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SUMMARY

This paper presents a new scheme for sensor fault toleratrot@r nonlinear systems based on the Takagi-
Sugeno modeling. First, a structured residual generatoingi at detecting and isolating sensor faults is
designed. A bank of observers controlled either by only oystesn output or a set of outputs is then
implemented leading to a set of state estimates. The plateteabuted compensation structure is adopted to
design the fault tolerant controller. The novelty in thipeais that the estimated state used in the controller
is a weighted state vector obtained from all the estimatatéstprovided by the different observers. The
weighting functions depend on the residual vector signal&vefed by the residual generator. They are
designed to avoid crisp switches in the control law. Indéeel interesting feature of the proposed approach
is to avoid the commonly used switching strategy. For eastidual component, the greater it's magnitude
is, the less the weight affected to the corresponding sistimate is. Consequently, the controller only
uses estimations computed on the basis of healthy measut®riide closed-loop stability is studied with
the Lyapunov theory and the obtained conditions are expdeas a set of Linear Matrix Inequalities. The
proposed residual generation and fault tolerant contralle applied to a vehicle lateral dynamics affected
by sensor faults. Copyrigh® 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fault diagnosis takes a primordial place in the modern control system&dpldeman safety and
system performance preservation are crucial specifications whialldsbe taken into account
upstream of the control design. For that purpose, a fault detectiois@lation system is required to
detect occurred faults in the process. However, a diagnosis systeirsigficient to preserve system
performances and human security. The controller must be designedremtpeathe stability of the
system even in faulty situations. This second task is commonly called Faulaimbf@éontrol (FTC)
and has been classified into two different classes: the first one, calésil/E Fault Tolerant Control
(PFTC) is an extension of the well-known robust control. It requirektigaviedge of all possible
faults which may affect the system (generally the magnitude of these falitts)structure of the
controller is chosean priori in order to be robust to all inventoried faults (no adaptation is performed
online). This type of control is interesting since no fault diagnosis moduleesled. However, its
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2 DALIL ICHALAL

main disadvantages is the impossibility to consider unknown faults and thercatigeness of
design conditions. Unlike the PFTC techniques, the Active Fault Tolerantr@l (AFTC) offers
some flexibilities in the design task. It can be assimilated to a variable structhrédee since the
structure of the controller can be automatically modified and reconfigured watiault occurs. In
addition, it is no longer necessary to list all possible faults in the system. A Batection and
Isolation (FDI) module is incorporated in the control unit. It provides infation on the occurred
faults to the FTC unit which reconfigures the control strategy to compeasdté accommodate
them.

In the recent years, the rapid growth of demand in terms of performamtesafety for the
systems as well as the human operator requires to consider more realistils mbthe studied
systems. Therefore, nonlinear mathematical models are often develamzdig® of the complexity
of such models, there is no general framework for their analysis, daricbdiagnosis. Thus, only
specific classes of nonlinear models are studied (Lipschitz systems, Baeaneter Varying (LPV)
systems, output or state feedback linearizable systems, ...). In the plopode the considered
models are in the Takagi-Sugeno’s form (T-S).

This kind of model is mainly used with regards to its property of “univerggraximator” of
any nonlinear system based on the sector nonlinearity appra@gdhdeed, any nonlinear system
can be approximated with a given accuracy or represented exactly whhassiructure]. A T-S
model can be obtained using three main methods: linearization around aopetrafing pointsd],
identification [3, 4] and sector nonlinearity transformation approath [

The analysis and control of nonlinear systems via T-S modeling have attraeigy researchers.
This model allows the study of many stability and stabilization probl€eins,[6, 7]. The common
core of the proposed approaches is the use of the Lyapunov theastataigh stability conditions
which are often expressed in terms of Linear Matrix Inequalities (LMIgjs Tact constitutes one
of the advantages of the T-S approach. Indeed, the particular sewtttire T-S models allows the
exploitation and the extension to nonlinear domain of some theories, tools anddsithitially
developed for linear systems. Firstly, classic quadratic Lyapunov furscticere considered but
it soon became clear that such functions often lead to conservativatioosd especially for a
large number of sub-models. The concern to reduce this conservatisgmdedelop other types of
Lyapunov functions (poly-quadratic, non-quadratic,8,)9] and other approaches such as Tuan’s
relaxation [LO] or Polya’s theorem 1]. These approaches are extendedlig, [13, 14, 15] for
observer design applied to state and unknown input estimation. Theswarssare used for fault
diagnosis in 13, 15, 16, 17]. The design of fault tolerant control for T-S systems has also been
studied. State trajectory tracking is proposedli for actuator faults.

