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Abstract

This work addresses the model reference tracking control problem. It aims to
highlight the encountered difficulties and the proposed solutions to achieve the
tracking objective.
Based on a literature overview of linear and nonlinear reference tracking, the
achievements and the limitations of the existing strategies are highlighted. This
motivates the present work to propose clear control algorithms for perfect and
approximate tracking controls of nonlinear systems described by Takagi-Sugeno
models. First, perfect nonlinear tracking control is addressed and necessary struc-
tural conditions are stated. If these conditions do not hold, approximate tracking
control is proposed and the choice of the reference model to be tracked as well as
the choice of the criterion to be minimized are discussed with respect to the de-
sired objectives. The case of constrained control input is also considered in order
to anticipate and counteract the effect of the control saturation.
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1. Introduction

1.1. Overview of linear model reference tracking control
Considering a plant represented by a linear model{

ẋ(t) = Ax(t)+Bu(t), x ∈ Rnx , u ∈ Rnu

y(t) =Cx(t), y ∈ Rny (1)

and a linear reference model{
ẋr(t) = Arxr(t)+Brur(t), xr ∈ Rnx , ur ∈ Rnu

yr(t) =Cxr(t)
(2)

representing the desired dynamics of the plant, model reference tracking control
consists in determining a feedback law u(t) to achieve dynamic matching between
the controlled plant (1) and the desired model reference (2). More precisely, the
goal is that the state variables of the plant x(t) (or its output y(t)) will closely fol-
low the state variables (or the output) of the model reference xr(t) (or yr(t)).
In the available literature, the reader may distinguish three main approaches that
will be presented and discussed hereafter: perfect, approximate and iterative state
tracking.

1.1.1. Perfect state tracking
In the first approach, the well known Erzbergers perfect model matching con-

ditions [1] allow to achieve a null tracking error. Namely, under some structural
conditions on the models (1) and (2), it establishes the existence of a state feed-
back controller ensuring that the plant and the model reference states behave sim-
ilarly. Unfortunately, these conditions are restrictive matching equations which
can only be satisfied for system matrices with great structural similarities, e.g. in
the canonical form [2].
Note that one of the main issues for this approach concerns the controller struc-
ture. Two procedures may be distinguished.
In the first procedure, the controller structure choice is firstly fixed and then the
structural matching conditions and the appropriate gains of the controller are de-
duced. In [3], [4], [5] and [6] for example, a particular state feedback for state
tracking is given by:

u(t) = Kx(t)+Krur(t), K ∈ Rnu×nx , Kr ∈ Rnu×nu (3)
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where K and Kr are constant parameter matrices so that the plant state vector x(t)
can track a reference state vector xr(t) generated from (2). Such a control design
leads to: {

ẋ(t) = (A+BK)x(t)+BKru(t)
y(t) =Cx(t), y ∈ Rny (4)

The comparison between (4) and (2) can be made from two points of view, whether
the tracking is limited to the steady state or is also sought during the transient.
For the steady state tracking, one obtains the following sufficient matching condi-
tions:

(A+BK)−1BKr = A−1
r Br (5)

A particular solution of (5) is given by [7]:

( Kr K ) = B+PQ+ (6)

with

P = AA−1
r Br, Q =

(
I

−A−1
r Br

)
(7)

and the consistency condition:

BB+PQ+Q = P (8)

The perfect state matching between (2) and (4), even during the transient, is ob-
tained if there exists K and Kr such that A+BK = Ar and BKr = Br. This needs
the following rank constraints to be fulfilled{

rank(B) = rank([B|Ar−A])
rank(B) = rank([B|Br])

(9)

The gains K and Kr are then given by:{
Kr = B+Br
K = B+(Ar−A) (10)

with B+ a suitable pseudo-inverse matrix of the full column rank B matrix.
It is also important to highlight the fact that fixing the structure of the controller
(3) will not necessarily lead to a solution. In fact, the choice of an inadequate
structure may cause some controllability problems, which confirms the impor-
tance of the adopted control structure. In [8], the model and controller struc-
tures were fixed and the gains were given the basic form corresponding to a PI
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controller u(t) = Kxr(t)+Krur(t)+Ke
∫ t

0 (yr(τ)− y(τ))dτ with an asymptotically
stable output tracking error.
Imposing the same control gain over the time range may also be subject to criti-
cism. This is why an adaptive control law with updated matrices K(t) and Kr(t)
is presented in [2] and [9]. In [10], the authors’ aim was to design an adap-
tive control law ensuring the closed-loop signal boundedness and asymptotic state
tracking despite uncertainties.
The second procedure tends to achieve a null tracking error without a pre-requisited
structure for the control law nor an assignment of error dynamics. In [11] for ex-
ample, the adopted approach was to deduce the control structure from the state
tracking error e(t) = x(t)− xr(t) and its dynamics deduced from (1) and (2) as
follows

ė(t) = Are(t)+(A−Ar)x(t)+Bu(t)−Brur(t) (11)

In order that (11) reduces to ė(t)= Ãe(t), where Ã is a prescribed stable matrix, the
input control u(t) should be designed such that (A− Ã)x+(Ã−Ar)xr +Bu−Brur
is null.

