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Abstract— Process monitoring needs the development of data
analysis tools aiming at recognizing, at each time instant,
system operating mode using the measurement collected on
the system. This communication aims at presenting a method
relying on measurement analysis, able to identify operating
modes without the knowledge of the mathematical models
describing these modes. The proposed method relies on the
writing of a global model combining, in a multiplicative way, the
models describing the different modes. The parameters of this
global model are then numerically identified from the available
set of measurements. The sensitivity analysis of the global
model with regard the input/output variables then provides
an indicator to identify, at each instant, the current operating
mode. The proposed method is applied on a simplified model
of a grinding mill.

I. INTRODUCTION

The complexity of technological as well environmental
processes renders their management more and more difficult.
This complexity comes from the involved phenomena and
their numerous interactions, the dimension of the concerned
processes but also because it is desirable to optimize their
functioning. Process supervision methods therefore become
more and more sophisticated and, during the last two
decades, process diagnosis has become a discipline in its
own.

A. Motivations

The difficulty of implementing monitoring of a process
is highly related to the nature of the changes it undergoes
over time. We distinguish on the one hand, the modifica-
tions imposed by the operator depending on the production
requirements (for example modification of the process set
points) and, on the other hand, unwanted changes usually
due to the environment of process (not or hardly predictable
disturbances). The first changes being perfectly mastered, the
second type of change is the need to detect very early, in
order to propose actions that can eliminate or minimize the
adverse effects of these disturbances.

B. Definitions

Disturbances that affect the behavior of a system can also
affect its actuators, its sensors or the components constitut-
ing the system itself. Understandably, when the diagnostic
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operation is not only to detect a change in behavior, but
also to determine or locate the affected elements, this step
being known under the term fault isolation. This step is
usually completed, if possible, by a fault characterization
that is to say by an estimate of the amplitude. Based on this
magnitude, reflecting the severity of the fault, the control law
to counteract the influence of this failure will be defined.

Monitoring can also be done from the knowledge of the
different operating modes of the system. Generally, a system
is characterized by a nominal operating mode corresponding
to normal operation mode. When knowledge of the system is
sufficient and when the quality of historical data permits, it
is common to have other information characterizing normal
and abnormal operating modes. In this case, monitoring, so-
called supervised mode, is to detect as quickly as possible the
eventual transition from one mode to another, then consider
compensatory actions to be taken to restore functioning in
the nominal mode.

There are however more difficult situations where different
modes of operation have not yet been characterized. In this
case, monitoring will be carried out in unsupervised mode.
The only information available is the measurements of the
system during operation; the latter must contain sufficient
information to discern the operating modes even if they
were not a priori characterized. In the remainder of this
communication, it is this situation that will be exposed.

C. Historic elements

Detecting change of operation modes has been the subject
of numerous studies in the field of signal processing. The
first of these studies have focused on determining average
jumps in signals [11], these jumps are themselves images of
changes in a system. These techniques were then generalized
to the phase jump detection, variance and frequency [15] and
also in estimating regime change time instants [20] [21] [9].

This detection is directly applied to the signals from the
sensors, but often detected jumps are not attributable to sen-
sors but changes are the result of system behavior modifica-
tions. For this reason, these skip detection techniques must be
applied to signals reflecting system behavior changes, such
as the signal generated by the innovation sequence of the
Kalman filter [16] which is of particular structure. This gave
rise to many developments on the construction of indicators
suitable for burnout detection. In particular, these indicators
have been structured so as to locate and isolate faults and
operating modes. Note that most of these techniques rely on
the use of models that characterize the normal operation of
the systems and more rarely the malfunction situations. In



addition, some techniques have been developed also in the
absence of a model describing the operation of the systems,
especially using the principal component analysis techniques
[13] to the linear case [2], [3], and their extensions known
of kernel methods in the nonlinear case [14], [19].

