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SUMMARY

In the present paper, a Takagi—Sugeno (TS) model is used to simultaneously represent the behaviour of
a nonlinear system and its saturated actuators. With the TS formalism and the Lyapunov approach, stabi-
lization conditions are expressed as linear matrix inequalities for different controller designs. Static parallel
distributed compensation (PDC) state feedback and static and dynamic PDC output feedback controllers for
nonlinear saturated systems are proposed. The descriptor approach is used to obtain relaxed conditions to
compute the controller gains. The nonlinear cart—pendulum system is used to illustrate the proposed control
laws. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Actuator saturation or control input saturation is probably one of the most usual nonlinearity encoun-
tered in control engineering due to the physical impossibility of applying unbounded control signals
and/or safety constraints. Actuator saturation may cause decreasing performances or even instability
of the system under control, because the needed control input energy may not be provided to the
system, for instance, when the control requires large gains resulting in control law magnitudes
exceeding the range of the actuators. Motivated by these issues, some efforts have focused on
developing saturated controllers for regulation problems [1-6].

There are two main design strategies to deal with actuator saturation. The first strategy is a two-
step approach in which a nominal linear controller is first constructed by ignoring actuator saturation
and using standard linear design tools; thereafter, a so-called anti-windup compensator is designed
to handle the saturation constraints [7-9]. A typical anti-windup scheme consists in augmenting
a nominal pre-designed linear controller with a compensator based on the discrepancy between
unsaturated and saturated control signals provided to the plant [10]. A generalization of the anti-
windup strategy based on a modified sector condition is used to obtain stability conditions from a
quadratic Lyapunov function as proposed in [11]. However, for saturated linear parameter varying
(LPV) systems, only few works are available on the subject, like [12—-15] and [16] where the
modified sector condition from [11] was applied to the LPV case under saturated inputs and states.

On the contrary, the second strategy consists in considering the saturation from the beginning
of the controller design, and then the controller gains are adjusted accordingly to the saturation
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levels. Among these strategies, one can cite the invariant sets framework, which has been signifi-
cantly developed in control engineering over the last decades [17, 18]. This framework ensures that
every state trajectory initialized inside a so-called invariant set remains inside this set. An interesting
approach of the invariant set framework, applied in [19] and [20], consists in the so-called polytopic
rewriting of the saturation constraint and is used to determine the largest invariant set by maximizing
an estimate of the basin of attraction of the closed-loop system [21, 22]. Unlike in [23], where the
occurrence of saturation is allowed, in most papers, the overall goal of the previous method could
be roughly understood as preventing the controller from reaching the saturation constraints,
implying a decrease of the control input energy possibly provided to the system. Contrarily, in the
present contribution, the saturation is explicitly considered, and its occurrence is admitted. The
Takagi—Sugeno (or polytopic; TS) modeling is here used to represent the saturation constraints and
integrate them in the controller design in order to compute the controller gains according to the
saturation levels and to ensure the closed-loop system stability.

The aim of this paper is to present a new approach for saturated control of nonlinear systems,
where the sector nonlinearity transformation (SNT) is used to represent both the saturated actuators
and the nonlinearities of the system itself under a TS form.

One should note that even if the expressions of the TS saturation are similar to the polytopic
ones used in [19] and [20], the development, control strategy, and objectives are completely dif-
ferent. Indeed, in the proposed approach, the invariant sets are not considered and the objective
concerns both the global stabilization of nonlinear systems represented with the TS models and the
synthesis of a state feedback controller by parallel distributed compensation (PDC) with control
gains explicitly depending on the saturation level.

After that, using only measured plant output signals, output feedback controllers are considered
[24, 25]. These controllers may be static or dynamic. Static output feedback control is the simplest
approach because no further dynamics are introduced. However, a dynamic compensator introduc-
ing extra dynamics may be required to increase the number of degrees of freedom in the design
and improve the closed-loop transient response. For this part, the descriptor approach is envisaged
[26, 27]. This approach is well known to avoid the coupling terms between the feedback gains and
the Lyapunov matrices and thus facilitates the linear matrix inequalities (LMIs) resolution. As a
consequence, the number of LMI decreases, and relaxed conditions are obtained [27, 28].

It is important to highlight that the proposed approach ensures the stability of nonlinear system
that may be destabilized by the control saturation when the saturation is not taken into account
in the control synthesis. Nevertheless, if the submodels are unstable (matrices A; of the TS model
not stable), the proposed state and static output approaches are not suitable, but the dynamic output
feedback controller (Section 5) can be used to stabilize the closed-loop system. The proposed
dynamic control presents the advantage of stabilizing the closed-loop system with an additional
degree of freedom in the design procedure which is the controller order (only the dimensions of the
LMI variables are changed). This controller order may be set up according to a trade-off between
reducing the controller order and the obtained closed-loop performance (assessed by the radius of
the ball in which the state trajectory converges) for example.

