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Abstract

In this note, the problem of nonlinear model reduction is addressed. It consists
in approximating a given nth-order nonlinear system by a kth-order nonlinear
system, where k < n. The goal is to compute the reduced order system min-
imizing the L2-gain from the input to the difference between the outputs of
the original and the reduced systems. For this purpose the nonlinear system
generating the approximation error is written under the Takagi-Sugeno formal-
ism and is studied with the use of a multiple Lyapunov function, based on the
descriptor approach. The obtained results are expressed in terms of Linear Ma-
trix Inequalities (LMI) and the matrices defining the reduced order system are
obtained as a result of LMI problem. Uncertain nonlinear system reduction is
also addressed.

Keywords: Model reduction, Takagi-Sugeno systems, L2 approach, descriptor
systems, Linear Matrix Inequality.

1. Introduction

Given an original system (say, of order n), the goal of model order reduction
(MOR) is to find a system with a reduced order (say, with k < n) that suitably
approximates the original system, according to a given norm criterion to be
minimized. In general, a reduced order model is sought in order to be analyzed,
simulated, or with the objective to design a controller (of reasonable order) for
a complex process.

Different methods have arisen in the field of MOR, they can be roughly
casted into three families: Krylov subspace method, balance truncated real-
ization and H∞ approach. Krylov subspace based methods are based on the
series expansion at a point of the matrix transfer of the system, see [5]. These
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methods became popular in high dimension circuit simulation where the same
structure is repeated (e.g. a transmission line model composed with a large
number of identical RLC cells, see [14]) and thus can be projected in a vector
base of limited dimension. The main drawback of these methods is that the
reduced model approximates well the original transfer mainly around a speci-
fied frequency. Krylov MOR are extended to the nonlinear case via linearization
around some points [24] or considering a collection of linear models along a state-
space trajectory of the original nonlinear system [14, 15], in this last case, the
approximation error can be estimated and used to select the linearization points.
Another group of MOR methods, appeared after the seminal work of Moore [11]
in the early 1980s, is based on Hankel norm approximation and truncated bal-
ancing realization (TBR) (see chapters 7 and 8 of [30] or [18] where extended
gramians are used) and is suitable for the analysis of LTI systems. Roughly
speaking, the minimization of the Hankel norm of the approximation error can
be seen as the truncation of the least controllable and observable modes. The
advantages of TBR methods are numerous: upper and lower bounds of the ap-
proximation error were given in [11] and [8] respectively, stability is preserved,
frequency weighting functions can be introduced to improve the precision in
some desired frequency range(s) [4, 30], but the high computational cost is a
limiting factor in the case of very high dimension systems. The last set of MOR
is based on H∞-optimization and is derived from the H∞-control theory. Adopt-
ing this approach, the reduced order model is seen as a controller designed in
order to minimize the H∞-gain of the transfer from the control input to the
approximation error. In the case of LTI systems, Grigoriadis [9] provides neces-
sary and sufficient conditions for the existence of model of kth or zeroth order,
both in continuous and discrete time. Since the obtained conditions are not
linear (rank constraint), an iterative procedure is proposed. In [3] it is proved
that the lower bound of the approximation error provided by H∞ method is the
same one as with TBR and a two-step procedure to compute the reduced order
model is proposed. In [7] the reduced order system is obtained in a one-step
LMI optimization, but needs a parameter obtained via a balanced realization.
Due to the popular LMI formalism, H∞ model reduction has been extended to
several classes of systems: singular systems [27, 29], switched LPV systems [28],
switched systems with delay [25].

In this note, an extension of the MOR to nonlinear systems is proposed
based on the L2-approach and on the Takagi-Sugeno (TS) formalism. Since
[19], TS systems are extensively investigated due to their approximation prop-
erties: indeed, any nonlinear system can be exactly written (i.e. with a zero
approximation error) as a TS system on a compact set of Rn. A systematic way
to obtain a TS model from a nonlinear model is provided by the sector nonlin-
earity approach (Chapter 14 of [22], [13]). This property motivates the choice
made in this work: considering nonlinear systems under TS form. Beside the
approximation property, one of the main advantages of the TS formalism is its
closeness to linear formulation. Since a TS system is a time varying blending of
LTI submodels, numerous borrowings from the linear theory are possible [22]).
Adopting the TS approach, the approximation error system is defined and the
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approximation error is quantified by its L2-gain to be minimized by an appro-
priate choice of the reduced order system. As a result, the computation of the
reduced order system is closely related to stability and L2-norm bound proper-
ties. Here are used some recent results on poly-quadratic stability of TS systems
[20], improved in [21] to derive LMI conditions for the L2-norm of a TS system
to be bounded by a given positive scalar. Then, a constructive procedure will be
detailed in order to compute the reduced order system minimizing the L2-gain
of the error system. The synthesis of kth and zeroth order approximation are
treated, as well as MOR of uncertain nonlinear system.

2. Problem formulation and preliminaries

Let a nonlinear system be described by the following TS model

ẋ(t) =

r∑
i=0

hi(z(t))(Aix(t) +Biu(t)) (1a)

y(t) =

r∑
i=1

hi(z(t))(Cix(t) +Diu(t)) (1b)

where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rm and z(t) ∈ Rq are respectively the state
vector, the control input, the measured output and the decision variable. Each
weighting function hi(.) quantifies the relative importance of the ith submodel
(Ai, Bi, Ci, Di) in the global nonlinear system (1). These functions satisfy the
convex sum properties

r∑
i=1

hi(z(t)) = 1 and 0 ≤ hi(z(t)) ≤ 1, ∀t ≥ 0, i ∈ {1, . . . , r} (2)

Similarly to [21], the two following assumptions are made in the remaining of
this note.