1.1.2. Approximate state tracking
As seen previously, perfect state tracking needs to respect strong constraints

due to rank conditions ((9) for example). Therefore, in many situations, only
approximate state tracking can be obtained, where the goal is to minimize the
discrepancy between x and xr (or y and yr). For example if (11) cannot be re-
duced to ė(t) = Ãe(t), it is nevertheless possible to find a control u(t) minimizing
x̃(t) = (A− Ã)x(t)+(Ã−Ar)xr(t)+Bu(t)−Brur(t) or the transfer from u to x̃.
Approximate state tracking is based on the quadratic optimal control theory and
can be applied to arbitrary systems and always yields a feedback configuration
which minimizes a quadratic function of the tracking error between the system
state and the model reference [1], [12], [13]. Although the quadratic optimal
control approach provides a generic framework to design reference tracking con-
trollers, it may be necessary to pay a particular attention to the choice of the
weighting matrices of the cost function [1] in order to obtain satisfactory trajec-
tory tracking.
The considered tracking criterion may be expressed in the following terms:∫ t f

0
eT (t)Qe(t)dt ≤ η

2
∫ t f

0
uT (t)u(t)dt (12)

where Q is a positive definite weighting matrix and η the prescribed attenuation
level. The matrix Q is chosen accordingly to the state components for which
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some specific tracking is desired. In (12), the upper bound of the L2 gain from
u(t) to e(t) given by η√

λ̄ (Q)
(where λ (Q) denotes the largest eigenvalue of the

matrix Q) quantifies the effect of the reference input on the weighted tracking

error. Obviously, the objective is to maximize the attenuation level
√

λ̄ (Q)
η

.
Another point of the optimal control theory that may be subject to criticism is
the fact that the linear quadratic regulator synthesis leads to determine a constant
feedback gain.
A key point in this approach is the time horizon, which may be either finite and
sliding or infinite. In the later case, the L2 norm of the tracking error is minimized
and in the former case, the aim is to minimize the tracking error on a finite sliding
horizon. This procedure, known as the Model Predictive Control (also referred
as the moving or receding horizon control), consists in solving an optimal control
problem, over an horizon of finite length, at each time instant. With a discrete
representation, it results in computing a control input sequence at time k, that
minimizes, on a time horizon, a criterion mixing the control cost and the tracking
error [14]:

Φk =
k+N−1

∑
i=k

(
||xi+1− xr,i+1||2Q +η

2||ui||2
)

(13)

The common feature of all MPC approaches is to solve, at each sampling time k, a
finite horizon optimal control problem by considering the current state as the ini-
tial state. Then, only the first element of the computed control sequence is applied
and the same problem procedure is repeated at the next sampling times [15].
In the two previous control strategies, the length N of the considered time hori-
zon may affect the transient behavior of the closed-loop system and deserves a
particular attention. In fact, for all the tracking methods listed above, the asymp-
totic behavior is well addressed and the tracking error is ensured to tend to zero
in the steady state. An interesting improvement for the controller performance is
to consider as well the transient behavior of the tracking error. In [16], the con-
troller is based, not only on the tracking error, but also on its integral in order to
achieve transient performance for input and output signals. The control algorithm
internally generates a low pass filter, thus preventing high frequency oscillations
for the large adaptation rate for a class of MIMO uncertain nonlinear systems. In
[17], the control architecture of the adaptive law is not modified, but it is proposed
to feed back the reference model with the tracking error signal. It is also important
to highlight that these studies are founded on the frequency domain framework.
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1.1.3. Iterative state tracking
The third approach refers to the Iterative Learning Control (ILC). The ILC is

conducted along both time domain and repetitive trials or iterations and it may
be resumed by the following procedure. At the kth iteration, a control uk(t) is
applied:

ẋk(t) = Axk(t)+Buk(t)
ẋr(t) = Arxr(t)+Brur(t)

(14)

At the next iteration, the control law is adapted as follows:

uk+1(t) = uk(t)+Lėk(t)
ek(t) = xr(t)− xk(t)

(15)

In the ILC approach, the previous control sequence is used to compute the next one
and thus improve the tracking performance as k increases by an appropriate choice
of the gain L (see [18], [19] and the references therein). Despite its efficiency, the
disadvantage of this method in comparison with the ones listed previously, is that
the control is generally made off-line, in a finite time interval and supposing that
all the data are available. Moreover this approach is mainly devoted to periodic
systems. However, there are some recent works dedicated to robust predictive ILC
[20] and allowing on-line implementation [21].

