niξ(t) +Giu(t) + Liy(t)] (32)

x̂(t) = ξ(t) + T2y(t)− T2Du(t) (33)

where x̂(t) denotes the state estimate. The state estimation error is given by

e(t) = x(t)− x̂(t) (34)

It is important to note that the weighting functions µ involved in the observer (32) depends
on the x̂ and thus the observer is nonlinear.

The observer design reduces to finding the gains Ni, Gi, Li and T2 such that the state
estimation error obey to a stable generating system.

12



Theorem 1 The observer (32) for the system (26) is obtained by finding a symmetric and
positive definite matrix X ∈ Rnx×nx and a matrix Z̃ ∈ Rnx×(nx+ny(r+1)) that minimize the
positive scalar γ̄ under the following LMI constraints:[

Φi (X Y W+ + Z̃ W⊥) Ω

ΩT (X Y W+ + Z̃ W⊥)T −γ̄I

]
< 0 i = 1, ..., r (35)

where the matrices Ω and Φi are defined by

Ω = [ In 0 0 · · · 0 ]
T

Φi = (YW+Yi)
TX +X (Y W+ Yi) + (W⊥Yi)

T Z̃T + Z̃ (W⊥Yi) + I (36)

with W ∈ R(nx+ny(r+1))×(nx+nd(r+1)) and Y ∈ Rnx×(nx+nd(r+1)) are defined by (31), and
where W+ is the pseudo inverse of W , W⊥ = I − WW+ denotes the orthogonal of W
verifying W⊥W = 0 and where the matrices Yi ∈ R(nx+ny(r+1))×nx are defined by

Yi =

 Ai,0
0l×n
vi ⊗ C

 , i = 1, ..., r (37)

The vector vi ∈ Rr×1 is the column vector containing 1 on the ith entry and 0 on all the
others.
Once X and Z̃ are obtained from LMI optimization (35), the matrices Z, T1, T2 and Ki

(i = 1, ..., r) can be deduced by

Z = X−1 Z̃ (38)[
T1 T2 K1 . . . Kr

]
= YW+ + ZW⊥ (39)

Finally, the observer gains are determined by

Ni = T1Ai,0 +KiC (40)

Gi = T1Bi,0 (41)

Li = NiT2 −Ki (42)

Proof 1 See [10] �

4 Application to Wastewater Treatment Plant

4.1 Process description and ASM1 model

The widely used activated sludge wastewater treatment plant consists in mixing used waters
with a rich mixture of bacteria in order to degrade the organic matter [22]. In this work, the
data are generated by a part of the COST Benchmark [5]. The chosen WWTP configuration
is a single tank (or bioreactor) and a settler (or clarifier), its general structure is depicted
on figure 1. On figure 1, qin represents the wastewater input flow, qout the output flow, qa
the air flow and qr (resp. qw) are the recycled (resp. rejected) flow. The reactor volume
V is assumed to be constant and thus the following equality is available for the reactor:
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Figure 1: Wastewater treatment process diagram

qout(t) = qin(t) + qr(t). In general, qr(t) and qw(t) represent fractions of the input flow:
qr(t) = fr qin(t), 1 ≤ fr ≤ 2, qw(t) = fw qin(t), 0 < fw < 1.

The polluted water circulates in the bioreactor where the bacterial biomass degrades the
organic pollutant. Micro-organisms bring together in flocs and produce sludge, that is sent
to the clarifier where the separation of the bacterial biomass from the purified water is made
by gravity. A fraction of settled sludges is recycled towards the bioreactor to maintain its
capacity of purification.

For observer/controller design, models of lower complexity are required since the full
ASM1 model is quite complicated and may contain unnecessary informations for control
and diagnosis tasks. Nevertheless, a quite complete model is considered here, since it in-
volves the following components: soluble carbon SS , particulate XS , dissolved oxygen SO,
heterotrophic biomass XBH , ammonia SNH , nitrate SNO, autotrophic biomass XBA, soluble
inert SI , suspended inert XI , soluble organic nitrogen SND and suspended organic nitrogen
XND. Only the following components are not considered: the inert component XP and the
alkalinity Salk. In practical situation, a single organic compound (denoted XDCO) will be
considered by adding the soluble part SS and the particulate part XS [25].

