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Abstract: This paper addresses a discussion about Unknown Input Observers (UIO) for Linear
Parameter Varying (LPV) systems designed classically by using the polytopic representation. It
is shown that even if the rank conditions ensuring the existence of an UIO are satisfied, the design
may fail, due to the polytopic representation of the LPV system. In this paper a new design
approach is proposed via a modified UIO for a class of LPV systems with parameter dependent
output equation. It is based on parameter algebraic matrix equations and LMI conditions.
Examples are provided in order to illustrate the performances of the proposed approach.
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1. INTRODUCTION

Unknown input observers are of great importance in au-
tomatic control and diagnosis. The idea behind UIO de-
sign is to decouple the effect of the unknown inputs (UI)
from the state estimation error dynamics and to estimate
asymptotically the states of the system even in the pres-
ence of unknown inputs. These UI can represent faults,
disturbances or neglected dynamics in the system. This
type of observers can be used in decoupling control, fault
estimation, fault tolerant control, etc.

One of the most popular models are the well-known Linear
Parameter Varying (LPV) ones, due to their ability to
represent a more general class of systems compared to
the linear models, and even a class of nonlinear systems
in the case where the parameters depend on the state of
the system (known as quasi-LPV models). In the con-
text of UIO for LPV systems, there are several works
aiming to extend the linear UIO to LPV systems. The
commonly used approach is to transform the LPV system
in a polytopic form with parameter dependent weighting
functions satisfying the convex sum property. The stabil-
ity analysis is generally done with Lyapunov theory and
the established conditions are expressed as Linear Matrix
Inequalities for design purposes. For example, in Marx
et al. [2007], UIO is designed for both continuous-time and
discrete-time descriptor Takagi-Sugeno systems which are
similar to polytopic LPV systems. The work has been then
extended in many papers, see for example Hamdi et al.
[2012]. In Chadli and Karimi [2013], the authors proposed
rank conditions ensuring the existence of UIO in polytopic
form for a class of Takagi-Sugeno systems. In Briat et al.
[2011], an interesting approach is proposed for the design

of UIO for time delay LPV systems by exploiting algebraic
matrix equalities computation.

In the other hand, these last years the problematic of time
derivative estimation of signals has been largely studied
and many approaches have been proposed which are robust
to noises affecting the signals. In Levant [2003], a sliding
mode differentiator has been proposed which provides ro-
bust high order time derivatives of a noisy signal. The main
interesting property of such a differentiator is the finite
time convergence and the exactness of time derivatives
estimation for noise-free signals. In Ibrir [2003], another
approach has been proposed based on Linear Time Varying
differentiator which provides asymptotic time derivatives
estimation. More recently, in Fliess et al. [2008], a new
non asymptotic differentiator has been introduced using
the operational calculus. The interest of such an approach
is the transformation of the problem of time derivatives
computation as a integrals (numerical low-pass filters)
computation in a sliding time window which attenuates
considerably the effect of noises affecting the signal. More-
over, no prior knowledge of the statistical properties of the
noise is needed.

In this paper, new UIO is proposed for LPV systems
where the output of the system is parameter varying.
Up to our knowledge, this case is not investigated in
the literature. In addition, the proposed observer is more
general than the existing ones in the sense that, for the
classical approaches using polytopic form, even if the UI
decoupling condition is satisfied in the domain of variation
of the parameters, classical UIO may not exist, while, the
proposed approach provides a solution for the considered
systems, and more generally for systems satisfying the



decoupling rank condition in the variation range of the
parameters.

The paper is organized as follows: In section 2, motivation
and problem statement is provided, in particular, for
systems in polytopic form and having nonlinear output
equation. The section 3 presents an observer with a design
procedure for state and unknown input estimation. In
section 4, an extension to perturbed output is considered.
Finally, in section 5, illustrative examples are provided to
compare the proposed approach with respect to existing
work and to illustrate the generality of the proposed
approach.