1.2. Overview of nonlinear model reference tracking control
In this section, a focus is made on model reference tracking for nonlinear sys-

tems, like exact feedback linearization, sliding mode and adaptive control.
The feedback linearization technique has been introduced to deal with nonlinear
systems [22]. However, the control algorithm is somewhat complicated, the sta-
bility of the controller is not guaranteed for non-minimum phase systems and its
application to complex nonlinear systems is tedious. In [23], nonlinear output
regulation problem has been formulated and solved by designing a dynamic con-
troller such that the closed-loop system is stable and the tracking error approaches
zero asymptotically. Though the Isidori-Byrnes theory is precise and sophisti-
cated, it requires many assumptions. Moreover, in order to synthesize a numerical
solution, one has to solve the nonlinear regulator equation described by a sys-
tem of nonlinear partial differential equations, which is difficult to solve as in the
Hamilton-Jacobi-Bellman equation [24].
The sliding mode control (SMC) presents the advantage of the robustness to un-
certainties [25], [26]. An output feedback SMC scheme for tracking uncertain
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nonlinear plants was adopted in [27]. It is an extension of [28] and is based on
a switching algorithm based on a monitoring function for the output tracking er-
ror. In [28] and [27], only relative degree one plants were considered. In this
case, despite the proved efficiency of the SMC, it appears that the controller is too
sensitive to the chattering phenomenon. A solution would be to consider higher
order sliding mode control for MIMO nonlinear systems [29], [30], [31], but due
to the non-applicability of Lyapunov’s direct method, very few results have been
presented (see [32]).
The Nonlinear Model Predictive Control, or NMPC, is an extension of the MPC
cited previously. It is characterized by the use of nonlinear system models in the
prediction [33], [34]. As in linear MPC, NMPC requires the iterative solution of
optimal control problems on a finite prediction horizon. While these problems are
convex in linear MPC, in NMPC they are not convex anymore. This is challenging
for both NMPC stability theory and numerical solution [35], [36].

1.3. The T-S case
Among the several structures of nonlinear models envisaged in tracking con-

trol, a focus is made on the Takagi-Sugeno models that are considered in the
present paper. The T-S modeling is known to be an efficient way to tackle the
problems of nonlinear estimation and control. Originally introduced by [37], the
T-S representation allows to exactly describe nonlinear systems, provided that the
nonlinearities are bounded. This is reasonable since state variables as well as pa-
rameters of physical systems are bounded, and so is the input of the system which
may be assumed to be stable, at least in closed-loop (see [38] and the references
therein).
Despite an abundant literature on the T-S models, few authors have dealt with
the tracking problem. One can refer to some works concerned with state or out-
put feedback with H∞ performances [39], [12], [40], [41] and [42]. The tracking
control is based on the state or output Parallel Distributed Compensation (PDC)
structure to minimize the L2 gain of the tracking error and the controller compu-
tation is expressed as an LMI problem [12], [42]. However, in the cited references,
a referred ”suitable” choice for the reference model is made without any explana-
tions nor details.
The last remark motivated the present study. In fact, either for the linear case or the
nonlinear one, few works detail the influence of the reference model choice, which
is not a trivial task. In [11] for example, the authors referred to the Erzberger’s
conditions, but with no further explanations. For these reasons, in the proposed

7



work, a focus is made not only on the control design procedure, but also on the
tracking (matching) conditions.

1.4. Paper outline
The paper is organized as follows. In section 2, the structural conditions to

achieve exact state tracking are introduced in the T-S case. These conditions are
an extension of the well known Erzberger’s conditions. As in the linear case, the
objective is to achieve a null tracking error. Section 3 deals with the tracking
criterion choice. After a short analysis, a quadratic optimal control for T-S model
is introduced. As an improvement of this technique, the T-S MPC is presented
in section 4. Section 5 is devoted to the tracking problem under input control
constraints. In each section appropriate examples are presented. Finally, section
6 summarizes the obtained results.

2. Exact state tracking conditions for T-S systems

2.1. Model and objective
Let us consider the following discrete T-S model [37]:

xk+1 = Ak xk +Bk uk (16)

where xk ∈ Rnx and uk ∈ Rnu with:

Ak =
r

∑
i=1

µi,k(ξk)Ai

Bk =
r

∑
i=1

µi,k(ξk)Bi

(17)

where the weighting functions µi,k(ξk) depend on the so-called premise variable
ξk which may be a state, input, or output combination. These weighting functions
satisfy the following convex sum property:

0≤ µi,k(ξk)≤ 1,
r

∑
i=1

µi,k(ξk) = 1 (18)

The considered linear reference model is the following:

xr,k+1 = Ar xr,k +Br, ur,k (19)

where xr,k ∈ Rnx and ur,k ∈ Rnu .
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Remark 1. For the sake of simplicity, the model reference is chosen to be linear,
but the extension to a nonlinear model defined by a T-S system (namely, with Ar,k
and Br,k instead of Ar and Br) can readily be done.