The problem becomes more difficult when the event re-
sponsible for the mode change is not known. Indeed, for this
unsupervised classification problem, if the different models
are unknown, it is necessary to estimate simultaneously
model parameters and data partitioning in order to associate
to each model data that will allow its identification. As
regards the application domain, the detection of regime
change is the subject of many studies and this in a variety of
fields, such as economics and finance, traffic and epidemics,
image analysis, to name a few. The motivation for this
interest probably lies in the issues related to the ability to
detect as early as possible the change of mode of operation,
so as to provide appropriate control strategies. However, little
work on production systems or more generally technological
systems have been published. Nevertheless include [10] for
the detection of regime change operation of aircraft engines
(due to the onset of mechanical vibrations), [12] for monitor-
ing flight trajectories using a hybrid representation of their
behavior, [25] in mining engineering, [4] in metallurgical
engineering and [7] for a chemical process supervision.

The field of environmental monitoring is also the subject
of many applications. In [8], the authors compare two
probabilistic strategies to detect changes in the regime of a
river. In [18] and [23], the application relates to the detection
of regime change in marine ecosystems.

In all these applications, it is noted that it is necessary
to know the models characterizing different operating sys-
tem. This is to be compared with the proposed method in
which these models are not required. Conversely, a single
model, resulting in a certain multiplicative form all operating
regimes, is constructed without knowing the parameters of
each operating mode. The main contribution of the proposed
method is to detect mode changes without knowing the
model parameters characterizing each mode. The number of
operating modes (described by so-called local models) as
well as the model structures describing each of these modes
are known a priori. The method relies on the estimation of the
parameters of a “global” model of the system, resulting from
a multiplicative combination of local models. The sensitivity
analysis of the global model with regard the input/output
variables then provides an indicator to detect changes in the
operating mode.

D. Hypotheses

As previously mentioned, the proposed mode recognition
method doesn’t need a priori the knowledge of the models
describing these modes.

In the sequel, the following assumptions are assumed:

• The number of operating modes is a priori known and
limited to 2;

• The input/output models describing each operating
modes are linear in their variables;

• A set of measurements collected on the system assumed
to operate according to all its potential operating modes
(here the two modes) is available;

• The inputs of the system are sufficiently persistent to
allow the identification of its behaviour.

II. MAIN GOAL OF THE PROPOSED METHOD

The main goal of the proposed method is to detect
the change of operating mode of a system based on the
analysis of the measurements of its different input/output
variables. The proposed method relies on the writing of a
global model combining in a multiplicative way the models
describing the different modes. The parameters of this global
model are then numerically identified from the available
set of measurements. The sensitivity analysis of the global
model with regard the input/output variables then provides
an indicator to identify, at each instant, the current operating
mode. Subsection A uses a very simple model allowing to
give the principle of the method.

A. System with two input variables

1) Local and global models: Let us denote y the output
variable and x1, x2 the two input variables. The models
describing, at the discrete time instant k, the two considered
operating modes are written as:

{

Mode M1 : yk + b1 x1,k + a1 x2,k = 0
Mode M2 : yk + b2 x1,k + a2 x2,k = 0

(1)

Depending on the operating conditions, the system be-
haviour is described at a particular time instant k by one of
the two models M1 or M2. From the knowledge, at instant
k, of the measurement triple yk, x1,k, x2,k, it is desirable to
identify the operating mode of the system. As the parameters
ai and bi of these models are not know, a matching test of the
measurement triple to M1 or M2 is not possible. Contrarily,
this triple necessary verifies the global model defined by the
following multiplicative form:

(yk + b1 x1,k + a1 x2,k)(yk + b2 x1,k + a2 x2,k) = 0 (2)

that can be also written as:

p0 y
2
k + p1 yk x1,k + p2 x

2
1,k + p3 yk x2,k+

p4 x1,k x2,k + p5 x
2
2,k = 0

(3)

where the parameter p0 can be arbitrarily chose equal to 1.
Remark 1: The equations (2) and (3) can be compared

in order to establish the relations between the local model
parameters ai, bi and the global ones pi. In certain cases,
depending on some rank conditions, local model parameters
can be expressed from global ones. However, in that com-
munication, the persued objective is restricted to the identi-
fication of the current operating mode without providing the
model describing each mode (at least without searching to
estimate explicitly the local model parameters).
With the following definitions:

zk =
[

yk x1,k x2,k

]T

R2 =
1

2





2p0 p1 p3
p1 2p2 p4
p3 p4 2p5





(4)



the global model (3) can be written as:

zTk R2 zk = 0 (5)