According to the setup of the European Benchmark COST 624 [5], it is assumed that
SO,in ∼= 0, SNO,in ∼= 0 and XBA,in

∼= 0. Here, the operating conditions of the Bleesbrck
(Luxembourg) WWTP are used for modeling and simulation: the concentrations SNH,in,
XDCO,in and XBH,in are not measured on line. Thus, SNH,in is considered as an unknown
input and a daily mean value is used for XDCO,in and XBH,in, which is a frequently used
approximation. The measured concentrations are: the dissolved oxygen SO, routinely mea-
sured in activated sludge WWTP, both nitrate SNO and ammonia SNH and the organic
compound XDCO. Consequently, the output y = y(t), the input u = u(t) and the unknown
input d = d(t) vectors are:

y = [XDCO, SO, SNH , SNO]T (43)

u = [XDCO,in, qa, XBH,in, SI,in, XI,in, SND,in, XND,in]T (44)

d = SNH,in (45)

14



Let us consider the following explicit form of the ASM1:

ẊDCO(t) = − 1

Yh
[ϕ1(t) + ϕ2(t)] + (1− fp)(ϕ4(t) + ϕ5(t)) +D1(t)

ṠO(t) =
Yh − 1

Yh
ϕ1(t) +

Ya − 4.57

Ya
ϕ3(t) +D2(t)

ṠNH(t) = −ixb[ϕ1(t) + ϕ2(t)]−
[
ixb +

1

Ya

]
ϕ3(t) +D3(t)

+(ixb − fp ixp)[ϕ4(t) + ϕ5(t)]

ṠNO(t) =
Yh − 1

2.86Yh
ϕ2(t) +

1

Ya
ϕ3(t) +D4(t)

ẊBH(t) = ϕ1(t) + ϕ2(t)− ϕ4(t) +D5(t)

ẊBA(t) = ϕ3(t)− ϕ5(t) +D6(t)

ṠI(t) = D7(t)

ẊI(t) = fp[ϕ4(t) + ϕ5(t)] +D8(t)

ṠND(t) = −ϕ6(t) + ϕ8(t) +D9(t)

ẊND(t) = (ixb − fpixp)[ϕ4(t) + ϕ5(t)]− ϕ8(t) +D10(t) (46)

where

ϕ1(t) = µh
XDCO(t)

Kdco+XDCO(t)
SO(t)

Koh+SO(t)XBH(t)

ϕ2(t) = µhηNOg
XDCO(t)

Kdco+XDCO(t)
SNO(t)

Kno+SNO(t)
Koh

Koh+SO(t)XBH(t)

ϕ3(t) = µa
SNH(t)

Knh,a+SNH(t)
SO(t)

Ko,a+SO(t)XBA(t)

ϕ4(t) = bhXBH(t)
ϕ5(t) = baXBA(t)
ϕ6(t) = kaSND(t)XBH(t)

ϕ7(t) = kh
XDCO(t)/XBH(t)

Kdco+XDCO(t)/XBH(t)

(
SO(t)

Koh+SO(t) + ηh
Koh

Koh+SO(t)
SNO(t)

Kno+SNO(t)

)
XBH(t)

ϕ8(t) = kh
XND(t)/XBH(t)

Kdco+XDCO(t)/XBH(t)

(
SO(t)

Koh+SO(t) + ηh
Koh

Koh+SO(t)
SNO(t)

Kno+SNO(t)

)
XBH(t)

and where Ya, Yh, fp, ixb, ixp are constant coefficients and Kdco = Ks
fss

.
The input/output balance is defined by:

D1(t) = Din(t) [XDCO,in(t)−XDCO(t)]
D2(t) = Din(t) [−SO(t)] +Kqa(t) [SO,sat − SO(t)]
D3(t) = Din(t) [SNH,in(t)− SNH(t)]
D4(t) = Din(t) [−SNO(t)]

D5(t) = Din(t)
[
XBH,in(t)−XBH(t) + fr(1−fw)

fr+fw
XBH(t)

]
D6(t) = Din(t)

[
−XBA(t) + fr(1−fw)

fr+fw
XBA(t)

]
D7(t) = Din(t)[SI,in(t)− SI(t)]
D8(t) = Din(t)

[
XI,in(t)−XI(t) + fr(1−fw)

fr+fw

]
XI(t)

D9(t) = Din(t)[SND,in(t)− SND(t)]

D10(t) = Din(t)
[
XND,in(t)−XND(t) + fr(1−fw)

fr+fw

]
XND(t)