The ideal tracking objective is to adjust, at each instant k, the control uk in such
a way that the system state xk follows the reference model state xr,k with a null
tracking error. The idea is to find, as for the first strategy (section 1), the appro-
priate structural conditions, but also an analytical expression for the control law.
If the ideal tracking is not reachable, some compromises need to be defined such
as, for example, the tracking of a subset of the states.
In order to achieve the tracking objective, the following control law with time-
varying gains Kk and Kr,k is considered:

uk = Kk xk +Kr,k ur,k (20)

Substituting (20) into (16), the closed-loop system is:

xk+1 = (Ak +Bk Kk) xk +Bk Kr,k ur,k (21)

The matching conditions for the reference model and the system are then obtained
by comparing the closed-loop system (21) and the reference model (19). The
perfect transient tracking conditions are given by:{

Ak +Bk Kk = Ar
Bk Kr,k = Br

(22)

In order to find the gain Kk and Kr,k solution of (22), the following rank conditions
have to be fulfilled: {

rank(Bk) = rank([Bk|Ar−Ak])
rank(Bk) = rank([Bk|Br])

(23)

If conditions (23) are fulfilled, then at each sampling time, the gains Kk and Kr,k
are given by: {

Kr,k = B+
k Br

Kk = B+
k (Ar−Ak)

(24)

with B+
k a suitable pseudo-inverse matrix of the full column rank Bk matrix.

Note that in order to satisfy the matching conditions (23), from definitions (17),
since the system matrices Ak and Bk depend on the time, a possible sufficient
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condition, but not the only one, is to consider the matrices Ai, Bi and Ar, Br in the
following canonical form:

Ai =

(
A0
Ai

)
,Ar =

(
A0
Ar

)
Bi =

(
0nx−nu

bi

)
,Br =

(
0nx−nu

br

) (25)

with A0 a matrix of dimension (nx− nu)× nx, Ai and Ar matrices of dimensions
nu× nx. bi and br are of dimension nu× nu. The structure (25) is equivalent to
express that:

1. the (nx−nu) first rows of the matrices Ai are equal to the (nx−nu) first rows
of the matrix Ar

2. the (nx−nu) first rows of the matrices Bi are null
3. the (nx−nu) first rows of the matrix Br are null

allowing to fully satisfy the rank conditions (23).
It is important to note that the matching conditions (23) between the reference
model and the system depend on the choice of the control law. It means that these
conditions have to be adapted when changing the structure of the control law.

2.2. Numerical example
To illustrate the above conditions, let us consider the electro-mechanical model

of a motor, with a time varying parameter.
The system model is given by the following equations:{

u(t) = e(t)+R(p(t))i(t)+Ldi(t)
dt

J dΩ(t)
dt =Cm(t)−Cr(t)

(26)

with u(t) the voltage, i(t) the current, e(t) = Keω(t) the induced EMF with ω(t)
the rotation speed. Cm(t) and Cr(t) are respectively the electromechanical and
load torque (Cm(t) = Kmi(t) and Cr(t) = f ω(t)). The inductance L, the inertia J
and the parameters Km, Kc and f are constant.
Taking into account the operating conditions (motor aging, temperature, etc) the
resistance is considered to be time varying and bounded: R(p(t))∈ [R1 R2], where
p(t) is a known external parameter.
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Including the angular position θ(t), the electro-mechanical model is given by the
following state representation:

d
dt

 θ(t)
ω(t)
i(t)

=

 0 1 0
0 − f

J
Km
J

0 −Ke
L

−R(pk)
L

 θ(t)
ω(t)
i(t)

+

 0
0
1
L

u(t) (27)

For the sampling time T , the discretized form of (27) is given by: θk+1
ωk+1
ik+1

=

 1 T 0
0 1− T f

J
T Km

J
0 −T Ke

L 1− T R(p)
L

 θk
ωk
ik

+

 0
0
T
L

uk (28)

Defining the weighting functions by:

µ1,k =
R2−R(pk)

R2−R1
, µ2,k =

R(pk)−R1

R2−R1
(29)

the following sub-models are obtained (see [38] for procedure details):

A1 =

 1 T 0
0 1− T f

J
T Km

J
0 −T Ke

L 1− T R1
L

 , B1 =

 0
0
T
L


A2 =

 1 T 0
0 1− T f

J
T Km

J
0 −T Ke

L 1− T R2
L

 , B2 =

 0
0
T
L

 (30)

The considered reference model is chosen with different value of the resistance
and inductance, denoted Rr and Lr:

xr,k+1 =

 1 T 0
0 1− T f

J
T Km

J
0 −T Ke

Lr
1− T Rr

Lr

 xr,k +

 0
0
T
Lr

 ur,k (31)