2) Identification of the global model parameters: We
assume now that we have a set of measurements collected on
the system during a period where it operates according the
two modes M1 or M2. As the global model (3) is linear in pi,
a classical least squares method can be used for the parameter
identification. More generally, when the considered system
have more than one output variables, the parameters can be
easily obtained using a Principal Component Analysis (see
section III)

3) Mode change indicator: The global model is now iden-
tified. The problem now is to recognize, from the knowledge
of a new triple of measurements, the mode M1 or M2

according which the system operates. This can be done by
analysing the direction of the gradient vector of the global
model with regard the different variables as it is shown
below. Let us define:

rk = p0 y
2
k + p1 ykx1,k + p2 x

2
1,k + p3ykx2,k+

p4 x1,kx2,k + p5 x
2
2,k

(6)

The gradient σk of rk with regard the variables yk, x1,k

et x2,k is:

σk =





2p0yk + p1x1,k + p3x2,k

p1yk + 2p2x1,k + p4x2,k

p3yk + p4y1,k + 2p5x2,k



 (7)

Equation (7) provides an explicit form of the model
gradient combining the two operating modes. It depends on
numerical values of the system variables and on the known
parameters pi of the global model but do not involve the
unknown local model parameters ai, bi.

This gradient vector can be used as a mode indicator. At
instant k, the measurement triple is yk, x1,k, x2,k. If, at that
instant, the system operates according to model M1, we have
yk = −b1x1,k − a1x2,k and if it operates according M2:
yk = −b2x1,k − a2x2,k . Substituting these two expressions
in (7) leads to:

σk,1 = (b2 − b1)x1,k + (a2 − a1)x2,k





1
b1
a1





σk,2 = (b2 − b1)x1,k + (a2 − a1)x2,k





1
b2
a2





(8)

The magnitude of σk,1 and σk,2 are time varying, but
each retain a constant direction. Therefore, at instant k, the
gradient of r is oriented according one of the two following
directions:

σ̄1 =





1
b1
a1



 , σ̄2 =





1
b2
a2



 (9)

More generally, for an available set of measurements at
different time instants, the gradient vector orients according
the two directions σ̄1 or σ̄2 only which respectively char-
acterize the modes M1 et M2. It is therefore very simple

to identify, at each time instant, according which mode the
system operates and thus to detect a change of mode.

Let us remark that equation (8) expresses the gradient on
the basis of the measurements x1,k, x2,k which are known
and the local model parameters a1, b1, a2, b2 which are
unknown. Then, this expression is not useful for the nu-
merical evaluation of the gradient but provides a theoretical
explanation about the direction taken by this vector.

Remark 2: The proposed procedure, established for two
operating modes, can be easily extended to any number of
modes.

4) Implementation of the proposed method: On a prac-
tical point of view, the gradient calculus is done using its
definition (7) based on the knowledge of the global model
parameters. Indeed, (9) cannot be used as it depends on the
unknown local model parameters. Therefore, the procedure
for determining, at each time, the operating mode of the
system can be sum up as:

• from previously acquired data on a system that covered
all operating modes, estimate the global model param-
eters pi with a least squares method,

• at each time k, using the global model parameters,
evaluate, from the inputs and outputs of the system,
the gradient vector σk

• Compare σk with σ̄1 and σ̄2 and recognize the operating
mode.