(A1) the decision variable z(t) is real time accessible (e.g. known exogenous
signal, input signal).

(A2) the functions hi satisfy |ḣi(z(t))| ≤ Φi, ∀t > 0 and i ∈ {1, . . . , r − 1}.

The MOR problem can be formulated as finding the reduced order TS system,
sharing the same input and decision variable as (1) such that the output of the
reduced order system, denoted yr(t), is as close as possible to y(t), the output
of the original system. The reduced order system is proposed to be also in the
TS form in order to capture the nonlinear behavior of the original model. The
numbers of submodels in both the reduced and the original models are equal to
r. In fact, the complexity reduction comes from the choice of a state vector of
lower dimension than the one of (1). The proposed reduced system is defined
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by

ẋr(t) =

r∑
i=0

hi(z(t))(A
r
ix

r(t) +Br
i u(t)) (3a)

yr(t) =

r∑
i=1

hi(z(t))(C
r
i x

r(t) +Dr
i u(t)) (3b)

with xr(t) ∈ Rk with k < n and yr(t) ∈ Rm. In order to quantify the distance
between the two model outputs, the approximation error system is defined by
the difference between the outputs of (1) and (3): e(t) = y(t) − yr(t). It is
readily given by

˙̄x(t) =

r∑
i=0

hi(z(t))(Āix̄(t) + B̄iu(t)) (4a)

e(t) =

r∑
i=1

hi(z(t))(C̄ix̄(t) + D̄iu(t)) (4b)

where x̄T (t) =
[
xT (t) xrT (t)

]
and

Āi =

[
Ai 0
0 Ar

i

]
B̄i =

[
Bi

Br
i

]
C̄i =

[
Ci −Cr

i

]
D̄i = Di −Dr

i (5)

The approximation error system can be written as a descriptor system

E∗ẋa(t) =

r∑
i=0

hi(z(t))(A
∗
i xa(t) +B∗i u(t))

e(t) =

r∑
i=1

hi(z(t))(C
∗
i xa(t) +D∗i u(t)) (6)

where xTa (t) =
[
x̄T (t) x̄T (t)

]
and the matrices A∗i , B∗i , C∗i and D∗i are defined

by C∗i =
(
C̄i 0m×(n+k)

)
, D∗i = D̄i and

E∗ =

(
In+k 0n+k

0n+k 0n+k

)
A∗i =

(
Āi 0n+k

In+k −In+k

)
B∗i =

(
B̄i

0(n+k)×p

)
(7)

As discussed in [21], the interest of the descriptor approach is to introduce some
degree of freedom (DOF) in the optimization problem. These DOF are supple-
mentary LMI variables. It must be pointed out, that no impulsive behavior is
introduced with this state augmentation since the restriction of

∑r
i=1 hi(z(t))Ai

in the right kernel of E∗ is obviously invertible. The approximation error is given
by the L2-gain of (6) from u(t) to e(t) = y(t) − yr(t), that is to say the upper
bound of the ratio of the energy of these signals (in the LTI case, the L2-gain
coincides with the H∞-norm of the system). It is well known [2] that a sufficient
condition to ensure that the L2-gain of a system from u(t) to e(t) is less than a

4



given positive scalar γ, is to find a Lyapunov function V (xa(t)) (where xa(t) is
the state vector) verifying

V̇ (xa(t)) + eT (t)e(t)− γ2uT (t)u(t) < 0, ∀t > 0 (8)

The MOR problem reduces to find the matrices Ar
i , Br

i , Cr
i and Dr

i (for i ∈
{1, . . . , r}) minimizing the L2-gain of the approximation error system (4) or (6).
This minimization is based on the Lyapunov function defined by

V (xa(t)) = xTa (t)E∗T

(
r∑

i=1

hi(z(t))Xi

)−1

xa(t) (9)

with XT
i E
∗T = E∗Xi ≥ 0 for i = 1, . . . , r, proposed in [21] for stability analysis

and controller design for TS systems. It will be proved that the matrices Xi are
positive definite and thus the inverse in (9) exists.

Notation 1. MT stands for the transpose matrix of the matrix M, M > 0
(resp. M < 0) means that M is a positive (resp. negative) definite matrix. The
notation ∗ is used for the blocks induced by symmetry, for any square matrix
M , S(M) is defined by S(M) = M + MT , In is the n × n identity matrix,
0n (resp. On×m) is the n × n (resp. n × m) null matrix. The matrix M =
diag(M1,M2, . . . ,Mq) is a block diagonal matrix with the blocks M1, M2, . . . ,
Mq on its diagonal entries. For any sets of matrices Xi (i = 1, . . . , r) and
Xij (i = 1, . . . , r and j = 1, . . . , r), the polytopic matrices Xh and Xhh are
respectively defined by

Xh =

r∑
i=1

hi(z(t))Xi Xhh =

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))Xij (10)

where the functions hi(z(t)) satisfy the convex sum properties (2).

Before detailing the main results, useful lemmas, taken from [23] and [31]
respectively, are recalled.