2. PROBLEM STATEMENT AND MOTIVATION

2.1 Motivating example

Consider the LPV system with unknown input
{
ẋ(t) = A(ρ(t))x(t) +D(ρ(t))d(t)
y(t) = Cx(t)

(1)

where

A(ρ(t)) =

(
0 ρ(t)
−2 −3

)

, D(ρ(t)) =

(
ρ(t)

ρ(t) + 1

)

, C = ( 1 0 )

where ρ(t) is a time varying parameter. Assume that
ρ(t) ∈ [1, 4]. Classically, the system is transformed into
polytopic form

ẋ(t) =
2∑

i=1

hi (ρ(t)) (Aix(t) +Did(t)) (2)

A classical observer for such a system is






ż(t) =

2∑

i=1

hi(ρ) (Niz(t) + Liy(t))

x̂(t) = z(t)− Ey(t)

(3)

The UI decoupling condition is then given by

(I2 + EC)Di = 0, i = 1, 2 (4)

Note that the rank condition rank(CDi) = rank(Di), i =
1, 2 are satisfied. In addition, rank(CD(ρ)) = rank(D(ρ)),
∀ρ(t) ∈ [1, 4]. Even if each pair (C,Di) satisfies the UI
decoupling rank condition for i = 1, 2, it may not exist a
common constant matrix E satisfying simultaneously the
conditions (4).

2.2 Problem statement

Consider the LPV system
{
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) +D(ρ(t))d(t)
y(t) = C(ρ(t))x(t)

(5)

where x(t) ∈ R
n, u(t) ∈ R

nu , d(t) ∈ R
nd and y(t) ∈ R

ny

are, respectively, the state, the control input, the unknown
input and the output of the system. Furthermore, ny ≥ nd.
The parameter ρ(t) = [ρ1, ..., ρnρ

]T is a time varying vector
belonging to a set Θ (the parameters ρi, i = 1, ..., nρ

are bounded). Assume also that the parameters ρi are
differentiable.

The matrices of the system (5) are affine with respect to
the parameters and given by

X(ρ(t)) = Xρ = X0 + ρ1(t)X1 + ...+ ρnρ
(t)Xnρ

(6)

where

Xρ = X(ρ(t)) ∈ {Aρ, Bρ, Dρ, Cρ} (7)

Let us define the time derivative of Xρ by the notation

Ẋρ =
dXρ

dt
= ρ̇1(t)X1 + ...+ ρ̇nρ

(t)Xnρ
(8)

where ρ̇i(t), i = 1, ..., nρ denotes the time derivative of
ρi(t) which belongs to a compact set Θd.

Hypothesis 1. It is assumed that the condition (9) holds.

rank (CρDρ) = rank (Dρ) , ∀ρ(t) ∈ Θ (9)

Note that in some published work about UIO for LPV
systems Chadli and Karimi [2013], the systems are trans-
formed in polytopic form from the beginning of the design.
Proceeding so, the structure of the UIO is fixed a priori
which may lead to infeasible problem. In addition, the
output of the system is commonly assumed to be linear
with respect to the state and the unknown input vector
affects also this output (i.e. y(t) = Cx(t) + Rd(t)). If the
unknown input d(t) is an actuator fault affecting only the
state equation, there is no reason to have y(t) = Cx(t) +
Rd(t) and the matrix R is zero. In this case the decoupling
condition commonly used (PDi = 0, where P = In +EC)
becomes conservative because the rank condition ensuring
the existence of the common matrix E is satisfied for a
limited class of systems. This case is dealt with in Chadli
and Karimi [2013] and rank conditions are proposed for the
existence of a constant matrix E such that PDi = 0 is sat-
isfied. Consequently, the aim of this paper is to propose a
new algorithm to design UIO for LPV systems by relaxing
the conservatism related to the polytopic transformation of
the system at the beginning. Secondly, the output matrix
Cρ is parameter varying and the UI affects only the state
equation. A discussion will be provided later to illustrate
that the proposed approach is more general compared to
classical UIO design approaches.