One can easily ensures that the tracking conditions (23) are fulfilled:{
rank(Bk) = rank([Bk|Ar−Ak]) = 1
rank(Bk) = rank([Bk|Br]) = 1 (32)

Applying the tracking control law (20) with (24), the system and model ref-
erence states are depicted in figure 1 (respectively noted xi and xir, i = 1, . . . ,3).
From the depicted figures, one can see that the control tracking is efficient for all
the three states under the specified structural conditions.
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Figure 1: System and model reference states

Remark 2. If the premise variables ξk of the weighting functions µi,k depend on
the input uk, the control law (20) will be of the form uk = F(uk), since Ak and Bk
are input depending (17). A solution may be given by an iterative algorithm with
the following recurrence:

u( j+1)
k =

(
(B( j)

k )T B( j)
k

)−1(
B( j)

k

)T
(Ar−A( j)

k ) xk (33)

with B( j)
k =

r

∑
i=1

µi,k(u
( j)
k )Bi, A( j)

k =
r

∑
i=1

µi,k(u
( j)
k )Ai, j = 0, . . . ,N with N the number

of iterations and u0
k the input initialization (may be taken as ur,k for example).

Remark 3. The convergence proof of the proposed iterative algorithm can be
locally ensured [43], [44]. But since it is not our study object, the reader may
refer to the cited work for more explanations.

3. Approximate state tracking for T-S systems

This section concerns the optimal control with the introduction of the MPC
for T-S models If the needed structural conditions for exact state tracking (23)
are not satisfied by the system and reference models, there is a need for an ap-
proximate tracking control with less conservative conditions. Instead of ensuring
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equal state trajectory of the system and reference, the aim should be to minimize
the discrepancy between them. The so-called quadratic optimal control for T-S
models aims at minimizing a function of the tracking error. As an consequence,
the optimization ensures a compromise between the tracking of the different state
components.

3.1. Control law design
At each time instant k, the objective is to minimize the following criterion

which is the norm of the tracking error:

Φk(uk) =‖ Bk uk− xr,k+1 +Ak xk ‖2
W (34)

where W is a positive definite weighting matrix chosen accordingly to the state
components for which some specific tracking is desired.
The control tracking law is then given by:

uk = (BT
k WBk)

−1BT
k W (xr,k+1−Ak xk) (35)

where the matrices Ak and Bk have been already defined in (17).

Remark 4. When the premise variables ξk depend on the control as explained
previously (remark 2), the control law (35) can be iteratively computed by:

u( j+1)
k = ((B( j)

k )TWB( j)
k )−1(B( j)

k )TW (xr,k+1−A( j)
k xk) (36)

for j = 0, . . . ,N with B( j)
k =

r

∑
i=1

µi,k(u
( j)
k )Bi, A( j)

k =
r

∑
i=1

µi,k(u
( j)
k )Ai.

3.2. Numerical examples
3.2.1. Control independent premise variables

Let us consider a simplified vehicle lateral dynamic model studied in [45] and
represented in figure 2.
The system dynamics are given by:(

β̇ (t)
Ψ̈(t)

)
=

 −caV+caH
mν(t)

lHcaH−LV caV
mν2(t) −1

lHcaH−lV caV
Iz

l2
HcaH+l2

V caV
Izν(t)

( β (t)
Ψ̇(t)

)
+

( caV
mν(t)
lV caV

Iz

)
uL(t)

(37)
where β denotes the side slip angle, Ψ̇ the yaw rate, uL the relative steering wheel
angle and ν the speed of the vehicle.
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Ψ̇(t)

β(t)

v(t)

uL(t)

Figure 2: Vehicle lateral dynamic system

m= 1621Kg corresponds to the vehicle total mass, lV = 1.15m is the distance from
the center of gravity (C.G.) to front axle, IH = 1.38m is the distance from C.G. to
rear axle, Iz = 1975Kgm2 is the moment of inertia about the vertical axis, caV =
57117Nrad−1 is the front axle tire cornering stiffness and caH = 81396Nrad−1 is
the rear axle tire cornering stiffness.
For small variations of the speed around ν0, the discretized model is then given
by:

(
βk+1
Ψ̇k+1

)
=

 1−1.71( 1
ν0
− ρk

ν2
0
) 0.58( 1

ν2
0
− 2ρk

ν3
0
)−0.02

0.47 1−2.33( 1
ν0
− ρk

ν2
0
)

( βk
Ψ̇k

)

+

(
0.7( 1

ν0
− ρk

ν2
0
)