Lemma 1. For any hi(z(t)) satisfying (2) and any polytopic matrix Xhh de-
fined by a double summation according to (10), the inequality Xhh < 0 holds if
the following inequalities are satisfied

Xii <0, for 1 ≤ i ≤ r (11)

1

r − 1
Xii +

1

2
(Xij +Xji) <0, for 1 ≤ i 6= j ≤ r (12)

Lemma 2. For any matrices X, Σ(t), Y of appropriate dimensions with I ≥
ΣT (t)Σ(t) and for any positive number τ , it follows

XT ΣT (t)Y + Y T Σ(t)X ≤ τXTX + τ−1Y TY (13)
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3. Main results

Adopting the L2-approach, the MOR problem is reduced to an L2-controller
design where the reduced order system is considered as the controller, designed
in order to control the approximation error. The order of the controller has
to be tunable and less than the one of the original system, as a consequence
standard H∞-control [26] where the controller order is equal to the system order
cannot be used, but the descriptor approach is well adapted, since the order of
the controller is a degree of freedom.

The proposed result is based on the relaxed stability conditions given in
[21] and also on the relaxation introduced by [17] that are modified in order
to characterize the L2-norm bound of a system, and to be able to compute
the gains of the reduced order system. In this section, the MOR problem for
TS systems is expressed as a problem of minimization under LMI constraints.
Once the minimization problem is solved, some of the obtained LMI variables
are used to compute the gains of the reduced order system. This method does
not provide any a priori information on the L2-gain of the approximation error
(no lower or upper bound like in TBR methods for linear models), but the gain
is obtained simultaneously with the matrices defining the reduced order model
as a result of the optimization process. With this quantitative indicator, it can
be appreciated whether the order of the reduced system is sufficiently large to
provide a precise approximation of the original system.

3.1. Design of a kth order reduced system

Now the computation of the reduced system of kth order is given in the
following theorem.

Theorem 1. There exists a reduced system (3) of order k < n approximating
the system (1) (i.e. minimizing the L2-gain from u(t) to e(t) in (4)), if there
exist matrices X11

i = X11T
i , X31

i and X33
i ∈ Rn×n, matrices X12, X32

i and
X34

i ∈ Rn×k, matrices X22 = X22T , X42
i , X44

i and Ar
2i ∈ Rk×k, matrices

X41
i , X43

i and Ar
1i ∈ Rk×n, matrices Cr

1i ∈ Rm×n and Cr
2i ∈ Rm×k, matrices

Br
i ∈ Rk×p and matrices Dr

i ∈ Rm×p, minimizing γ̄ under the LMI constraints
(14-17). [

X11
i X12

X12T X22

]
>0, 1 ≤ i ≤ r (14)

X11
r −X11

i ≥0, 1 ≤ i ≤ r − 1 (15)

Θii <0, 1 ≤ i ≤ r (16)

1

r − 1
Θii +

1

2
(Θij + Θji) <0, 1 ≤ i 6= j ≤ r (17)
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with

Θij =



Θ11
ij ∗ ∗ ∗ ∗ ∗

Ar
1i+(AiX

12)T S(Ar
2i) ∗ ∗ ∗ ∗

X11
j −X31

j X12 −X32
j −S(X33

j ) ∗ ∗ ∗
X12T −X41

j X22 −X42
j −X43

j −X34T
j −S(X44

j ) ∗ ∗
BT

i BrT
i 0 0 −γ̄Ip ∗

CiX
11
j − Cr

1i CiX
12−Cr

2i 0 0 Di−Dr
i −Im


(18)

where Θ11
ij = S(AiX

11
j )−

∑r−1
k=1 Φk(X11

k −X11
r ).The L2-gain from u(t) to e(t) is

given by γ =
√
γ̄ and the matrices Ar

i and Cr
i are respectively obtained by

Ar
i =(Ar

1iX
12 +Ar

2iX
22)(X12TX12 +X22X22)−1 (19)

Cr
i =(Cr

1iX
12 + Cr

2iX
22)(X12TX12 +X22X22)−1 (20)

Proof 1. The following Lyapunov function is considered

V (xa(t)) = xTa (t)E∗T (Xh)−1xa(t) (21)

where the matrices Xi are defined by

Xi =


X11

i X12 0 0
X12T X22 0 0
X31

i X32
i X33

i X34
i

X41
i X42

i X43
i X44

i

 (22)

It can be shown that the LMI constraints (14) and (16) ensure the invertibility
of Xh (see remark 1, below the proof).

The time derivative of the Lyapunov function (21) is given by

V̇ (xa(t)) = xTa (t)E∗T
d

dt
(Xh)

−1
xa(t) + ẋTa (t)E∗T (Xh)

−1
xa(t)

+ xTa (t)E∗T (Xh)
−1
ẋa(t) (23)

Due to the definitions of E∗ and Xh given by (7) and (22) respectively, it follows

that (E∗)T (Xh)−1 =
(
(E∗)T (Xh)−1

)T
and then the time derivative of V (xa(t))

becomes

V̇ (xa(t)) = xTa (t)E∗T
d

dt
(Xh)

−1
xa(t) + S(ẋTa (t)E∗T (Xh)

−1
xa(t)) (24)

The definitions of Xi and E∗ given in (22) and (7), imply E∗Xi = XT
i E
∗T and,

keeping in mind the positivity of the activating functions, (14) ensures

E∗T (Xh)
−1

= (Xh)
−T

E∗ ≥ 0 (25)
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Moreover, derivating (2) it follows that
∑r

i=1 ḣi(z(t)) = 0, which results in

ḣr(z(t)) = −
∑r−1

i=1 ḣi(z(t)), the second term in (24) can be developed as

d

dt

(
r∑

i=1

hi(z(t))Xi

)−1

=− (Xh)
−1

(
r∑

i=1

d

dt
hi(z(t))Xi

)
(Xh)