The rest of this paper is organized as follows. The TS structure for modeling is first introduced
in Section 2, also with some preliminary results, mathematical notations, and a brief description of
the actuator saturation. Section 3 is devoted to the representation of the nonlinear saturation by a TS
structure. In Section 4, the PDC-saturated state feedback control is detailed. The static and dynamic
PDC output feedback controllers are studied in Section 5. To highlight the interest of the paper, the
nonlinear model of a cart—pendulum is used, and stabilizing state and output feedback controllers is
designed to counteract the effect of the actuator saturations.

2. PRELIMINARIES

The TS representation of a nonlinear system consists in a time-varying interpolation of a set of
linear submodels. Each submodel contributes to the global behavior of the nonlinear system through
a weighting function A; (€(¢)) [29]. The TS structure is given by
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£(0) = 3 hi(EE) A0 + Bute)
. (D
y(0) = ¥ hEO)(CE0) + Do)

where x(¢) € R~ is the system state, u(t) € R the control input, and y(¢) € R™ the system
output. £(¢) € RY is the premise variable assumed to be measurable or known signal (including at
least the input u and the output y of the system, but also the state x when it is accessible like in
the state feedback case). The weighting functions /; (£(¢)), also noted 4; (¢), satisfy the so-called
convex sum property

; h; =1
X i€ o

0<hi(E@) <1, i=1,...n

In the rest of the paper, the following lemmas are used.

Lemma 1 ([30])
For any matrices X, Y and G = GT > 0 of appropriate dimensions, the following inequality holds

XTy +vTx < xTex +vTG™ 'y 3)

Lemma 2 (congruence lemma, [30])
Consider two matrices X and Y, if X is positive (resp. negative) definite and if Y is a full column
rank matrix, then the matrix Y7 XY is positive (resp. negative) definite.

The following notations are used throughout the paper:

e A block diagonal matrix with the square matrices Ay, ..., A, on its diagonal is denoted as
diag(Aq, ..., An).

e For any square matrix M, S(M) means S(M) = M + MT.

e The smallest and largest eigenvalues of the matrix M are respectively denoted A,;n(M) and
Amax(M).

e The saturation function of the signal u(¢) is denoted by saf(u(¢)) and defined componentwise

by (4) where u{l'm and u’ . are the upper and lower saturation levels of the j® component of

min
u(t), denoted u ; (¢)
uj(t) if urjr'lin Su(r) < Uihax
Sat(uj (1) = ur]pax if u; (t) > urjpax “4)
uél‘m if uj([) < ur]nin

3. TS MODELING OF THE INPUT SATURATION

The main idea of this work is to model the nonlinear actuator saturation using the TS representation
and then propose PDC state and output feedbacks, as well as dynamic output feedback control law
ensuring the stability of the closed-loop system. For that, it is proposed to re-write each saturated
control input component (4) under the TS form (1) introduced in [31].

Let us consider a piecewise decomposition into three parts of each saturated actuator saf (u;(t))
given by

3
sat(u; () = Y 1l 0y @) (i) + /) )
i=1
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with A =0A, =10 =0

J J o0 J j ©®)
yl = uminVZ = 0)/3 = ur]nax
and the activation functions
i 1—sign(u ; (t)— 7
i G (1)) = A= O )
; sign M'O)—uém —sign u“(l‘)—urj,'laX
0y = O ) iy ) g
i 1+sign(u ’(t)_ui{mx
piu;@) = #
where the sign function is defined as
—1ifx<0
sign(x) ;=410 ifx=0 ®)
1 ifx>0

Note that in equation (5), sat(u;(¢)) depends on the activation functions [Ll] (u;(@)).

In order to lighten the notations, u] (u(r)) will be denoted as ] (¢).

However, based on the convex sum property (2) of the activation functions (7), each control input
vector component u7,,, can be written in order to have the same activation functions for all the input
vector as

3 ny 3
sat; ) =Yl ) (Wuwso+v7) TT Y kb ©)
i=1 k=1 #j j=1

Then, for n,, inputs, 3"* submodels are obtained in the following compact form:

31u

sat(u(t)) = Y i) (Au(r) + Ti) (10)
i=1

It is important to note that sat(u(z)) (10) is directly expressed in terms of the control variable u(?).
The global weighting functions p;(¢), the matrices A; € R™>*" and vectors I'; € R"™*! are
defined as follows:

Ry .
wi) = T w ;@
j=1 Y
A; = diag (A;il,...,lezu) (11)
1 ny T
where the indexes ajj i=1,...,3andj =1,...,ny),equalto 1,2 or 3, indicate which partition

of the j ™ input (1], 3 or j1f) is involved in the i™ submodel (see [31] for more details).
As a consequence, it is now possible to describe a nonlinear system with bounded inputs. For that
purpose, let us now consider a TS system with actuator saturation:

A1) = 3 hy(EO)A;x(0) + Bysar(u(t)))
o (12)

YO = X I EO)C;30) + Dsat(u)
]=
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According to the TS writing of the saturation (10), the system (12) can be written as

3Mu p

x(t) = Zl _Zl wi(Oh;(E@))(Ajx (1) + Bj(Aiu(t) + I'))
i=1j=

(13)

3 p
y(@) = Zl _Zl pi(h;(E@))(Cjx (1) + Dj(Aju(r) + I'))

i=1j=
Remark 1
In the previous section, a TS representation of the saturation (10) has been proposed. It is important
to highlight that this representation is directly expressed in terms of the control variable u(#) and that
the number of sub-models (3"*) depends on the number of inputs 7,,. This statement may introduce
some conservatism. In fact, as the reader will notice in the following paper, the number of LMIs to
solve to find the control gains depends on the number of sub-models used to describe the saturation
constraint. As a first contribution, the saturation is expressed with a three-part piecewise decompo-
sition, and decreasing the number of LMI conditions by finding more efficient TS representations
of the control input saturation may be an interesting point for future works.

4. SATURATED STATE FEEDBACK CONTROL LAW

In this section, the system state is supposed to be known, and the objective is to design a state
feedback control ensuring the stability of the closed-loop system, even in the presence of control
input saturation. The control law is defined by a PDC state feedback:

u(t) ==Y hjEE)K;x() (14)

j=1

The controller design is performed by the TS modeling of the saturation (10) and by solving an
optimization problem under LMI constraints. In order to highlight the interest of considering the
saturation when computing the controller, the controller design is envisaged without (Section 4.1)
and with (Section 4.2) taking into account the control input bounds. A comparison of the obtained
results is made in Section 4.3.

4.1. Nominal control law (without saturation)

In the nominal case, the controller gains K; are synthesized without taking into account the
saturation limits. From (1) and (14), the closed-loop system is

n n
X(6) =) hi(E@)h;(E0))(A; — BiKj)x (1) (15)
i=1j=1
In order to analyze the time evolution of the system state, using a quadratic Lyapunov function

V(x(t)) = xT ()P~ 'x(t) (P = PT > 0), it easily follows that the stability condition V(x(1)) <0
is ensured if there exists P and R; such that the following LMI conditions hold [29]:

S(A;P —BiR;) <0 i=1,....n; j=1,...,n (16)
The gains of the controller (14) are then given by
K;i=R;P7', j=1,...n (17)
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4.2. Controller with saturation constraint

In this section, the objective is to design a time-varying state feedback controller (14) to guaran-
tee the stability of the bounded input system (12). Replacing (14) into (13) allows to express the
dynamics of the system state as

n 3nu

20 =YY hiE@)h; (E Oy (1) (Ai — BiAK;j)x () + B;Ty) (18)

i=1j=1k=1

The controller synthesis consists in designing the gains K ; ensuring the stability of the system (18)
and the convergence of the state to an origin-centered ball as proposed in Theorem 1.

Theorem 1

There exists a time-varying state feedback controller (14) for a saturated input system (12) ensuring
that the system state converges toward an origin-centered ball of radius bounded by g, if there exist
matrices P = PT > 0, Rj, % = E,{ > 0 solutions of the following optimization problem (for
i=1,...,n,j=1,...,nandk =1,...,3™)

i 19
P’IR}’.II‘I?ZIL' IB ( )
S.t.
Qijk 1
( I —BI <0 (20)
IF Bl Sy BTy < B (1)
with
S(A; P — BiAxR;) 1
Qijk :( ( 1 I ik J) _Ek) (22)
The controller gains are given by
K;=R;P7', j=1,....n (23)

Proof
Let us define the following Lyapunov function

V(x(@) =xT )P x(r) (24)

where P = PT > 0. According to equations (18) and (24), the time derivative of V(x(¢)) is
given by

n 3"14

V@)=Y 3" > hi@hj(0)pa (@) (ST @) P BTy + x" (1) P~ (A — Bi Ak K )x(1)))
i=1j=1k=1
(25)

Using Lemma 1, with ¥ = E,{ > 0, the time derivative of the Lyapunov function (25) is bounded
as follows:

. n n 3"