B. Generalization to linear models of any order

The generalization to a linear system described by n input
variables xi is immediate. This generalization is particularly
useful when the exogeneous variables are introduced pro-
gressively into the model with the objective to determine its
structure. The two modes are then described by:

{

Mode 1 : yk − θT1 vk = 0
Mode 2 : yk − θT2 vk = 0

(10)

yk and vk =
[

x1,k . . . xn,k

]

denoting respectively the
exogeneous (output) variable and the exogeneous (input)
variable vector; θ1 et θ2 are the parameter vectors of the
models describing the two operating modes. The global
model:

rk = (yk − θT1 vk) (yk − θT2 vk) (11)

has the following gradient with regard yk and vk :














∂rk
∂yk

= yk − θT2 vk + yk − θT1 vk

∂rk
∂vk

= −θ1 (yk − θT2 vk)− θ2 (yk − θT1 vk)

(12)

Consequently, if yk and vk are the measurements issued
from the operating mode M1, then yk = θT1 vk, that leads to
the following expression of the gradient:















∂rk
∂yk

= (θ1 − θ2)
T vk

∂rk
∂vk

= −θ1(θ1 − θ2)
T vk

(13)



So, for data collected on the system that operates accord-
ing to M1, the gradient vector orients according the specific
fixed direction defined by

[

1 −θ1
]T

. Identically, when
measurements come from the system operating according
the M2 mode, the gradient vector orients according another
given direction defined by

[

1 −θ2
]T

.
In what concern the method implementation, as the θ1 and

θ2 parameter vectors are unknown, the gradient calculus must
be done using the global model (13) written in a linear form
with regard the parameters using the so-called Véronèse’s
transformation1 :

rk = p0 y
2
k + p1 yk x1,k + p2 x

2
1,k + p3 yk x2,k+

p4 x1,k x2,k + p5 x
2
2,k + · · ·+ pm x2

n,k, m = (n+1)(n+2)
2

(14)
With zk =

[

xk yTk
]T

and:

rk = zTk Rn zk (15)

the gradient with regard the vector zk is defined by:

∂rk
∂zk

= 2Rn zk (16)

where the matrix Rn only depends on global model param-
eters. Let us remark the construction of this matrix can be
done systematically. As an example, the partition of R3, for
a model with three exogeneous variables is easily established
from matrices R2 and R1 related to systems with respectively
2 and 1 exogeneous variables. Indeed:

R3 =













2p0 p1 p3
p1 2p2 p4
p3 p4 2p5

p6
p7
p8

p10
p11
p12

p6 p7 p8 2p9 p13
p10 p11 p12 p13 2p14













Remark 3: The writings (10) or (11) can be extended to
dynamic (linear) models. This can be done by including
delayed measurements in the vector v.

III. EXAMPLE: GRINDING MILL PROCESS

A. Simple model of a grinding mill process

Classically [17], the granularity gi(t) of the output prod-
ucts of a grinding mill is related to that ge,i(t) of the input
products by a mass balance taking into account the selection
function S and the breakage one B whose elements are si
and bi. For an constant input flowrate Q and a constant
load W in the ball mill, a model taking into account two
granulometric fractions only can be written as:











ġ2(t) =
1

τ
(ge,2(t)− g2(t))− g2(t)s2 + g1(t)s1b1

ġ1(t) =
1

τ
(ge,1(t)− g1(t))− g1(t)s1

(17)

1Véronèse’s transformation of order 2 is the application ν2 : Rn → Rd,
with d =

(

n+1

2

)

, defined by:

ν2([x1, . . . , xn]
T ) = [x2

1, x1x2, x1x3, . . . , x1xn, . . . , x
2
n]

T

As a direct consequence, any polynom of order 2 can be written as a linear
combination of the monomials xℓ = x

n1

1
x
n2

2
. . . x

nn
n , with 0 ≤ ni ≤ 2

and
∑

n

i=1
ni = 2.

g1

g2ge,2

ge,1 W

S,B

Fig. 1. Input and output granularity distributions

whith τ = W/Q and where the index •1 denotes the most
coarse granular fraction. At steady state, the expression of
the output granularity can be deduced:

{

g1 = γ ge,1
g2 = α ge,1 + βb ge,2

(18)

where the t variable was omitted and:














α =
τ s1 b1

(1 + τ s1)(1 + τ s2)

β =
1

1 + τ s2
, γ =

1

1 + τ s1

In that example, the system has two inputs and two outputs;
then it is characterized by two models. However, the previous
described method (section II) can be applied on each model.
Clearly this enrichs the identification of the operating mode
of the sytem. Besides, it’s possible to consider an interrelated
output model eliminating the ge,1 variable between the two
equations (18):

g2 = δ g1 + β ge,2 (19)

with:

δ =
α

γ
=

τ s1 b1
(1 + τ s2)

Although redundant with the two equations (18), certain
parameters don’t intervene in this equation (19). Therefore,
it can be used to confirm or disconfirm the presence of a
mode change.

Consider the three model equations (18, 19) and two
sets of grinding parameter values (αi, βi, γi, δi, i = 1, 2)
corresponding to two operating modes. The three global
models can then be written as:

r1 = (g1 − γ1 ge,1)(g1 − γ2 ge,1)
r2 = (g2 − α1 ge,1 − β1ge,2)(g2 − α2 ge,1 − β2ge,2)
r3 = (g2 − δ1 g1 − β1 ge,2)(g2 − δ2 g1 − β2 ge,2)

(20)
The local model parameters (αi, βi, γi, δi) being unknown,

let us recall that the proposed method only relies on the
global model obtained by multiplicative combination of the
local models. Using formulation (15), model (19) is written:

r1 =
[

g1 ge,1
]

R1

[

g1
ge,1

]

r2 =
[

g2 ge,1 ge,2
]

R2





g2
ge,1
ge,2





r3 =
[

g1 g2 ge,2
]

R3





g1
g2
ge,2





(21)



where the matrices Ri defined as in (4) are defined using
global model parameters:

R1 =

[

2p1,0 p1,1
p1,1 2p1,2

]

R2 =





2p2,0 p2,1 p2,3
p2,1 2p2,2 p2,4
p2,3 p2,4 2p2,5





R3 =





2p3,0 p3,1 p3,3
p3,1 2p3,2 p3,4
p3,3 p3,4 2p3,5





(22)

As explained in section II, the parameters pi,j of the three
global models are easily identified from the measurements
{g1, ge,1}, {g2, ge,1, ge,2} et {g1, g2, ge,2}. A most elegant
approach consists in expressing the three global models as
functions of all the input/output variable vector z:

z =
[

g1 g2 ge,1 ge,2
]

(23)

under the form:

ri = zT Riz i = 1, 2, 3 (24)

with:

R1 =
1

2









2p1,0 0 p1,1 0
0 0 0 0

p1,1 0 2p1,2 0
0 0 0 0









R2 =
1

2









0 0 0 0
0 2p2,0 p2,1 p2,3
0 p2,1 2p2,2 p2,4
0 p2,3 p2,4 2p2,5









R3 =
1

2









2p3,0 p3,1 0 p3,3
p3,1 2p3,2 0 p3,4
0 0 0 0

p3,3 p3,4 0 2p3,5









(25)

This formulation is particularly useful for the estimation
of the three global model parameters pi,j that share the
same data measurement set z. The Principal Component
Analysis (PCA) is well suited for that estimation. The vector
v of variables intervening in the data matrix on which the
PCA is applied comes from equation (25) and the usage of
Véronèse’s application:

v = [ g21 g1g2 g1ge,1 g1ge2 g22 g2ge,1
g2ge,2 g2e,1 ge,1ge,2 g2e,2 ]

(26)

In v, the variables that appear come from developing
products defining ri (24). The variable measurements
(g1, g2, ge,1, ge,2) being known at each time instant k, the
values vk of v are also known. That’s allows to build the
observation matrix:

Z =
[

v1 v2 . . . vN
]T

(27)

on which the PCA is applied in order to extract all the
redundancy equations, i.e. the global model of the system.
The parameters of the three global models are then generated
by the eigenvectors of the matrix ZTZ that correspond to

the three null eigenvalues (or, due to the presence of noise,
to the three least eigenvalues).