−1

=− (Xh)
−1

(
r−1∑
i=1

ḣi(z(t))(Xi −Xr)

)
(Xh)

−1
(26)

With (6), (25) and (26), the time derivative of the Lyapunov function becomes

V̇ (xa(t)) =− xTa (t) (Xh)
−T

(
r−1∑
i=1

ḣi(z(t))E
∗(Xi −Xr)

)
(Xh)

−1
xa(t)

+ S
(

(A∗hxa(t) +B∗hu(t))T (Xh)
−1
xa(t)

)
(27)

Let Γ(t) = V̇ (xa(t)) + eT (t)e(t)− γ2uT (t)u(t) denote the left hand side of (8) is
given by Γ(t) = ξT (t)M(t)ξ(t) where ξT (t) =

[
xTa (t) uT (t)

]
andM(t) is defined

by

M(t) =

[
M1a(t) ∗

(B∗h)
T

(Xh)
−1 −γ2Ip

]
+

[
(C∗h)T

(D∗h)T

] [
(C∗h)T

(D∗h)T

]T
(28)

withM1a(t) = − ((Xh)
−T
(∑r−1

k=1 ḣk(z(t))E∗(Xk −Xr)
)
X−1

h +S
(

((Xh)
−T

A∗h

)
.

The inequality (8) is satisfied if and only if M(t) < 0. Applying a Schur com-
plement, M(t) < 0 is equivalent to M1a(t) ∗ ∗

(B∗h)
T

(Xh)
−1 −γ2Ip ∗

C∗h D∗h −Im

 < 0 (29)

Pre- and post-multiplying the inequality (29) by T = diag((Xh)T , Ip, In+k) and
TT respectively, the following equivalent inequality is obtainedM1b(t) ∗ ∗

(B∗h)
T −γ2Ip ∗

C∗hXh D∗h −Im

 < 0 (30)

with

M1b(t) = −

(
r−1∑
k=1

ḣk(z(t))E∗(Xk −Xr)

)
+ S (A∗hXh) (31)

The inequality (14) is equivalent to E∗(Xr −Xk) ≥ 0. With |ḣk(z(t))| ≤ Φk, it
follows

−
r−1∑
k=1

ḣk(z(t))E∗(Xk −Xr) ≤ −
r−1∑
k=1

ΦkE
∗(Xk −Xr) (32)
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From (30) and (32), it follows that the L2-gain of the approximation error is
bounded by γ (i.e. (8) is satisfied) if the following inequality holds

Mhh < 0 (33)

with

Mij =

−∑r−1
k=1 ΦkE

∗(Xk −Xr) + S (A∗iXj) ∗ ∗
B∗Ti −γ2Ip ∗
C∗iXj D∗i −Im

 (34)

Using lemma 1, sufficient conditions are given by

Mii <0, 1 ≤ i ≤ r (35a)

1

r − 1
Mii +

1

2
(Mij +Mji) <0, 1 ≤ i 6= j ≤ r (35b)

These inequalities are not linear in the matrices to be determined Xi, A
r
i , Br

i

and Cr
i since some products appear in the previous inequalities. In order to

obtain LMI, the following variable changes are defined by γ̄ = γ2 and[
Ar

1i Ar
2i

]
=Ar

i

[
X12T X22

]
(36)[

Cr
1i Cr

2i

]
=Cr

i

[
X12T X22

]
(37)

With the definition of Xi given by (22) and the variable changes defined by
(36-37) it follows

A∗iXj =


AiX

11
j AiX

12 0 0
Ar

1i Ar
2i 0 0

X11
j −X31

j X12 −X32
j −X33

j −X34
j

X12T −X41
j X22 −X42

j −X43
j −X44

j

 (38)

C∗iXj =
[
CiX

11
j − Cr

1i CiX
12 − Cr

2i 0 0
]

(39)

Thus (34), with the substitutions (38) and (39) shows that the inequality (35)
becomes (16). The only remaining point is to obtain the matrices of the reduced
system. Since the matrices Xi are non-singular (see remark 1 below), the matrix[
X12T X22

]
is full row rank and thus Ar

i and Cr
i can be obtained by right pseudo

inversion of
[
X12T X22

]
in the variable changes (36) and (37), namely they are

respectively given by (19) and (20), which completes the proof.

Remark 1. The submatrices obtained by selecting the two first rows and columns
of Xi are positive definite, according to (14). The submatrices obtained by se-
lecting the two last rows and columns of Xi are also positive definite, according
to the LMI (16) pre- and post-multiplied by [0n+k In+k 0p+m] and its trans-
posed. Consequently, the eigenvalue of the matrices Xi are strictly positive and
the matrices Xi are nonsingular.
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3.2. Design of a kth order reduced system for uncertain systems

The result of the previous section can be extended to the case of nonlinear
systems affected by bounded time varying model uncertainties. In this case, the
system (1) becomes

ẋ(t) = (Ah + ∆A(t))x(t) + (Bh + ∆B(t))u(t) (40a)

y(t) = (Ch + ∆C(t))x(t) + (Dh + ∆D(t))u(t) (40b)

where the model uncertainties are defined by

∆X(t) = MXΣX(t)NX and 0 ≤ ΣT
X(t)ΣX(t) ≤ I for X ∈ {A,B,C,D}

(41)
In this case the error system between (40) and (3) is defined by

˙̄x(t) =

[
Ah + ∆A(t) 0

0 Ar
h

]
x̄(t) +

[
Bh + ∆B(t)

Br
h

]
u(t) (42a)

e(t) =
[
Ch + ∆C(t) −Cr

h

]
x̄(t) + (Dh + ∆D(t)−Dr

h)u(t) (42b)

Despite the presence of model uncertainties, an optimal reduced system (of order
k < n) can be found, by slightly adapting the result of theorem 1.