(47)
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where Din(t) = qin(t)
V . For numerical applications, the following heterotrophic growth and

decay kinetic parameters are used [22]: µh = 3.733[1/24h], µa = 0.3[1/24h], Ks = 20[g/m3],
fss = 0.79, Koh = 0.2[g/m3], Ko,a = 0.4[g/m3], Kno = 0.5[g/m3], Knh,a = 1[g/m3], bh =
0.3[1/24h], ba = 0.05[1/24h], ηNOg = 0.8. The stoichiometric parameters are Yh = 0.6[g cell
formed], Ya = 0.24[g cell formed], ixb = 0.086[g N in biomass], ixp = 0.06[g N in endogenous
mass], fp = 0.1 and the oxygen saturation concentration is SO,sat = 10[g/m3], fr = 1.1 and
fw = 0.04, V = 1333[m3].

4.2 Slow and fast variable separation

In this section the identification of the slow and fast dynamics of the ASM1 model (46)
is realized with the homotopy method [24], described in section 2.4. Let us consider the
linearization of the nonlinear system (46) around various equilibrium points (x0, u0):

ẋ(t) = A0x(t) +B0u(t) (48)

where A0 =
∂f(x, u)

∂x

∣∣
(x0,u0) and B0 =

∂f(x, u)

∂u

∣∣
(x0,u0) .

For the considered model ASM1 (46), the separation of two time scale dynamics is confirmed
by the eigenvalues of the jacobian A0, depicted on figure 2 for forty operating points. Nine
of the ten eigenvalues lie in [−75 − 1], while the last one is lower than −350. Setting a
threshold at τ = −90, it can be deduced that the system has one fast dynamic and nine
slow dynamics:

xF (t) = XDCO(t) (49)

xS(t) = [SO(t) SNH(t) SNO(t) XBH(t) XBA(t) SI(t) XI(t) SND(t) XND(t) ]T

(50)
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Figure 2: The eigenvalues of the linearized decoupled system
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4.3 Singular multi-model representation for ASM1

The methodology proposed previously, in section 2, is applied here to obtain a multi-model
structure for the ASM1 model. Based on the identification and the separation of the fast
and slow dynamics, the obtained MM is singular.

Considering the process equations (46), it is natural to define the following premise
variables since they mainly contribute to the definitions of the nonlinearity of the wastewater
system:

z1(x, u) =
qin(t)

V

z2(x, u) =
XDCO(t)

Kdco +XDCO(t)

SO(t)

Koh + SO(t)

z3(x, u) =
SO(t)

Ko,a + SO(t)

SNH(t)

Knh,a + SNH(t)

z4(x, u) = SND(t) (51)

z5(x, u) =
XDCO(t)

Kdco +XDCO(t)

SNO(t)

Kno + SNO(t)

Koh

Koh + SO(t)

z6(x, u) =

XND(t)
XBH(t)

Kdco + XDCO(t)
XBH(t)

[
SO(t)

Koh + SO(t)
+

ηhKoh

Koh + SO(t)

SNO(t)

Kno + SNO(t)

]
According to the remark 1, 6 premise variables will result in 64 submodels, which can lead to
infeasible LMI condition for the observer design. An alternative is to reduce the number of
premise variables by considering some of them as constant terms equal to their mean value
in the operating time interval. Figure 3 illustrates the evolution of the premise variables
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Figure 3: Evolution of the premise variables z1(t), . . . z6(t)

(51). The small variation ranges of the premise variables z3, z5 and z6, compared to the
others, encourage to consider their means value (respectively denoted z̃3, z̃5 and z̃6) in the
MM construction. Using this approximation, only three premise variables, namely z1, z2
and z4, are considered to design the multi-model, which is thus described by 23 submodels.
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The system (46) can be written in a following Quasi-LPV form with unknown input
ẋ(t) = A(x, u)x(t) + B(x, u)u(t) + F (x, u)d(t), where the matrices A(x, u), B(x, u) and
F (x, u), depending on the premise variables previously defined, are given by:

A(x, u) =



a1,1 0 0 0 a1,5 a1,6 0 0 0 0
0 a2,2 0 0 a2,5 a2,6 0 0 0 0
0 0 a3,3 0 a3,5 a3,6 0 0 0 0
0 0 0 a4,4 a4,5 0 0 0 0 0
0 0 0 0 a5,5 0 0 0 0 0
0 0 0 0 0 a6,6 0 0 0 0
0 0 0 0 0 0 a7,7 0 0 0
0 0 0 0 a8,5 a8,6 0 a8,8 0 0
0 0 0 0 a9,5 0 0 0 a9,9 0
0 0 0 0 a10,5 a10,6 0 0 0 a10,10



B(u) =



z1 0 0 0 0 0
0 K SO,sat 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 z1 0 0 0
0 0 0 z1 0 0
0 0 0 0 z1 0
0 0 0 0 0 z1


, F (u) =



0
0
z1
0
0
0
0
0
0
0


(52)

where z1 = z1(u), the matrices components a1,1(x, u) = a3,3(x, u) = a4,4(x, u) = a7,7(x, u)
= a9,9(x, u) = −z1(u) and where:

a1,5(x, u) = −µh
Yh
z2(x, u) + (1− fp) bh −

µh ηNOg
Yh

z̃5

a1,6(x, u) = (1− fp) ba
a2,2(x, u) = −z1(u)−K qa

a2,5(x, u) =
(Yh − 1)µh

Yh
z2(x, u)

a2,6(x, u) = −4.57− Ya
Ya

µa z̃3

a3,5(x, u) = (ixb − fp ixp)bh − ixb µh z2(x, u)− ixb µh ηNOg z̃5

a3,6(x, u) = (ixb − fp ixp) ba − (ixb +
1

Ya
)µa z̃3

a4,5(x, u) =
Yh − 1

2.86Yh
µh ηNOg z̃5

a4,6(x, u) =
1

Ya
µaz̃3

a5,5(x, u) = µh z2(x, u)− bh + z1(u)

[
fw(1 + fr)

fr + fw
− 1

]
+ µh ηNOg z̃5
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Figure 4: Weighting functions µi(z(x, u))

a6,6(x, u) = z1(u)

[
fw(1 + fr)

fr + fw
− 1

]
− baµa z̃3

a8,5(x, u) = fpbh

a8,6(x, u) = fpba

a8,8(x, u) =

[
fr(1− fw)

fr + fw
− 1

]
z1(u)

a9,5(x, u) = −ka z4(x, u) + kh z̃6

a10,5(x, u) = (ixb − fp ixp)bh − kh z̃6
a10,6(x, u) = (ixb − fp ixp)ba

a10,10(x, u) =

[
fr(1− fw)

fr + fw
− 1

]
z1(u) (53)

The decomposition of the three premise variables -z1(u), z2(x, u) and z4(x, u)- from (51)
is realized by using the convex polytopic transformation (5). The scalars zj,1 and zj,2
are defined as in (6a)-(6b) and the functions Fj,1(zj(x, u)) and Fj,2(zj(x, u)) are given by
(7a)-(7b) for j = 1, 2, 4. By multiplying the functions Fj,σji

(zj(x, u)), the r = 8 weighting

functions µi(z(x, u)) (i = 1, · · · , 8) are obtained and illustrated in figure 4:

µi(z(x, u)) = F1,σ1
i
(z1(u))F2,σ2

i
(z2(x, u))F4,σ4

i
(z4(x, u)) (54)

The constant matrices Ai, Bi and Fi defining the 8 submodels, are determined by using
the matrices A(x, u), B(u), F (u) and the scalars zj,σji

:

Ai = A(z1,σ1
i
, z2,σ2

i
, z4,σ4

i
) (55a)

Bi = B(z1,σ1
i
) (55b)

Fi = F (z1,σ1
i
) i = 1, ..., 8, j = 1, 2, 4 (55c)

According to the fast and slow variable separation (49), performed in section 4.2, the matrix
Ē of the singular multi-model formulation (23) is defined by:

Ē = diag
[
0 1 1 1 1 1 1 1 1 1

]
(56)
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Thus, the nonlinear model (43)-(46) can be written as the following singular MM:

Ēẋ(t) =

r∑
i=1

µi(x, u)[Aix(t) +Biu(t) + Fid(t)] (57a)

y(t) = Cx(t) +Du(t) +Gd(t) + δ(t) (57b)

where D and G are null matrices of appropriate dimensions, C is defined by

C =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

 (58)

and where δ(t) is a measurement noise modeled by a zero mean random signal.
In order to highlight and quantify the accuracy of the approximation of the ASM1 (46),

provided by the singular MM (57), the average relative deviation (ARD) is computed for
each state variable by:

ARDj =
1

nt

nt∑
i=1


∣∣∣xjMM (i)− xjASM1(i)

∣∣∣
xjMM (i)

× 100%, for j = 1, ..., nx (59)

where nt is the number of data points. The following obtained values of the ARD:

ARD = [1.85 0.71 0.28 5.60 1.37 0.25 0.05 0.07 2.31 0.45] %

confirm that the state trajectories of the original system (46) and of the approximated one
(57) are close. In conclusion, the ASM1 model (46) can be rewritten under the singularly
MM with unmeasurable premises, as described in (26) and the state estimation, proposed
in section 3, can be applied.

4.4 Unknown input observer design

As seen is section 3, a nonsingular multi-observer (32) can be designed based on the singularly
perturbed multiple model (26) or (29). The matrices Ē, Ai, Bi, F̄i, C and Ḡ of (29) are
defined by (55,56,58) and the weighting functions are defined in (54).

Let us consider the model uncertainties θA1 (t) = θ1(t), θA2 (t) = θ2(t) and θA3 = θ3(t)
caused by the deviation of three model parameters from their following nominal values:
fss = 0.79, ηNOg = 0.8 and Kno = 0.5 involved in the ASM1 model (46) (see figure 5). The
uncertain parameter fss influences the dynamic of the states XDCO, SO, SNH , XBH , SND
and XND. The parameter ηNOg interferes with the dynamic of the states XDCO, SNH ,
SNO, XBH . The uncertain parameter Kno affects the dynamics of XDCO, SNH , SNO, SND
and XND. Applying the theorem 1, the observer matrices Ni, Gi, Li and T2 are deduced,
by using the specific solver Yalmip for convex optimization problems [12, 13].

In figure 6 the state variables and their estimates are presented. Figures 7 and 8 represent
the unknown input d(t) and the known input u(t), respectively. The L2 gain of the transfer
from ω(t) to e(t) is bounded by γ = 4.5. The reconstructed output ŷ(t) = C x̂(t) of the
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Figure 5: Time varying model uncertainties

system is presented in figure 9. One can see that although a noise is added on the output
measurements, output and state estimation are of good quality. One can see that the state
and output estimation are of good quality, even if the observer design is based on a reduced
system with some simplifying assumptions (fast dynamic considered as algebraic relation,
constant premise variables) and even if a measurement noise is added on the system outputs.
The VAF (Variance Accounted For) coefficient between two signals is chosen to asses the
state estimation quality. The VAF between the ith component of x and x̂ is defined by:

V AFxi =
[
1− var(xi−x̂i)

var(xi)

]
100% (a VAF of 100% corresponds to identical signals). The

VAF coefficients computed for the original and estimated the state variables are:

V AFx = [92.71; 96.45; 95.35; 95.53; 70.25; 86.75; 99.13; 98.73; 82.91; 96.02]

5 Conclusion

In this chapter, some tools for model complexity reduction and their application for ob-
server design were exposed and illustrated on an environmental process. Firstly, a method
to rewrite, with no information loss, a generic nonlinear dynamic model as a multi-model
with linear submodels and state dependent premise variables was proposed. Since several
multi-model forms can be obtained from the original nonlinear model, some choice criteria
were recalled in order to select the most suitable form, according to its use (performance
analysis, observer / controller design, fault diagnosis etc). Secondly, slow and fast dynamics
of the model are identified and separated and the MM is modified according to this sepa-
ration. The fast dynamics being taken into account as algebraic relations, then a singular
multi-model is obtained. In order to estimate the state of such systems, even when all the
inputs are not known (unknown input allow to model not only external disturbances or
unmeasured system inputs, but also modeling errors), an observer for singular multi-model
with unmeasurable premise variables and affected by unknown inputs is proposed. The
observer design, aiming at minimizing the influence of the unknown inputs, noise measure-
ments and modeling uncertainties on the estimation, is formulated as an LMI optimization
problem. The observer provides the estimation of the slow and fast state variables. Finally,
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Figure 6: Original and estimated state variables of the ASM1 model
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Figure 7: Unknown input of the ASM1 model

an application to a realistic model of a wastewater treatment plant has been exposed and
gives good results using the complete ASM1 model.
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