V@) < X Y Y hi@hj@)pue@) (TF BI Sk BiTk + xT (1) 2,5x (1)) (26)
i=1j=1k=1
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with
Dijk = S(P™Y(A; — BiAkK))) + Pzt P! 27)
Let us define

g= _min Amin(—Zijik) (28)
i=l:in,j=1:n,k=1:3"u

§= max TVBISi BTy (29)
i=1:n,k=1:3"u

Because X > 0 and from inequality (26), V (x (1)) < —¢ || x(1)]13 + 8. It follows that V(x(t) <0
for

8
Zijg <0 and x5 > - (30)

which means that according to Lyapunov stability theory [32], x(¢) is uniformly bounded and
8

converges to an origin-centered ball of radius 4/ .
Let us now analyse the condition 2;;; < 0.

Applying Lemma 2, this inequality becomes
S((A; — BiAkK;)P) + ;' <0 31)

Defining R; according to (23) and with a Schur complement, the inequalities (31) are equivalent to
the (1, 1) block of (20), thatis, Q;jx < 0.

As the weighting functions /; (), h;(t), jui(t) satisfy (2) and Tg > 0, if Qjjx < 0 is satisfied
fori =1,...,n,j=1,...,n,k =1,...,3™ and | x||§ > %, then V(x(¢)) < 0, implying that
x (1) converges to an origin-centered ball of radius 8;

In order to improve the convergence to zero, the objective is now to minimize the radius \/g .
Firstly, § is bounded by B from (29) and the LMIs (21). From (20), with a Schur complement, it

obviously follows that
1/p)1 < _Qijki,j=1,...,n,k=1,...,3"u (32

implying that all the eigenvalues of (—Q;;x) are larger that 1/8. As a consequence 1/8 < ¢ holds,
and finally, the radius of the ball is bounded by S. O

4.3. Numerical example

Let us consider a nonlinear model of the cart—pendulum system illustrated in Figure 1. The pendu-
lum rotates in a vertical plan around an axis located on a cart. The cart can move along a horizontal
rail, lying in the rotation plane. The characteristic variables of the system are z () the cart position,
Z(t) the cart velocity, 6(¢) the angle between the upward direction and the pendulum and 6(¢) the
pendulum angular velocity. A control force F(t) parallel to the rail is applied to the cart. The pen-
dulum mass and cart mass are denoted m = 1 kg and M = 5 kg, respectively. / = 0.1 m is the
pendulum length and / = 51073 kgm? the moment of inertia of the pendulum with respect to its
rotation axis on the cart. The cart is subject to a viscous friction force f Z(z), proportional to the cart
velocity (with f = 100 Nm™'s), to a static friction force ksz(t), proportional to the cart position
(with kg = 0.001 Nm™") and to a friction torque k6 (¢) proportional to the angular velocity (with
k = 0.045 Nrad—'s).

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2016; 30:888-905
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F(t)

Figure 1. Cart—pendulum system.

Although the system may seem to be very academic, its popularity derives in part from the fact
that it may be unstable with saturated control and non-null initial state. Additionally, the dynamics
of the system are nonlinear.

For the sake of clarity, small angles are considered, and the nonlinear system may be simplified
into

{ (m + M)Z(t) + ksz(t) + f2(t) —mlb(t) + ml62(1)0(r) = F () (33)

—mlZ(t) + (ml* + DO(1) + kO(r) + mglh(r) =0

In order to ensure the stability of this nonlinear system and its state convergence to the origin-centred
ball, first, the system equations (33) are written under a TS form by applying the SNT allowing to
exactly represent the nonlinear system without any loss of information. Owing to space limitations,
only the main steps to obtain the TS model are detailed; the interested reader can refer to [29] and
in particular in section 2.2.1, examples 2 and 3, for more details.

First, the state variables and the control input are defined by

. . T
x() = (z() z2() 6) () . u()=F(@) (34)
From (33) and (34), using factorization of x and u, the following quasi-LPV form is deduced:
x(t) = A(x(¢))x(t) + Bu(t) (35)
with
01 0 O 0
ay ap as(t) a b
Ay = [ 4@ et an| o | B (36)
as dag 617([) as bz
_ 1 _ biml _ _ _ 2
by = (’”+M)W(,’72]f1 by = iy ar = —ksby az = —fby as(t) = —byml (g + x3(1))
com B g = g = g () = Mg gy — sunlck

(37

Analyzing (37), the premise variable is chosen as &(f) = x3(¢), which is bounded (owing to the
angle and speed limitation). The SNT transformation is applied to obtain

§(t) = hi()é1 + ha(1)62 (38)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2016; 30:888-905
DOI: 10.1002/acs



896 S. BEZZAOUCHA ET AL.

{51 = max§(1), & =min§(?) 39)
h() = 5282 hy(t) =1-hi(1)
hy(t) and h;(2) represent the weighting functions of the TS model defined by
2
£(6) = ) hi(0)(Aix (1) + Bu(1)) (40)
i=1

From the definition of &1, &, 1 and k5 in (39), it obviously follows that the convex sum properties
0<hi(t) <1(fori =1,2)and hy(t) + hy(t) = 1 are satisfied.