Theorem 2. There exists a reduced system (3) of order k < n approximating
the system (40) (i.e. minimizing the L2-gain from u(t) to y(t)− yr(t)), if there
exist matrices X11

i = X11T
i , X31

i and X33
i ∈ Rn×n, matrices X12, X32

i and
X34

i ∈ Rn×k, matrices X22 = X22T , X42
i , X44

i and Ar
2i ∈ Rk×k, matrices

X41
i , X43

i and Ar
1i ∈ Rk×n, matrices Cr

1i ∈ Rm×n and Cr
2i ∈ Rm×k, matrices

Br
i ∈ Rk×p, matrices Dr

i ∈ Rm×p and positive real numbers τ1
ij, τ2

ij, τ3
ij and τ4

ij,
minimizing γ̄ under the LMI constraints (14-17), where Θij is defined by

Θij =

Θ̃11
ij ∗ ∗

Θ̃21
ij Θ̃22

ij ∗
Θ̃31

ij Θ̃32
ij −Θ22

ij

 (43)

with Θ22
ij = diag(τ1

ijI, τ
2
ijI, τ

3
ijI, τ

4
ijI) and

Θ̃11
ij =

[
S(AiX

11
j )−

∑r−1
k=1 Φk(X11

k −X11
r ) ∗

Ar
1i + (AiX

12)T S(Ar
2i)

]
+ diag(τ1

ijMAM
T
A + τ2

ijMBM
T
B , 0)

Θ̃21
ij =


X11

j −X31
j X12−X32

j

X12T −X41
j X22−X42

j

BT
i BrT

i

CiX
11
j − Cr

1i CiX
12 − Cr

2i



Θ̃22
ij =


−S(X33

j ) ∗ ∗ ∗
−X43

j −X34T
j −S(X44

j ) ∗ ∗
0 0 −γ̄Ip ∗
0 0 Di−Dr

i −Im


+ diag(0, 0, 0, τ3

ijM
T
CMC + τ4

ijM
T
DMD)
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Θ̃31
ij =


NAX

31
j NAX

32
j

0 0
NCX

11
j NCX

12
j

0 0



Θ̃32
ij =


NAX

33
j NAX

34
j 0 0

0 0 NB 0
0 0 0 0
0 0 ND 0


The matrices Ar

i and Cr
i are respectively defined by (19) and (20) and the L2-

gain from u(t) to e(t) = y(t)− yr(t) is given by γ =
√
γ̄.

Proof 2. Following the proof of theorem 1, the reduced order system is obtained
by minimizing γ under the constraint (33). Let us define Θ11

ij and Θ21
ij by

Θ11
ij =

[
Θ̃11

ij ∗
Θ̃21

ij Θ̃22
ij

]
(44)

Θ21
ij =

[
Θ̃31

ij Θ̃32
ij

]
(45)

With the model uncertainties (41), the condition (33) becomes M∆
hh < 0, with

M∆
ij =Mij + S(XT ΣT (t)Θ21

ij ) (46)

where Σ(t) = diag(ΣA(t),ΣB(t),ΣC(t),ΣD(t)), Mij and Θ21
ij are defined by

(34) and (45) respectively and where X is defined by

X =


MT

A 0 0 0 0 0
MT

B 0 0 0 0 0
0 0 0 0 0 MT

C

0 0 0 0 0 MT
D

 (47)

Using lemma 2, the sufficient conditions (35) become

Mii +XT Θ22
ii X + Θ21T

ii (Θ22
ii )−1Θ21

ii < 0, 1 ≤ i ≤ r (48a)

1

r − 1

(
Mii +XT Θ22

ii X + Θ21T
ii (Θ22

ii )−1Θ21
ii

)
+

1

2

(
Mij +XT Θ22

ijX + Θ21T
ij (Θ22

ij )−1Θ21
ij

+Mji +XT Θ22
jiX + Θ21T

ji (Θ22
ji )−1Θ21

ji

)
< 0, 1 ≤ i 6= j ≤ r (48b)

From (44), one can note that Θ11
ij =Mij +XT Θ22

ijX and some Schur comple-

ments on the terms (Θ22
ii )−1, (Θ22

ij )−1 and (Θ22
ji )−1 in (48) allow to obtain the

conditions (16-17), with Θij defined by (43).
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3.3. Design of a zeroth order reduced system

The simplest reduced system is the zeroth order approximation consisting in
a simple gain from the input u(t) to the output yr(t). In this case, the reduced
system is a polytopic matrix Dr

h and the approximation error is given by

ẋ(t) = Ahx(t) +Bhu(t) (49a)

e(t) = Chx(t) + (Dh −Dr
h)u(t) (49b)

The computation of the matrices Dr
i is given in the following theorem.