B. Mode change indicators

The mode change indicators are provided by the gradients
of the expressions (25) with regard the variables z: gi = ∂ri

∂z
.

Explicitly, the eight indicators are obtained:

I1 =

[

2p1,0g1 + p1,1ge,1
p1,1g1 + 2p1,2ge,1

]

I2 =





2p2,0 g2 + p2,1 ge,1 + p2,3 ge,2
p2,1 g2 + 2p2,2 ge,1 + p2,4 ge,2
p2,3 g2 + p2,4 ge,1 + 2p2,5 ge,2





I3 =





2p3,0g1 + p3,1 ge,1 + p3,3 ge,2
p3,1g1 + 2p3,2 ge,1 + p3,4 ge,2
p3,3g1 + p3,4 ge,1 + 2p3,5 ge,2





(28)

Let us recall that, for the measurement set
(g1, g2, ge,1, ge,2) each gradient vector orients in only
two distinct directions, each of them being the image of a
mode. To get rid of their magnitude variations, each gradient
vector could be normed which eases their interpretation.

C. Numerical results

The realized trials, with τ = 1.5, are dedicated to the de-
tection of changes in the grinding parameters s1, s2, b1. Two
trials are shown, the first one is related to the modification
of the selection parameter s1 which takes the value 0.25
along the whole simulation horizon except between the time
instants 10 to 23 where its value is 0.35. The corresponding
granular distributions are shown in figure 2. The figure 4,
which presents the time evolution of only one component
of the gradient vector, perfectly highlights this change of
operating mode.

The second trial concerns a modification of the breakage
parameter b1 which evolves from 0.30 to 0.35 from time
instants 10 to 23. Figure 3 shows the resulting granular
distributions. The time evolution of the three indicators,
shown in figure 5, visualizes the mode change, but only
on two components of the gradient vector. This preferential
sensitivity can be easily explained by the model depen-
dence with regard to the parameters that induce the mode
change. The table I precises the influence (× mark) of the
grinding parameters s1, s2, b1 on the parameters α, β, γ, δ
of the global models as well as the models r1, r2, r3. The
parameters s2 et b1 have the same structural influence and
modify two indicators only, the parameter s1 influencing the
three indicators.

IV. CONCLUSION

The recognition strategy of active mode of a system
was presented in a restrictive context (limited and known
number of operating modes, absence of measurement noises,
etc.). However it is an original approach for operating
mode recognition that takes place in the system supervision
framework. The main contribution consists in the ability to
discriminate and to recognize operating modes of a system



s1 s2 b1
α × × ×

β . × .
γ × . .
δ × × ×

r1 × . .
r2 × × ×

r3 × × ×

TABLE I

VARIABLE OCCURENCES
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Fig. 2. Input and output granulari-
ties with the variation of s1
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Fig. 3. Input and output granulari-
ties with the variation of b1
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models. Variation of s1

0 10 20 30 40
−0.8

−0.7

0 10 20 30 40
−1

0
1

0 10 20 30 40
−1

0
1

Fig. 5. Gradients of the global
models. Variation of b1

without the precise knowledge (parameter values) of the
models describing each mode.

The numerical application, applied on a very simple ex-
ample, has the advantage to explain with straightforwardness
the method implementation. Some stated assumptions can be
easily relaxed. It is the case of the number of modes and the
order of linear models describing the different modes.

A important topic that requires a deep analysis and neces-
sitates further developments concerns the measurement noise
influence. In that context, the analysis must probably relies
on the design of mode indicators taking into account simul-
taneously the distance between two operating mode (which
must be defined) and the upper bounds of the measurement
noises (in a set membership approach) or the probability
density function of the noise (in a stochastic framework).
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