3. MAIN RESULT

Let us consider the system (5) and the following proposed
observer

{
ż(t) = Nρz(t) +Gρu(t) + Lρy(t)
x̂(t) = z(t)− Eρy(t)

(10)

Note that the matrices Nρ, Gρ, Lρ and Eρ are parameter
varying, their structure will be defined later, they are not
a priori in a polytopic form. For simplicity, the notation
Xρ is used but the matrices of the observer may depend
also of the time derivative of the parameter ρ(t). Notice
also that the matrix Eρ is parameter varying while that of
the classical observer (3) is constant. The estimated state
is denoted x̂(t). Let us define the state estimation error
e(t) = x(t)− x̂(t), by replacing the expression of x̂(t) from
(10), it follows

e(t) = x(t)− z(t) + EρCρx(t) (11)

= (In + EρCρ)
︸ ︷︷ ︸

Pρ

x(t)− z(t) (12)

The time derivative of e(t) is given by



ė(t) = Pρẋ(t) + Ṗρx(t)− ż(t) (13)

=
(

PρAρ − LρCρ −NρPρ + Ṗρ

)

x(t)

+ (PρBρ −Gρ)u(t) + PρDρd(t) +Nρe(t) (14)

Under the conditions

PρAρ − LρCρ −NρPρ + Ṗρ = 0 (15)

Gρ = PρBρ (16)

PρDρ = 0 (17)

The state estimation error dynamics becomes

ė(t) = Nρe(t) (18)

Proposition 2. There exists an unknown input observer
(10) for the system (5) if and only if the following con-
ditions (C1-C4) hold

(C1) The system ė(t) = Nρe(t) is asymptotically stable

(C2) PρAρ − LρCρ −NρPρ + Ṗρ = 0
(C3) Gρ − PρBρ = 0
(C4) PρDρ = 0

Note that under the conditions (C2), (C3) and (C4) of the
proposition 2, the state estimation error becomes

ė(t) = Nρe(t) (19)

And if Nρ is chosen as a stable matrix ∀ρ(t) ∈ Θ, then
the state estimation error tends to zero when t tends to
infinity. Hence, the state of the system is estimated asymp-
totically and the unknown input is completely decoupled.

Now, let us analyse under what conditions there exists
a solution satisfying the algebraic matrix equalities (C2),
(C3) and (C4) in proposition 2. First, consider the condi-
tion PρDρ = 0 which can be made in the form

EρCρDρ = −Dρ (20)

The solution Eρ is then obtained by

Eρ = −Dρ (CρDρ)
T
(

CρDρ (CρDρ)
T
)−1

︸ ︷︷ ︸

(CρDρ)
−

(21)

Note that a solution Eρ exists if the matrix (CρDρ)
−
exists

∀ρ(t) ∈ Θ and this matrix exists if and only if the condition
in hypothesis 1 is satisfied. Secondly, after computing the
matrix Eρ it is easy to compute the matrix Gρ such that

Gρ = PρBρ = (In + EρCρ)Bρ (22)

Finally, one obtains for the condition (2) in the proposition
2

Nρ = PρAρ −KρCρ + Ṗρ (23)

with Kρ = Lρ + NρEρ, so the state estimation error
dynamics is reduced to

ė(t) =
(

PρAρ −KρCρ + Ṗρ

)

e(t) (24)

If the pair (PρAρ + Ṗρ, Cρ) is detectable ∀ρ(t) ∈ Θ and
∀ρ̇(t) ∈ Θd, then the free matrix Kρ can be computed
in order to stabilize the state estimation error dynamics.
In order to derive LMI conditions that ensure the asymp-
totic convergence of the state estimation error e(t), it is

easy to transform the matrices PρAρ + Ṗρ and Cρ in a
polytopic form. Indeed, since ρ(t) and its time derivative
are bounded, using the sector nonlinearity transformation
Tanaka and Wang [2001], parameter dependent matrices

can be written as polytopic matrices and the LPV system
can be equivalently rewritten as a polytopic LPV one
where the weighting functions depend of ρ(t) and its time
derivative. Then, it follows







PρAρ + Ṗρ =

r∑

i=1

µi(ρ, ρ̇)Ai

Cρ =

r∑

i=1

µi(ρ, ρ̇)Ci

(25)

Consequently, the gain Kρ takes the form

Kρ =

r∑

i=1

µi(ρ, ρ̇)Ki (26)

With the polytopic notations (25) and (26), the state
estimation error dynamics (24) becomes

ė(t) =
r∑

i=1

r∑

i=1

µi(ρ, ρ̇)µj(ρ, ρ̇) (Ai −KiCj)e(t) (27)

The stability of systems of the form (27) are largely stud-
ied using the Lyapunov theory and different Lyapunov
functions to deal with the conservatism of the LMI condi-
tions. For instance, let us give the solution obtained by a
quadratic Lyapunov function V (e(t)) = eT (t)Xe(t) where
X = XT > 0 and the Tuan’s lemma Tuan et al. [2001].