The matrices A; (i = 1,2) are obtained by setting a3 (¢) respectively to (—bymi(g + £1)) and
(=biml(g + §2)) in A(x (7)) (36).

A state feedback (14) is considered both in the nominal (without saturation) and the saturated
cases with respective gains K; y and K; 7s. From relations (16) and (17), the calculated control
gains for the nominal case are equal to

Kin = (11.53 =79.84 14.34 6.48)

Kon = (9.95 —82.17 1178 5.51) @1

The gains K; 75, computed by solving the LMIs of the theorem 1 with # i, = 0 and um.,x = 3, are
given by
Kirs = (0.43 2.14 1.17 0.05)

Kors = (0.37 —9.19 —0.10 0.53 ) (42)

A fourth control strategy is performed in order to compare a conventional anti-windup controller
with the proposed one. For the conventional anti-windup, the main idea is to synthesize a nom-
inal feedback control and to add a compensator to handle the saturated input. The anti-windup
compensator is taken as a large gain matrix & = ol with o = 5.

For the initial condition xo = (0 0 7/12 0)7, Figure 2 shows the time evolution of the states
where

e xy is the state trajectory obtained by applying the unsaturated nominal control. It is ruled by
XN () = Y7oy hi()(A; — BK; §)xn (1).

0.04 - —x,
& 003f T Finsa
.C‘% X
8_ 0 02 o —_— 1satTS
= ~ .
§ oo1p - —
P
0 =
| | | | |
0 0.5 1 1.5 2 25 3
time (s)

Angle

|
0.5 1 1.5 2 25 3
time (s)

Figure 2. System states with state feedback control.
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nsat

—Uu -
TS

—u

AW [+

Saturated state feedback control

|
0 0.5 1 1.5 2 25 3
time (s)

Figure 3. Saturated state feedback control.

® Xp . sq: is the state trajectory obtained by applying the saturated nominal control. It is ruled by
XN sar(t) = Yi_y hi (D AixXNsar (t) + Bsat(— Y71 hi(0) Ki N XN, sar (1))

® Xs4:,Ts 18 the state trajectory obtained by applying the controller designed in the theorem 1. It
is ruled by Syar,rs (1) = Y7y hi (6) AiXsar,7s (1) + Bsat(= Yi—y hi()Ki .75 Xsar, s (1)).

® x4y is the state obtained when applying the nominal control with an anti-windup module. The
control input is adjusted using the difference w4, () —u (), but the controller gain is computed
without taking into account the saturation on the input control.

It can be seen on Figure 2 that the saturation of the nominal control prevent the first state variable
of xy sq: from converging close to the origin, whereas the proposed approach allows X4, 75 to do
so. It can also be seen that the transient state response obtained with the proposed controller is better
damped than the one with the anti-windup (AW) controller.

The four nominal and saturated control signals are displayed on Figure 3

5. OUTPUT FEEDBACK CONTROLLER: A DESCRIPTOR APPROACH

The state feedback controller, proposed in the previous section, allows to efficiently compensate the
input saturation, but it needs the whole state vector to be accessible. In this section, this limitation is
overcome by envisaging output feedback control: if the state vector is not entirely available, static
or dynamic output feedback controllers can be designed using only measured signal.

Static output feedback control is the simplest approach because no further dynamics are needed.
However, a dynamic compensator introducing extra dynamics may be required to increase the num-
ber of freedom degrees in the design and improve the closed-loop transient response. It may be
noted that dynamic output controller encompasses the class of observer-based controllers.

In the following section, both static and dynamic output feedback controllers are proposed in a
unified framework, thanks to the descriptor approach. Sufficient LMI constraints are derived from
the Lyapunov stability theory. Compared with [33], in the present paper, additional degrees of
freedom are introduced in the Lyapunov function to obtain relaxed controller design conditions.