0.67

)
uLk

(38)

where the parameter ρk = δνk is time-varying and bounded ρk ∈ [ρ1,ρ2].
Following the same procedure as for the previous example, a T-S model with two
sub-models is obtained. One can verify that the exact tracking conditions (23) are
not fulfilled. Then, a quadratic optimal control is chosen and is implemented.
The weighting matrix is chosen as diag(1,1). The system and reference model
states are depicted in figure 3 (respectively noted xi and xir, i = 1,2). From the
depicted figures, one can see that the control tracking is efficient (especially for
the second state) although the structural conditions are not fulfilled.
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Figure 3: System and model reference states

3.2.2. Control dependent premise variables
Let us now consider the following illustrative example where the premise vari-

ables are control dependent. The system and reference model are defined by:

Ar =

 0.2 0.5 0
−0.2 0.99 −0.1

0 0 0.2

 , Br =

 −0.3 0
1 0.11
0 1


A1 =

 0 0.5 0
−0.2 1.19 −0.1

0 0 0.1

 , B1 =

 0.2 0.5
1.5 0.61
0.5 1.5


A2 =

 0.6 0.5 0
−0.2 1.09 −0.1

0 0 1.1

 , B2 =

 −0.8 −0.5
0.5 −0.39
−0.5 0.5


(39)

The weighting functions are control dependent and given by:

µ1,k =
1+2tanh(u1,k)

2
µ2,k = 1−µ1,k (40)

From (39), one can verify that the exact tracking conditions (23) are not fulfilled.
Then, a quadratic optimal control is chosen and the iterative solution (36) is im-
plemented.
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First, the objective is to ensure a good tracking of the second and third state
components. Consequently, the weighting matrix is chosen as diag(0.01,1,1),
implying a relaxation of the tracking of the first state component. The system
and reference model states are depicted in figure 4 (respectively noted xi and xir,
i = 1, . . . ,3). From the depicted figures, one can see that the control tracking is
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Figure 4: System and model reference states

efficient (especially for the second and third state) although the structural condi-
tions are not fulfilled.
Secondly, if the main objective is an accurate tracking of x1r by x1, one should set
the weighting matrix as W = diag(0.1,0.01,0.01). The system and model refer-
ence states are displayed on figure 5 and it can be seen that the first state tracking
has been improved when the second and third states tracking have been deterio-
rated.

Remark 5. The proposed quadratic method consists in calculating and minimiz-
ing the tracking error at each sampling instant k. Another way to consider the
problem, is to minimize the norm of the tracking error on an infinite time horizon
t→ ∞ with an L2 attenuation [46].

4. Toward the Model Predictive Control for T-S models

Minimizing the weighted state tracking error on a finite sliding horizon, in-
stead of doing it at a given sampling time as in (34), allows to take into account
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Figure 5: System and reference model states

the known state trajectory of the reference model and to have an anticipation effect
of the tracking control. This leads to the extension of the MPC to state tracking
control of T-S model. Roughly speaking, the procedure for T-S models is the same
as for the conventional MPC. However, some difficulties occur when the premise
variables depend on the control.

4.1. Premise variables independent of the input
Using the state equations (16) and (17), it follows at time k+m+1

xk+m+1 = Ak+mxk+m +Bk+muk+m

=

(
m

∏
i=0

Ak+i

)
xk +

m

∑
i=0

(
m

∏
j=i+1

Ak+ j

)
Bk+iuk+i

(41)

Gathering the states on the time horizon [k : k+ p+1], (41) becomes:

xk,p = Ak,pxk +Bk,puk,p, xk,p ∈ Rn(p+1) (42)
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with:

xk,p =


xk+1
xk+2

...
xk+p+1

 , Ak,p =


Ak

Ak+1Ak
...

p

∏
i=0

Ak+p−i

 , uk,p =


uk

uk+1
...

uk+p



Bk,p =


Bk 0 . . . 0

Ak+1Bk Bk+1 . . . 0
...

... . . . ...
p−1

∏
i=0

Ak+p−iBk

p−2

∏
i=0

Ak+p−iBk+1 . . . Bk+p


(43)

To ensure the reference model tracking on the time horizon [k : k + p+ 1], the
control uk,p is adjusted in order to minimize the criterion:

Φk,p(uk,p) =‖ xr,k,p−Ak,pxk−Bk,puk,p ‖2
W (44)

with xr,k,p =
[

xT
r,k+1 xT

r,k+2 . . . xT
r,k+p+1

]T ∈Rn(p+1) and where W is a weight-
ing matrix.
This leads to:

uk,p = (BT
k,pWBk,p)

−1BT
k,pW (xr,k,p−Ak,pxk) (45)

where only the first computed value of the input is applied to the system at the kth

sampling time
uk =

[
Inu 0 . . . 0

]
ūk,p (46)

At the next sampling time, the horizon is shifted and the criterion Φk+1,p is opti-
mized in order to obtain and apply the control uk+1.