The system (27) is asymptotically stable if there exists
a common matrix X = XT > 0 and gain matrices K̄i,
i = 1..., r solution to the following LMI conditions

{
Ξii < 0 i = 1, ..., r

1

r − 2
Ξii + Ξij + Ξji < 0 i 6= j

(28)

where
Ξij = AT

i X +XAi − CT
j K̄

T
i − K̄iCj (29)

After solving the LMIs (28), the gains Ki in (27) are
obtained from

Ki = K̄iX
−1, i = 1, ..., r (30)

The matrix Kρ is then given by the matrix (26) which
leads to compute the matrices Lρ and Nρ as follows

Lρ =Kρ −NρEρ (31)

Nρ = PρAρ + Ṗρ −KρCρ (32)

Unknown input estimation From the output equation of
(5), the time derivative of y(t) is

ẏ(t) =
(

CρAρ + Ċρ

)

x(t) + CρBρu(t) + CρDρd(t) (33)

Since the assumption 1 is satisfied, the unknown input can
be expressed, by model inversion, as follows

d(t) = (CρDρ)
−
(

ẏ(t)−
(

CρAρ + Ċρ

)

x(t)− CρBρu(t)
)

(34)

When the state estimation error e(t) converges to zero, we

have x̂(t) −→ x(t), then the following UI estimation d̂(t)
is obtained

d̂(t) = (CρDρ)
−
(

ẏ(t)−
(

CρAρ + Ċρ

)

x̂(t)− CρBρu(t)
)

(35)

The convergence of d̂(t) towards d(t) can be analysed by
defining the unknown input estimation error ed(t) = d(t)−

d̂(t), which leads to



d̂(t) = (CρDρ)
−
((

CρAρ + Ċρ

)

e(t) + CρDρd(t)
)

(36)

it follows

ed(t) = − (CρDρ)
−
(

CρAρ + Ċρ

)

e(t) (37)

Knowing that e(t) converges asymptotically to zero, then
ed(t) also converges asymptotically to zero.

Remark 3. In the proposed observer, the first time deriva-
tive of the output y(t) and / or that of the parameters
are needed. It can be computed by different differentia-
tors such as sliding mode differentiators Levant [2003] or
algebraic differentiators Fliess et al. [2008].

3.1 Illustrative example and discussions

Let us consider the LPV system (5) with the matrices

Aρ =

(
0 ρ(t)

1− ρ(t) −3

)

, Bρ =

(
1
0

)

, Dρ =

(
ρ(t)

1 + ρ(t)

)

Cρ = ( ρ(t) 0 )

and ρ(t) ∈ [2, 4], ∀t. Note that, the system is observable
and the rank condition in assumption 1 is satisfied ∀ρ(t) ∈
[2, 4] and ∀ρ̇(t). This can be seen from the observability
matrix

Oρ =

(
Cρ

CρAρ + Ċρ

)

=

(
ρ(t) 0
ρ̇(t) ρ2(t)

)

(38)

where rank(Oρ) = 2, since ρ(t) and ρ(t)2 are strictly
positive definite. The condition in assumption 1 is

rank
(
ρ2(t)

)
= rank (ρ(t)) = 1, ∀ρ(t) ∈ [ 2 4 ] (39)

Discussion on the classical UIO for LPV systems: For
this system, the classical UIO of the form

{
ż(t) = Nρx(t) +Gρu(t) + Lρy(t)
x̂(t) = z − Ey(t)

(40)

does not exist because the matrix Cρ is time varying and
the matrix E is constant. The decoupling condition for the
observer (40) is given by

E = −Dρ (CρDρ)
−1

=






−
1

ρ(t)

−
1 + ρ(t)

ρ2(t)




 (41)

but the matrix E as defined classically is constant so this
solution is not acceptable.