5.1. Static feedback controller

A PDC static output feedback control is envisaged:

u(t) =y hy E@) Ky () (43)

Jj=1

The proposed approach relies on a descriptor formulation, which is well known to avoid the coupling
terms between the feedback gains and the Lyapunov matrices. As a consequence, the number of
LMI decreases, and relaxed conditions are obtained [27].
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The control law (43) and the system (12) are written as a descriptor system

3"u n

ESka(t) =Y wi(Ohj () (5 xa(t) + B55)

i=1j=1

(44)

where the augmented state vector and

(xT(0) uT () yT(t)) and

system matrices are defined by x,(f) =

ES = diag(ln,.Ony4m). 5 =| 0 =L, K5 |. 2= 0
Cj Din -1 DJ'F,'

The objective is to compute the controller gains K* of (43), according to the saturation limits, in
order to guarantee the stability of the closed-loop system (44) .

Theorem 2

There exists a static feedback controller (43) for a system with bounded inputs (12) such that the
system state converges toward an origin-centered ball of radius bounded by S, if there exist matrices
P} e RWXMx pf = (Pls)T > 0, P € R P > 0,P5; € R~ PJ, e R P e

u 1 oxnl sls _ (yisT 3 3s _ (v3\T
RmXT",R“} e R” Xm,'ZUS E'R.” X‘” ,Zijs = (E,’js). > 0, Eijs € Rmfm,zijs = (EUS > 0,
solutions of the following optimization problem (fori = 1,...,3"* and j = 1,...,n)
min (45)
P{. P3. Piy. Ph. Py, RS, S 5
under the LMI constraints (46) and (47)
fjl ;vle CjTP§3 - P;lT Pf P;IT I'lx 0 0
* QO RS+ ADIP5;—P3| 0 PI| O I, 0
x % —P$, — (P5)" o P 0 0 In
* * * * —213]? 0 0 0
* * * * x  |—Bsln, 0 0
* * * * * * Bsln, 0
* % * * * * * —BsIm
DTy} Dp;1r; + T BT R} B;T; < Bq (A7)
with
S =S(PfA; +C]P§)). QiF*PiBjA;i + CI P3, + P3TD;AT )
and Qi? =S(—P; + P3] DjA;)
-1
The controller gains are given by K% = ((PZS)T) RS, j=1,....n
Proof
Let us define the Lyapunov function
V(xa(1) = xg ()(E*)T P*xa(t) (49)
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with P* defined by
P; 0 0
Pf=| 0 P; O (50)
P3Py Py
where P{ = (P$)T > 0and P§ > 0. It follows from (50) and the structure of E that (E*)T P* =
(P*)TE* > 0, and that the Lyapunov function is in fact quadratic in the state vector: V(x,(t)) =

T s
xt @) P{x(1).
Using the state equation (44), the time derivative of the Lyapunov function (49) is given by

3Mu p

Vxa®) = 3 3w @h; 08 (<] P55 +xI0) () Pra) 65D

i=1,=1
Using Lemma 1, V (x,(¢)) is bounded as follows

3 p
V(xa(®) <Y > wih;(0) (T BI S BT + TTDISX DTy + xL (1) 25, x4()  (52)
i=1j=1

with

25 = ()" P* + ()T + ding (PF (£5) 7 P.0.0)

(53)
T -1
+ (P35 Py, P33) (B57) (P35 P, Pi3)
Let us define
& = i=1:3’171L1ti,nj=1:n Amin (—ij) (54)
8= max (IV(BZ}fB; + DIS}D;)T;) (55)

i=1:3"u, j=1:n

Because Eiljs and E?js are positive definite, from (52) with the convex sum property (2), V (xq(1)) <
—&%||x4|[3 + 8°. Tt follows that V (x4 (t)) < O for
25 <0and || x|} > & (56)

sA

which means that x,(¢) is uniformly bounded and converges to the origin-centered ball of radius
v/ 6% /&% according to Lyapunov stability theory [32]. Equation (46) is proved with some Schur’s
complements applied to 2;; < 0 and the variable change R} = (P, YK ;- The objective is now to

minimize the radius /8% /&. Firstly, using definition (55), §° is bounded by 85 when considering
LMIs (47). Secondly, it can be shown that 1/&° < ;. From (54), it follows that

25> (1B L i=1,...3"j=1..n (57)

meaning that all eigenvalues of (—£2;}), including €*, are bigger then 1/f;. Thus, 1/€* < By and
the radius /8%/¢&* is bounded by ;. O

5.2. Dynamic output feedback controller
The objective is now to design a stabilizing dynamic output feedback control even in the presence

of control input saturation. As previously discussed, the solution is obtained by representing the
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saturation as a TS systern and by solving an optimization problem under LMI constraints. Let us
consider the following 7" order dynamic output feedback controller defined by

1) (Acxc(t)—i-Bc (z))

Xe (t) =
(58)

u(t) = i:

(chc(t) + D¢ y(t))

designed to guarantee the stability of the saturated system (13). The matrices A € R"¢*"¢, B]c. €
R7exm, CT e R and D € R™™ are the controller gains, determined to ensure the stability
of the closed-loop system (13) with (58). The controller order n. can be adapted according to the
control objectives and system dynamics. The closed-loop system defined from (13) and (58) is
written under the following descriptor form:

3" p

ESa(t) = 32 3 mih; o) (o xa0) +

i=1j=1

%’;’j) (59)

with x4 (1) = (xT(t) ch(t) uT (¢) yT(t)) and

A; 0 BjA; O

c c B’Fl
i 0 45 0  Bj P 0 gl — Inyyn. O (60)
N 0 qu —In, D; Y 0 ’ 0 Onyy+m
C; 0 DjA; —Iy DT
Theorem 3

There exists a dynamic feedback controller (58) for the saturated input system (12) such that the
system state converges toward an origin—centered ball of radius bounded by B4, if there exist matri-
ces P e Rnx pd = (PA)T > 0, PE e R*e*ne pd = (P 2)T > 0, P € RMxmu > (),

Pd ¢ R, pd e R, pd ¢ Rmow, pd e Rmom, A € Rxne B e Rrexm,

uXne u 1d _ T 2d __ 2d .
Cj e RMuxn 7Dj € RMuxm, El.j = (E ) > 0, and Eij = (Eij ) > 0, solutions of the

following optimization problem (fori = 1,...,3" and j = 1,...,n)
min (61)
1d s2d
Pll’P22’P33’P P42’P43’P44’A B C D Elj ’Etj
under the LMI constraints (62) and (63).
o, cI'pg o CTP‘& —(PHT PE (PEYT| T 0 0 0
* A5+ @DT ([CHT +(PH)TD;A; B —(PHT 0 (PLHT| o I 0 0
* * 0}, DS —(PHT +ADTPLL 0 (PHT| 0 0 I 0
* * * —P4 —(PE)T 0o (PIT| o 0 0 1
* * * * —Z};j 0 0 0 0 0 <0
* * * * * —E%;I 0 0 0 0
* * * * * * —Bal 0 0 0
* * * * * * * —B4I 0 0
* * * * * * * * —Bal 0
* * * * * * * * —Bal
(62)
T pT s 1d T nT s2d
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with
1 T pd d T pd d r
Q;;=A4;P;, +P;1A; +C; Py + <P41) Cj
T
0lF = P B A+ C] P+ (Ph) Dy
T T

Q13] = —P3d3 - (P3d3) + (P4d3) DJ'A,' + AiD}wPig

The gains of the controller (58) are given by

_ d\—174¢ _ d\—1R¢
{A;' - (Pzz) Aj B; - (Pzz) Bj (64)

C¢ = ((P$)™HTC DS = ((P$)~HT D]
Proof
Let us define the Lyapunov function V(x,(t)) = xaT(t)(Ed)Tdea(t) with E4 and P9,
respectively, defined in (60) and (66) that satisfy
(EHTP! = (PHTE? 20 (65)

The matrix P is partitioned according to .Q%Ud defined in (60), and for satisfying (65), it is chosen as

PE 0 0 0
0 PL 0 0

pe = 22 (66)
0 0 P% 0O

d pd pd pd
Pj P P Py

with P = (P{)T > 0, P§, = (PE&)T > 0and P33 > 0. One can note that from (60) and
(66), the Lyapunov function is quadratic in the system and controller states because V(x,(¢)) =
xT()PEx(t) + xI (1) P x.(t).
Applying the same developments as for the static controller with the variable changes

—C

A = PHAS B = PLBS

(67)
=c d T ¢ _ d T
C; =(Ps) C; D; =(P5) DS
and defining £¢ and §¢ by
gl = min Amin (—Qg)
i=1:3"u, j=1:n (68)
T ( pT s1d T <2d
§ =, max_ T, (BT =i'B; + DI =3/ Di) T
with Qg defined in the same way as ij was, that is,
d A\ pa : d(v1d\ " pa d\T (v2d\ " pd
24 =s((od) P4)+diag( P (z¢) PP+ (PA) (32)  PA. o

T -1 T -1 T -1
(P4) (21.2;1) Pa.(PL) (zgjd) P (PL) (21.2].‘1) Pf4)

the stabilizing conditions are linearized and gi}ilen by (62). As the weighting functions satisfy (2) and
Eiljd, Eiz].d > 0, if (62) holds and || x.|3 > i_d’ then V (x4(t)) < 0, implying that x,(z) converges
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to an origin-centered ball of radius 4/ i—j. Similarly to the proof of Theorem 2, the radius of the ball
is bounded by ﬁd owing to (62) and is minimized in (61). O
Remark 2

Compared with the state feedback control, the dynamic output feedback control introduces addi-
tional degrees of freedom in the controller design. Thus, the stability of the unsaturated open-loop

subsystems (namely, the matrices A;, fori = 1,...,n)is no longer required for the LMI constraints
to be feasible.