4.2. Extension to control dependent premise variables
Since the weighting functions µi,k of the T-S model that appear in the matrices

Ak,p and Bk,p (43) may depend on the control ūk,p, the analytical solution (45)
needs to be slightly adapted, as follows:

1. define a threshold δ , a time window width p and set k = 0.
2. for the time horizon [k : k+ p+1] and for j = 0, define u( j)

k,p
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3. compute A
( j)

k,p and B
( j)
k,p with:

A
( j)

k,p =


A( j)

k

A( j)
k+1A( j)

k
...

p

∏
i=0

A( j)
k+p−i



B
( j)
k,p=


B( j)

k 0 . . . 0
A( j)

k+1B( j)
k B( j)

k+1 . . . 0
...

... . . . ...
p−1

∏
i=0

A( j)
k+p−iB

( j)
k

p−2

∏
i=0

A( j)
k+p−iB

( j)
k+1 . . . B( j)

k+p


A( j)

k =
r

∑
i=1

µi,k(u( j)(k))Ai

B( j)
k =

r

∑
i=1

µi,k(u( j)(k))Bi

(47)

4. j← j+1, compute A
( j+1)

k,p , B
( j+1)
k,p and u( j+1)

k,p

u( j+1)
k,p =

(
(B

( j)
k,p)

TWB
( j)
k,p

)−1
(B

( j)
k,p)

TW (xr−A
( j)

k,p xk) (48)

5. if ||u( j)
k,p− u( j−1)

k,p || < δ , then go to step 3, else apply the kth control input
defined by

uk =
[

Inu 0 . . . 0
]

uk,p (49)

6. k← k+1 and go to step 2.

4.3. Numerical example
Let us consider the same example (39) as in the previous section with the

weighting matrix W = diag(0.01,1,1). The MPC is performed for three steps
forward (p = 2). Implementing the algorithm (47), the results represented on
figure 6 are obtained.

Comparing the results displayed on figure 6, with those on figure 4, it can be
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Figure 6: System and reference model states

seen that the anticipation introduced by the MPC approach improves the tracking.
In order to quantify this improvement, let us consider the following criterion for
each state:

φi =
N

∑
k=0
|xr,k,i− xk,i|, i = 1, . . . ,nx (50)

where i is the component number of a vector, N is the simulation horizon and
xk,i is obtained from non predictive control. The criteria Φip are analogously de-
fined with xk,i obtained with MPC. Finally, the performance gain τi due to MPC
is obtained from τi = 100φi−φip

φi
. For the considered example, the following im-

provement is obtained (for each state): τ1 = 12.3%, τ2 = 31.2%, and τ3 = 30.1%.

In order to highlight the influence of the time horizon length p on the tracking
performances, the improvement of φi, namely τi, is computed for different time
horizons defined by p ∈ {2,3,4,5}. The results are gathered in table 1.

One can conclude, for the presented example, that a horizon of length p =
3 gives the best results. From the obtained results, it is important to highlight
the contribution of the horizon length in the predictive control performances. A
too short, as well as a too long horizon may not give the best expected results
depending also on the dynamic characteristic of the reference on this time horizon.
A compromise is then needed. To quantify the best horizon length, a comparative
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p = 2 p = 3 p = 4 p = 5

τ1 10.2% 12.3% 11.5% 12.5%

τ2 27.4% 31.2% 27.4% 28.5%

τ3 25.4% 30.1% 25.4% 27.6%

Table 1: Improvement gains for different horizon lengths

study as the one presented may be a good solution.

5. Model Predictive Control for T-S systems with saturated control

In this section, the MPC for T-S systems with control saturation is considered.
The tracking objective is maintained, even if each control component of the con-
trol input is upper and lower bounded. The objective is to show that, to some
extent, the predictive aspect of the control will allow to compensate the saturation
effect. Taking into account the control bounds in the control computing allows
to anticipate and counteract the saturation effect and thus, improve the reference
tracking.

5.1. Proposed strategy
The adopted strategy is the following:

1. On a given horizon of length p, synthesize the nominal control ensuring
the tracking without considering the saturation constraints (equation (45) or
(48) depending on whether or not the weighting functions depend on the
control input)

2. Detect the components of the control uk,p that will exceed the saturation
levels (nsM and nsm components for respectively the upper and lower lim-
its). Define then two constraint matrices denoted F1 ∈ Rnu(p+1)×nsM and
F2 ∈ Rnu(p+1)×nsm .
All the entries of F1

i j are null except one entry by column equal to 1 where
Fi j = 1 indicates that the jth upper saturation phenomenon on the time hori-
zon [k : k+ p] affects the `th component of uk+m, where i = mnu + `. Same
construction goes for the matrix F2.