In a second situation, let us assume that Cρ is not
parameter varying but given by C = (1 0). In this
case, prior to the UIO design, the system can be put in
a potytopic form according to







ẋ(t) =

2∑

i=1

µi(ρ) (Aix(t) +Bu(t) +Did(t))

y(t) = Cx(t)

(42)

where

A1 =

(
0 2
−1 −3

)

, A2 =

(
0 4
−3 −3

)

(43)

D1 =

(
2
3

)

, D2 =

(
4
5

)

(44)

In this situation, the decoupling condition is

(I + EC)Di = 0 (45)

Since the condition rank(CDi) = rank(Di) holds, the
solution E is then given by

E = −Di (CDi)
−1

(46)

The solution E satisfying the two equations i = 1, 2 exists
if (Chadli and Karimi [2013])

rank (C [D1 D2 ]) = rank ([D1 D2 ]) (47)

This condition is not satisfied because rank(C[D1 D2]) =
1 and rank([D1 D2]) = 2, then, the common matrix E
satisfying the two decoupling conditions does not exist,
which implies that the classical polytopic UIO does not
exist.

As a conclusion, the classical UIO does not exist because
the output matrix Cρ is parameter varying. Moreover, even
when the matrix C is constant and satisfies the decoupling
conditions, the classical UIO design may fail to provide
a solution for UIO design. Whereas, the proposed UIO
design for LPV systems (5) with parameter dependent
output matrices Cρ replaces the constant matrix E by the
matrix Eρ which is parameter varying and the system is
not transformed into polytopic form at the beginning of
the design. Then the decoupling condition is

Eρ = −Dρ (CρDρ)
T
(

CρDρ (CρDρ)
T
)−1

︸ ︷︷ ︸

(CρDρ)
−1

=






−
1

ρ(t)

−
ρ(t) + 1

ρ2(t)






(48)
which is defined ∀ρ ∈ [2, 4]. And the matrix Gρ is given by

Gρ =





0

−
ρ(t) + 1

ρ(t)



 (49)

Finally, we have

PρAρ + Ṗρ =





0 0
ρ̇(t)

ρ2(t)
− ρ(t) + 1 −ρ(t)− 4



 (50)

At this stage, the matrices PρAρ + Ṗρ and Cρ can be
transformed into a polytopic form and the parameter
varying gain Lρ can be designed by solving the LMI
conditions (28).

4. BOUNDED STATE ESTIMATION ERROR:
PERTURBED OUTPUT

The proposed design approach for UIO is extended in
this section to LPV systems with perturbed measurements
expressed by
{
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) +D(ρ(t))d(t)
y(t) = C(ρ(t))x(t) + η(t)

(51)

where η(t) represents a vector of bounded perturbation.
Assume also that the first time derivative of η(t) is
bounded. The UIO observer (10) is then designed in order
to decouple the unknown input d(t) and minimize the
effect of η(t) on the state estimation error. Computing the
state estimation error e(t) = x(t)− x̂(t) leads to

e(t) = (I + EρCρ)
︸ ︷︷ ︸

Pρ

x(t)− z(t) + Eρη(t) (52)

its dynamics obeys to the following differential equation



ė(t) =
(

PρAρ − LρCρ −NρPρ + Ṗρ

)

x(t)

+ (PρBρ −Gρ)u(t) + PρDρd(t) +Nρe(t)

+ Ėρη(t) + Eρη̇(t) (53)

Under the assumption 1, there exists a matrix Eρ allowing
to decouple the unknown input d(t) from the dynamics
of the state estimation error. In addition, the conditions
(C2-C4) of proposition 2 leads to

ė(t) = Nρe(t) + Ẽρη̃(t) (54)

where

η̃(t) =

(
η(t)
η̇(t)

)