5.3. Numerical example

Let us consider the same cart—pendulum system (40) in Section 4.3; both static and dynamic output
feedback controllers are designed, and their performances are compared. The horizontal and angular
velocity can be measured, and then the output matrices are defined by

1000 0
C=(0001)’D=(0) (70)

From (70), the second measured output is x4(z), and then the premise variable £(r) = x3(¢) is
measurable, as assumed in the beginning of Section 2. Solving the optimization problem given in
Theorem 2, the static controller gains are given by

K{ = (-0.002 —1.126), K5 = (—0.001 —0.1 4) (71)

Applying Theorem 3 with n, = 2, the following dynamic controller gains are obtained:

o _ (0324 0083 \ L. _ (0003 0002
1= 0083 —0392 ) 81 ={ 0002 —0.823
~0.332 0.783 ~0.003 0.002
c __ Cc __
2= 0783 —0.314)’32 =\ 0.002 —0.749 (72)
Cf = (0.019 —0.026) . D = (—0.002 —0.0021 )
s = (0.097 0.0127), DS = (—0.002 —0.005 )
0.04 : : : —x,,
é T Xinsat
g 0.02 - T Xisarrss
o
Tt T Nisatrsa
©
O
0" ST S oo ———
| | | | |
0 0.5 1 1.5 2 25 3

time (s)

—X
3satTSs

Angle

—X
1satTSd

o 0.5 1 15 2 25 3
time (s)

Figure 4. System states with output feedback control.
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Saturated output feedback control

I
1.5 2 25 3
time (s)

0 0.5

-

Figure 5. Saturated output feedback control.

0.01

—XsatTss
0.008

—XsatTsd
0.006 | b

0.004 b
0.002 ]

-0.002 | b
-0.004 | : b
-0.006 | b
-0.008 | b

~0.01 . : : : :
-1.5 -1 -0.5 0 0.5 1 1.5

x 1078

Figure 6. Phase diagram.

For the initial condition xo = (0 0 /12 0)7, Figure 4 shows the system states in the following
four cases. The system states xy and x4, are obtained from the nominal and saturated nominal
controls presented in the previous example. The improvement from the proposed approach is also
clear, because for the first state, the oscillation amplitudes are much smaller than the previous
especially on the first state component. xs,; 755 denotes the state trajectory for the proposed TS
approach with static controller, and finally, x4, 754 stands for the proposed TS approach with
dynamic controller.

From the depicted figures, it is clear that with the proposed TS approach, the convergence to an
origin-centered ball is ensured. It is also clear that the obtained results with the dynamic controller
are slightly better than the ones obtained with the static one, because the first state variable converges
closer to the origin, and the oscillation damping of the second state variable is better.

The saturated control signals for each case are represented in Figure 5.

To compare the two controllers, in Figure6 are depicted the phase diagrams of the states x, and
x1 for both static and dynamic output controllers (the initial value of (x1, x2) is (0, 0)). One can
see that applying the dynamic controller, the state converges to an origin-centered ball of radius
B = 0.6 x 10%, which is smaller than ° = 4.5 x 10~3 obtained with a static controller.

6. CONCLUSION AND FUTURE WORKS

Thanks to a polytopic representation of the control input saturation, a nonlinear system with bounded
inputs can be modeled as a TS system. It is important to note that using the proposed representation,
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the actuator model is expressed in terms of the control variables and of the saturation limits. As a
consequence, these limits are taken into account when computing the controller gains. Moreover,
the proposed TS approach allows to extend the use of linear tools, namely, the LMI formalism, to a
nonlinear control problem.

A state feedback controller and both static and dynamic output feedback controllers were
developed. The dynamic controller order is a degree of freedom fixed by the user. Relaxed LMI
constraints are obtained with the use of the descriptor approach. The potentially destabilizing effect
of the control saturation is compensated by the proposed controller ensuring that the closed-loop
system state converges to an origin-centered ball.

In order to show the effectiveness of the proposed approach, all the results have been applied to
the nonlinear model of a pendulum—cart with saturated actuator.

Future works may concern the extension of the present study to the TS models with unmeasurable
premise variables (e.g., activating functions depending on the unmeasured state variables) by the
mean of state observer-based controller. Another possible extension would be the use of more
sophisticated Lyapunov functions (e.g., non-quadratic candidate functions) in order to obtain relaxed
LMI constraints in the controller design procedure.
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