Theorem 3. There exists a zeroth order system optimally approximating the
system (1) (i.e. minimizing the L2-gain from u(t) to e(t) in (49)), if there exist
matrices X1

i = X1T
i , X2

i and X3
i ∈ Rn×n and matrices Dr

i ∈ Rm×p, minimizing
γ̄ under the LMI constraints (50-53)

X1
i >0, 1 ≤ i ≤ r (50)

X1
r −X1

i ≥0, 1 ≤ i ≤ r − 1 (51)

Θii <0, 1 ≤ i ≤ r (52)

1

r − 1
Θii +

1

2
(Θij + Θji) <0, 1 ≤ i 6= j ≤ r (53)

where Θij is defined by

Θij =


−
∑r−1

k=1 Φk(X1
k −X1

r ) + S(AiX
1
j ) ∗ ∗ ∗

X1
j −X2

j −S(X3
j ) ∗ ∗

BT
i 0 −γ̄Ip ∗

CiX
1
j 0 Di −Dr

i −Im

 (54)

Proof 3. The proof is similar to the one of theorem 1, thus only a sketch is
given here. The system (49) can be written as the descriptor system (6) with
xTa (t) = [xT (t) xT (t)], D∗i = Di −Dr

i and

E∗ =

(
In 0n
0n 0n

)
A∗i =

(
Ai 0n
In −In

)
B∗i =

(
Bi

0

)
C∗i =

(
Ci 0

)
(55)

The Lyapunov function V (xa(t)) is defined by (21) with

Xi =

(
X1

i 0
X2

i X3
i

)
(56)

From (50), the function V (xa(t)) is positive definite. As seen previously, the L2-
gain of the approximation error is bounded by γ if (33) holds. Using the system
matrices given by (55) and the Lyapunov function defined by (21) and (56),
Mij in (34) becomes Θij defined by (54). Then, the inequality (33) becomes
Θhh < 0 with Θij defined by (54) and the LMI conditions (15-17) of theorem 1
become (51-53), which achieves the proof.
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3.4. Relaxed LMI conditions for MOR
In the three previous cases (reduced model of order k for certain or uncertain

system and reduced model of zeroth order), the reduced order model is obtained
by the minimization of the L2-gain of the approximation error system. Roughly
speaking, this minimization can be summarized by the inequality Θhh < 0.
The most obvious sufficient condition is to impose Θij < 0 for 1 ≤ i, j ≤ r.
This is very conservative and many works were dedicated to the relaxation
of such conditions. The relaxation proposed in [23], and recalled in lemma
1, combined with the fuzzy Lyapunov function and the descriptor approach
proposed by [21], allow to obtain the LMI (16-17) (resp. (52-53)) of theorems
1 and 2 (resp. theorem 3). Another interesting relaxation scheme is proposed
in [17]. This relaxation is based on the convex sum property of the weighting
functions and on an appropriate factorization of the multiple sums obtained
when multiplying Θhh by (

∑r
i=1 hi(z(t)))

q
= 1. Using this relaxation, theorem

1 can be reformulated as follows.

Theorem 4. There exists a reduced system (3) of order k < n approximating
the system (1) (i.e. minimizing the L2-gain from u(t) to e(t) in (4)), if there
exist matrices X11

i = X11T
i , X31

i and X33
i ∈ Rn×n, matrices X12, X32

i and
X34

i ∈ Rn×k, matrices X22 = X22T , X42
i , X44

i and Ar
2i ∈ Rk×k, matrices

X41
i , X43

i and Ar
1i ∈ Rk×n, matrices Cr

1i ∈ Rm×n and Cr
2i ∈ Rm×k, matrices

Br
i ∈ Rk×p and matrices Dr

i ∈ Rm×p, minimizing γ̄ under the LMI constraints
(14-15) and (57-63).

Θii < 0, 1 ≤ i ≤ r (57)

3Θii + Θij + Θji < 0, 1 ≤ i 6= j ≤ r (58)

Θjj + 3(Θii + Θij + Θji) < 0, 1 ≤ i 6= j ≤ r (59)

Θ1
ijk < 0, 1 ≤ i < j < k ≤ r (60)

Θ2
ijk < 0, 1 ≤ i ≤ j ≤ k ≤ r (61)

Θijk` < 0, 1 ≤ i < j < k < ` ≤ r (62)

Θijk`m < 0, 1 ≤ i < j < k < ` < m ≤ r (63)

with

Θ1
ijk =6Θii + 3(Θij + Θik + Θji + Θki) + Θjk + Θkj (64)

Θ2
ijk =Θik + Θjk + Θki + Θkj + Θii + Θjj + 2(Θij + Θji) (65)

Θijk` =2(Θii + Θij + Θik + Θi` + Θji + Θki + Θ`i)

+ Θjk + Θj` + Θkj + Θk` + Θ`j + Θ`k (66)

Θijk`m = Θii + Θjj + Θkk + Θ`` + Θmm + Θij + Θji + Θik + Θki

+ Θi` + Θ`i + Θim + Θmi + Θjk + Θkj + Θj` + Θ`j

+ Θjm + Θmj + Θk` + Θ`k + Θkm + Θmk + Θ`m + Θm` (67)

where Θij is defined by (18). The matrices Ar
i and Cr

i are respectively obtained
by (19) and (20) and the L2-gain from u(t) to e(t) = y(t) − yr(t) is given by
γ =
√
γ̄.
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Proof 4. From the proof of theorem 1, it suffices to prove that the LMI condi-
tions (57-63) imply that Θhh < 0. From (2), Θhh < 0 is equivalent to(

r∑
k=1

hk(z(t))