, Ẽρ =
(

Eρ Ėρ

)
(55)

which can be made in the form

ė(t) =
(

PρAρ −KρCρ + Ṗρ

)

e(t) + Ẽρη̃(t) (56)

In the perturbation-free case, the gain Kρ is selected in
order to ensure asymptotic convergence toward zero of the
state estimation error. In the present case with outputs
affected by the perturbation η(t), the gain is selected in
order to both stabilizes the state estimation error and
minimizes the effect of η̃(t) on the state estimation error.
To this purpose, the polytopic transformations of the
known matrices leads to

ė(t) =

r∑

i=1

r∑

j=1

µi(ρ, ρ̇)µj(ρ, ρ̇)
(

(Ai −KiCj) e(t) + Ẽiη̃(t)
)

(57)
The Lemma 4 gives sufficient LMI conditions that ensure
the following specifications

• e(t) → 0 asymptotically if η̃(t) = 0
• Bounded error e(t) if η̃(t) 6= 0

Lemma 4. Given a scalar α > 0, if there exist a symmetric
and positive definite matrix Q, gain matrices K̄i and posi-
tive scalars c and γ solution to the following optimization
problem

min
Q,Ki,c,γ

γ

s.t.

c− αγ ≤ 0 (58)
{

Πii < 0 i = 1, ..., r
1

r − 2
Πii +Πij +Πji < 0 i 6= j

(59)

where
(
AT

i Q+QAi − K̄iCj + CT
j K̄

T
i + αQ QẼi

ẼT
i Q −cI

)

< 0 (60)

then the state estimation error is bounded and satisfies the
inequality

‖e(t)‖2 <

√
α2

α1
‖e(0)‖2 exp

(

−
α

2
t
)

+

√
c

αα1
‖η̃(t)‖

∞

(61)
where α1 > 0 and α2 > 0 denote respectively the lower
and the upper eigenvalues of the matrix Q. The gains of
the observer are obtained from Ki = Q−1K̄i.

Proof. The proof is similar to that provided in Ichalal
et al. [2012], then it is omitted. The reader can follow
the same reasoning with a quadratic Lyapunov function
V (e(t)) = eT (t)Qe(t), Q = QT > 0.

5. SIMULATION EXAMPLE

Let us consider the system (5) with the matrices

Aρ =

(
0 1 0
0 0 1

−ρ(t) −3 −ρ(t)

)

, Dρ =

(
2ρ(t) 0
0 1
0 −ρ(t)

)

with the parameter ρ(t) = 2 + sin(t). It is clear that1 ≤
ρ(t) ≤ 3. Let us assume a linear output y(t) = Cx(t) where

C =

(
1 0 0
0 0 1

)

If the polytopic approach is used the system will be
transformed into

ẋ(t) =
2∑

i=1

µi(ρ(t)) (Aix(t) +Did(t)) (62)

where

A1 =

(
0 1 0
0 0 1
−1 −3 −1

)

, A2 =

(
0 1 0
0 0 1
−3 −3 −3

)

D1 =

(
2 0
0 1
0 −1

)

, D2 =

(
6 0
0 1
0 −3

)

and

µ1(ρ(t)) =
3− ρ(t)

2
, µ2(ρ(t)) =

ρ(t)− 1

2
(63)

The rank condition given in Chadli and Karimi [2013] is
not satisfied because rank (C [D1 D2 ]) 6= rank ([D1 D2 ])
which implies that the UIO proposed in Chadli and Karimi
[2013] does not exist. However, with the proposed ap-
proach, it is clear that the rank condition rank (CDρ) =
rank (Dρ) = 2 is satisfied ∀ρ(t) ∈ [1, 3]. Therefore, the
proposed observer (10) exists and its matrices are given
by

Eρ =






−1 0

0
1

ρ(t)
0 −1




 , Pρ =






0 0 0

0 −1
1

ρ(t)
0 0 0






The matrix Ṗρ is given by

Ṗρ =






0 0 0

0 0 −
ρ̇(t)

ρ2(t)
0 0 0






Finally, the matrix Nρ is given by

Nρ =






0 0 0

−1 −
3

ρ(t)
−

ρ̇(t)