21



3. Modify the control depending on the previous equality constraints repre-
sented by the matrix F =

[
F1 F2 ]. Knowing which inputs must be

modified due to the saturation, the new criterion to minimize takes into con-
sideration the control constraints with help of the Lagrange’s parameter λ :

Φ =‖ xr,k+p+1−Ak+pxk−Bk+puk,p ‖2
W

+λ T (FT uk,p−U)
(51)

where the matrices Ak+p, Bk+p and uk,p have been already defined in (43),
xr,k+p+1 corresponds to the gathering of the reference state on the consid-
ered horizon, U =

[
UT

max UT
min
]T , where Umax ∈ RnsM×1 with Umax,i =

umax for i= 1, . . . ,nsM and Umin ∈Rnsm×1 with Umin, j = umin for j = 1, . . . ,nsm.
4. Test the new control obtained after minimizing Φ, if some control input

components still exceed the saturation levels, then go to step (3).

Let us now explicit the control expression in step 3 of the strategy. Derivating Φ

(51), the optimality equations with respect to uk,p and λ give:{
BT

k,pW (Bk,puk,p +Ak,pxk− xr,k,p+1)+Fλ = 0
FT uk,p−U = 0

(52)

or equivalently
uk,p = (BT

k,pWBk,p)
−1

×(Bk,pW (xr,k,p+1)−Ak+pxk−Fλ )
λ = (FT (BT

k,pWBk,p)
−1F)−1(FT (BT

k,pWBk,p)
−1

×BT
k,pW (xr,k,p+1−Ak,pxk)−U)

(53)

Recall that without constraints, the control input is given by:

u0
k,p = (BT

k,pWBk,p)
−1BT

k,pW (xr,k,p+1−Ak,px(k)) (54)

thus (53) becomes:{
uk,p = u0

k,p− (BT
k,pWBk,p)

−1Fλ )

λ = (FT (BT
k,pWBk,p)

−1F)−1(FT u0
k,p−U)

(55)

allowing to express the control
uk,p = (I−Q−1

k,pF(FT Q−1
k,pF)−1FT )u0

k,p
+Q−1

k,pF(FT Q−1
k,pF)−1U

Qk,p = BT
k,pWBk,p

(56)

Remark 6. As in the previous section, if the weighting functions depend on the
control input, the control law (56) may be computed iteratively.

22



5.2. Illustrative example
Let us consider the following example:

Ar =

(
0.8 0.4
−0.2 0.4

)
, Br =

(
0

0.2

)
A1 =

(
0.8 0.4
−0.3 0.9

)
, B1 =

(
0

0.17

)
A2 =

(
0.8 0.4
0.2 0.7

)
, B2 =

(
0

0.23

) (57)

The weighting functions are control dependent and given by:

µ1,k =
1+2tanh(uk)

2
µ2,k = 1−µ1,k (58)

The considered saturation is defined as umin = −1 and umax = 0.5. The simula-
tions were done for different lengths of the prediction horizons p.
In order to quantify the improvement obtained with the proposed approach, the
tracking errors between the reference model and the saturated system are com-
pared with an without taking into account the saturation when computing the MPC
law.
Let us define the criteria

φi,s = ∑
k
|xr,k,i− xs,k,i|

φi,sc = ∑
k
|xr,k,i− xsc,k,i|

(59)

where φi,s corresponds to the nominal saturated control (without considering the
saturation in the control synthesis) and φi,sc for the control law considering the
saturation constraint, i.e. the proposed approach (56).
The comparative criterion for each state variable between the two strategies is
τi = 100φi,s−φi,sc

φi,s
. For the considered example, the obtained results are given in

table 2 where different values of the prediction horizon are considered.
One can conclude, for the presented example, that a horizon of length p = 3

gives the best results. Figure 7 represents the state trajectories when the nominal
control is applied without saturation (xn), when the nominal control is saturated
(xs) and when the proposed MPC law is applied with saturation (xsc). Figure 8
depicts the control input with and without saturation.
One can observe from the obtained results, that the tracking objective is signifi-

cantly improved (36% for the first state and 21% for the second).
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p = 2 p = 3 p = 4 p = 5

τ1 28.8% 36.4% 29.5% 24.6%

τ2 16.8% 21.2% 16.0% 13.7%

Table 2: Improvement gains for different horizon lengths

6. Conclusion

In this paper, reference model tracking for nonlinear T-S models was con-
sidered. Structural conditions for perfect state tracking were established. When
these conditions cannot be satisfied, relaxed solutions were proposed, based on
quadratic optimal control. The Model Predictive Control for finite time horizon
was developed and extended to the case of saturated control inputs.
A first perspective for the present work is to generalize the matching conditions
and the structure proposed in section 2 for a general control structure law and es-
tablish the relation between the reference model (Ar,Br) and the system matrices
(Ai,Bi). During the study, a strong correlation between the time horizon length
and the model reference dynamics was pointed, in fact, a second interesting per-
spective will be to present a choice criterion that optimizes the time horizon length
according to the model reference dynamics.
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