)3
 r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))Θij

 < 0 (68)

Gathering the terms sharing the same combinations of weighting functions (68)
becomes

r∑
i=1

h5
i (z(t))Θii +

r∑
i,j=1
i6=j

h4
i (z(t))hj(z(t))(3Θii + Θij + Θji)

+
r∑

i,j,k=1
i<j<k

h3
i (z(t))hj(z(t))hk(z(t))Θ1

ijk

+

r∑
i,j=1
i6=j

h3
i (z(t))h2

j (z(t))(Θjj + 3(Θii + Θij + Θji))

+

r∑
i,j,k,`=1
i<j<k<`

h2
i (z(t))hj(z(t))hk(z(t))h`(z(t))Θijk`

+

r∑
i,j,k=1
i<j<k

h2
i (z(t))h2

j (z(t))hk(z(t))(3Θ2
ijk)

+

r∑
i,j,k,`,m=1
i<j<k<`<m

hi(z(t))hj(z(t))hk(z(t))h`(z(t))hm(z(t))Θijk`m < 0 (69)

Since the weighting functions hi(z(t)) are nonnegative, if each term in the seven
sums is negative definite, then (69) holds. These terms correspond to the LMI
conditions (57-63) which achieves the proof.

Following the same idea, the reduced system of kth order for uncertain sys-
tems, and the zeroth order reduced system can be computed from corollary 1
and 2 respectively. The proofs of these three corollaries are easily deduced from
the one of theorem 4 and thus are omitted.

Corollary 1. There exists a reduced system (3) of order k < n optimally ap-
proximating the uncertain system (40) (i.e. minimizing the the L2-gain from
u(t) to e(t) in (42)), if there exist matrices X11

i = X11T
i , X31

i and X33
i ∈ Rn×n,

matrices X12, X32
i and X34

i ∈ Rn×k, matrices X22 = X22T , X42
i , X44

i and
Ar

2i ∈ Rk×k, matrices X41
i , X43

i and Ar
1i ∈ Rk×n, matrices Cr

1i ∈ Rm×n and
Cr

2i ∈ Rm×k, matrices Br
i ∈ Rk×p, matrices Dr

i ∈ Rm×p and positive real num-
bers τ1

ij, τ2
ij, τ3

ij and τ4
ij, minimizing γ̄ under the LMI constraints (14-15), and

(57-63) where Θij is defined by (43). The matrices Ar
i and Cr

i are respectively
defined by (19) and (20) and the L2-gain from u(t) to e(t) = y(t) − yr(t) is
given by γ =

√
γ̄.
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Corollary 2. There exists a zeroth order system optimally approximating the
system (1) (i.e. minimizing the the L2-gain from u(t) to e(t) in (49)), if there
exist matrices X1

i = X1T
i , X2

i and X3
i ∈ Rn×n and matrices Dr

i ∈ Rm×p,
minimizing γ̄ under the LMI constraints (50-51) and (57-63) with Θij defined
by (54).

Remark 2. According to [1, 2, 6] the complexity of solving LMI problems is
polynomial in the number of variables and in the dimension of the matrix in-
equality. Denoting Nd the number of scalar decision variables and Mr the num-
ber of rows of the matrix inequality, the complexity of solving the LMI problem
is O(N2

dMr). For instance, in theorems 1 and 3, these numbers are polynomial
in the dimensions of the original and reduced systems, namely they are given by:
Nd = n2

(
5r
2

)
+ n

(
r
2 + 5kr + k +mr

)
+ k2

(
3r + 1

2

)
+ k

(
1
2 +mr + pr

)
+ 1 and

Mr = n(2r2+2r−1)+k(2r2+r)+r2(p+m), consequently the overall complexity is
O(n5, k5). Due to this polynomial complexity and also to the fact that LMI-based
methods are not constructive, the proposed results are not relevant for very large
scale systems (thousands of state variables) but are rather devoted to the order
reduction of nonlinear systems in order to ease simulations or the implementa-
tion of a reduced controller/observer. It should be kept in mind that T-S mod-
eling can capture any nonlinear behaviors, and that model/controller/observer
order reduction in the general framework of nonlinear systems is not a trivial
issue.

4. Numerical example

The results presented in theorem 1 are applied in order to compute a fifth
order nonlinear system approximation of a ninth order nonlinear system with
r = 3 subsystems, m = 1 output and p = 2 inputs, defined by (1) with

A1 =



464 −256 −512 0 −512 0 0 0 512
176 −224 −176 −64 −176 0 64 −64 176
152 −128 −192 0 −152 0 0 −32 184
−96 64 128 32 96 0 −33 33 −96
102 124 −108 64 −134 −16 −63 99 110
378 −100 −408 −64 −422 −4 65 −57 406
−42 −36 60 64 42 0 −64 76 −58
−42 −36 60 64 42 0 −63 75 −58
−130 124 132 64 146 −16 −63 67 −138
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A2 =



696 −512 −769 0 −769 0 0 0 769
361 −433 −361 −128 −361 0 128 −128 361
453 −256 −594 0 −453 0 0 −128 581
−161 129 193 80 161 0 −81 81 −161
−56 203 79 128 −1 −16 −126 212 −76
399 −185 −406 −128 −465 −7 130 −81 401
−112 −85 179 128 112 0 −128 185 −176
−112 −85 179 128 112 0 −126 184 −176
−116 203 71 128 132 −16 −126 84 −81