ρ2(t)
0 0 0






︸ ︷︷ ︸

PρAρ+Ṗρ

−KρC (64)

After transforming the matrix PρAρ+Ṗρ in polytopic form

with the new parameters z1(t) = − 3
ρ(t) , z2(t) = − ρ̇(t)

ρ2(t) , the

gains Ki are computed with the LMI conditions given in
(28), and are given by

K1 = K3 =

(
0.5 0
0 0.5
0 0.5

)

,K2 = K4 =

(
0.5 0
0 −2.1
0 0.5

)

The matrix Lρ is computed directly from the equation
Lρ = Kρ − NρEρ. The figures 1 and 2 depict the state
and the unknown input estimation. It can be seen that



the provided estimation is asymptotic and the unknown
inputs can be estimated without any condition on their
time variations. A second simulation is performed by
adding random measurement noises bounded by 0.05,
which provides the results in figures 3 and 4. One can see
that the results are acceptable because the time derivatives
of the outputs and the parameters are computed by
a sliding mode differentiator which is significantly less
sensitive to noises.
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Fig. 1. States (blue) and estimates (red)
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Fig. 2. Unknown inputs (blue) and estimates (red)
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Fig. 3. State estimation with noise measurements

6. CONCLUSION

This paper proposed general UIO designs for LPV systems
by using algebraic parameter varying matrix equations and
LMIs conditions. The considered LPV systems encompass
parameter varying output equations. It is illustrated that
transforming a LPV system in polytopic form may restrict
the feasibility of UIO design because the structure of
the observer is also fixed a priori. As a conclusion, the
proposed approach is more general than the classical UIOs
in the sense that the polytopic transformation is made at
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Fig. 4. Uknown input estimation (with noise measure-
ments)

the end of the observer matrix characterization in order
to establish LMI conditions. In addition, the proposed
approach is applicable for systems with parameter varying
output equation, i.e. where the observation matrix is
parameter varying. An extension is provided for systems
with perturbed measurements, aiming to stabilize the state
estimation error while the perturbation term is minimized.

REFERENCES

C. Briat, O. Sename, and J.-F. Lafay. Design of LPV
observers for LPV time-delay systems: an algebraic
approach. International Journal of Control, 84(9):1533–
1542, 2011.

M. Chadli and H.R. Karimi. Robust observer design for
unknown inputs Takagi-Sugeno models. IEEE Trans-
actions on Fuzzy Systems, 21(1):158–164, 2013. ISSN
1063-6706.

M. Fliess, C. Join, and H. Sira-Ramirez. Non-linear
estimation is easy. International Journal of Modelling,
Identification and Control, 4(1):12–27, 2008.

H. Hamdi, M. Rodrigues, C. Mechmeche, D. Theilliol,
and N.B. Benhadj. Fault detection and isolation in
linear parameter-varying descriptor systems via pro-
portional integral observer. International Journal of
Adaptive Control and Signal Processing, 26(3):224–240,
2012. ISSN 1099-1115.

S. Ibrir. Online exact differentiation and notion of asymp-
totic algebraic observers. IEEE Transactions on Auto-
matic Control, 48(11):2055–2060, 2003. ISSN 0018-9286.

D. Ichalal, B. Marx, J. Ragot, and D. Maquin. Advances
in observer design for takagi-sugeno systems with un-
measurable premise variables. In Control Automation
(MED), 2012 20th Mediterranean Conference on, pages
848 –853, july 2012.

A. Levant. Higher-order sliding modes, differentiation
and output-feedback control. International Journal of
Control, 76(9-10):924–941, 2003.

B. Marx, D. Koenig, and J. Ragot. Design of observers for
Takagi-Sugeno descriptor systems with unknown inputs
and application to fault diagnosis. IET Control Theory
and Application, 1:1487–1495, 2007.

K. Tanaka and H.O. Wang. Fuzzy Control Systems Design
and Analysis: A Linear Matrix Inequality Approach.
John Wiley and Sons, 2001.

H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto.
Parameterized linear matrix inequality techniques in
fuzzy control system design. IEEE Transaction on Fuzzy
Systems, 9:324–332, 2001.