A3 =



348 −256 −385 0 −385 0 0 0 385
180 −217 −180 −64 −180 0 64 −64 180
226 −128 −297 0 −226 0 0 −64 290
−80 64 96 40 80 0 −41 41 −80
−28 101 40 64 0 −8 −63 106 −38
200 −93 −203 −64 −233 −4 65 −41 201
−56 −43 90 64 56 0 −64 93 −88
−56 −43 90 64 56 0 −63 92 −88
−58 101 36 64 66 −8 −63 42 −41



B1 =



−0.29 −0.15
−0.021 −0.01
−0.035 −0.017
−0.015 −0.0074
−0.24 −0.12
−0.22 −0.11
−0.039 −0.02
−0.039 −0.02
−0.013 −0.0064


B2 =



−1.81 −0.903
−0.182 −0.0912
−0.256 −0.128
−0.0704 −0.0352
−1.38 −0.689
−1.27 −0.634
−0.281 −0.141
−0.281 −0.141
−0.0647 −0.0323


B3 =



−0.24 −0.12
−0.025 −0.012
−0.035 −0.017
−0.0095 −0.0048
−0.19 −0.093
−0.17 −0.086
−0.038 −0.019
−0.038 −0.019
−0.0087 −0.0044


C1 =

[
−0.25 0 0.5 0 0.5 0 0 0 −0.5

]
D1 =

[
0.2 0.1

]
C2 =

[
−0.27 0 0.54 0 0.54 0 0 0 −0.54

]
D2 =

[
0.2 0.1

]
C3 =

[
−1 0 2 0 2 0 0 0 −2

]
D3 =

[
0.2 0.1

]
The weighting functions, depending on the input signals, are defined by w1(t) =
(tanh((u1(t)u2(t))/6) + 1), w2(t) = (tanh((u1(t) + u2(t))/6) + 1), w3(t) =
(tanh((u1(t) − u2(t))/6) + 1) and hi(t) = (wi(t))/(

∑r
k=1 wk(t)). The input

signals and the weighting functions are depicted on figures 1(a) and 1(b) re-
spectively. The upper bound on the norm of the time derivative of the weight-
ing functions are Φk = 0.3. The LMI problem given by (14-17) is solved with
Matlab and the solver Yalmip. The reduced order system is defined by (3)
with

Ar
1 =


−5.54 2.7164 8.1067 −0.69063 0.077528
5.7587 −42.465 −22.908 4.5168 −2.5344
46.068 −81.293 −172.48 −6.7698 −12.661
41.606 15.058 −19.34 −145.87 8.4247
163.19 −372.05 −479 −23.154 −188.39
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Figure 1: System inputs and weighting functions

Ar
2 =


−13.498 11.606 3.9158 0.68196 −0.18676
16.581 −31.974 −30.24 7.4457 −1.3846
23.666 −63.631 −148.08 47.48 −16.534
−1.3843 76.956 224.18 −126.8 30.756
18.164 −112.2 −640.48 171.22 −212.89



Ar
3 =


−4.693 3.059 3.588 −0.8411 0.293
5.705 −26.76 −9.257 5.695 −0.7484
10.86 −6.097 −32.66 4.459 −3.99
−4.44 36 7.816 −32.68 3.524
37.42 −31.64 24.39 −36.11 −30.74



Br
1 =


0.439 0.219
0.215 0.108
−0.493 −0.246
0.598 0.299
5.39 2.7

 Br
2 =


0.765 0.382
−0.598 −0.299
−0.567 −0.284
−0.371 −0.185

3.18 1.59

 Br
3 =


0.168 0.0838
−0.141 −0.0703
−0.0724 −0.0362

0.169 0.0846
1.88 0.94



Cr
1 =

[
−0.43 0.53 0.68 −0.061 0.031

]
Dr

1 =
[
0.2 0.1

]
Cr

2 =
[
−0.38 0.34 0.16 −0.031 −0.0085

]
Dr

2 =
[
0.2 0.1

]
Cr

3 =
[
−0.62 0.2 0.24 −0.035 0.02

]
Dr

3 =
[
0.19 0.1

]
The original and reduced system outputs are depicted on figure 2.

5. Conclusion

In this note, LMI conditions have been proposed to design a reduced order
Takagi-Sugeno system that approximates a nonlinear system of higher order,
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Figure 2: Original and reduced system outputs y(t) (solid line) and yr(t) (dashed line)

in the continuous time case. The approximation error is quantified by the L2-
gain of the system generating the approximation error. The optimal solution to
model order reduction (MOR) is found by minimizing this gain. An extension
of the MOR to uncertain nonlinear systems is proposed. The special case of
zeroth order reduced system is also treated. Finally, a particular attention is
paid to conservatism reduction of the obtained LMI conditions. Future works
may concern the introduction of frequency weighting transfer functions in order
to highlight a particular operating frequency range in which the original system
should be precisely approximated by the reduced one and the extension of the
presented result to the discrete time case, using non-quadratic Lyapunov func-
tion like in [10], or the study of MOR for T-S systems with activating functions
depending on the state variables, using the results of [12, 16].
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[14] Rewieński, M. [2003], A trajectory piecewise linear approach to model or-
der reduction of nonlinear dynamical systems, PhD thesis, Massachusetts
Institute of Technology.
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