In [19], a bank of controllers is implemented, each of them is designed sepanatefjeaerates
a control law based on the state estim#té). Based on a residual analysis, a switching strategy is
then developed in order to select the control law relying on a fault-frée estimate. Unfortunately,
the stability of the whole closed-loop system is not studied. Only the stabilityobf@aserver-based
controller is provided and no stability at the switching instants is guaranteisda(@ll known that
stable sub-systems do not necessarily lead to stable switched sy§iem [

Similar and more interesting approach is proposedii} \vhere linear discrete-time system is
considered. The approach is based on constructing controllers iomaaitput, the control input
applied to the system is selected by an adequate switching strategy in thecpreésensor faults.
The switching mechanism is designed in such a way to guarantee a minimaidoselact the
adequate controller that eliminates the effect of the occurred fault wittagtesed cost.

In the present paper a new FTC design for nonlinear systems affectidtbrbance and sensor
faults is proposed. The overall idea is to use fault diagnosis in order tiaglissh between faulty
and healthy sensors and then only use the measurements provided by rtloadatéo produce a
state estimate and a control law. Firstly, an observer based residustgerne designed. Secondly,
a bank of observers is constructed where each observer is fed witheaithputs and only one
measured output. As a consequence the state estimate produced:dydbserver is only affected
by the k** sensor fault. Thirdly, a state estimate is obtained by blending the differéintagss
with time varying weights computed from the residual in order to mainly use the based
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SENSOR FAULT TOLERANT CONTROL OF NONLINEAR TAKAGI-SUGENOYSSTEMS 3

on healthy sensors: if a given sensor fault is isolated, the weight ofdiresponding estimated
state is lowered. Thus, the influence of corrupted measures in the statetiestirmaninimized.
Finally, a FT parallel distributed control (PDC) law is computed based onligrisibd state estimate.

Notations. The termd),, andI,, respectively define the null square matrix and the identity matrix
with dimension:. The non square null matrix is defined &y, with dimensiorp x n. In order to
shorten the summation, the following notations for polytopic matrices are defined

Xu=d (€)X and - X =303 () (E(1) Xy

i=1 j=1

Lemma 1
For any matricest andY with appropriate dimensions and any symmetric positive definite matrix
A, the following inequality holds

Xy +vTX < XTA'X +YTAY (1)

Lemma 2
(Congruence lemma) Consider two matricégndY. If X is positive (resp. negative) definite and
Y is full column rank thery’ XY 7 is positive (resp. negative) definite.

Lemma 3
For any scalap, matrix @ and symmetric postive definite matr the following inequalities hold

(Q@-BA ) A(Q-BA) 206 -QTAQ < —B(Q+QT) + 5°A )

2. TAKAGI-SUGENO MODELING
A nonlinear dynamic system affected by disturbance and additive sdaatiris generally

represented by:
{ #(t) = g(a(t), u(t), (1)) 3)
y(t) = h(xz(t),d(t) + f(t)

wherex(t) € R™ denotes the state vectai(t) € IR™ is the control input ang(t) € R? represents

the system output vectai(t) € IR"? is the disturbance vector (noises, external perturbations,...) and
f(t) € R?, the additive sensor fault vector. The functignandh are nonlinear smooth functions
satisfyingg(0,0,0) = 0 andh(0,0) = 0. As explained in the previous section, the Takagi-Sugeno
model is an interesting alternative to study nonlinear systems. It descrimdimaar behaviors
while having a structure based on linear models allowing the extension of satsefitom the
linear domain to the nonlinear one. Using identificati@n4], linearization P], or the so-called
sector nonlinearity transformatiofh,[22], a T-S model for the systen3) can be obtained under the
following form:

#(t) = Y mil€(1) (Aiat) + Buu(t) + Eid(1)) “
z:l 4
y(t) = 3 mil€(0) (Cia(t) + Cad(t)) + £ (1)

where 4; € R™*"™, B, ¢ R™*™, C; € RP*™, E; ¢ R"™*™ and G, € RP*"¢ are the matrices
describing the so-called” sub-model. The integer represents the number of sub-models. If the
T-S model is obtained by identification or linearization, the accuracy of theeht®pends on the
numberr of sub-models. Indeed, a more accurate T-S model is obtained wheasimgehe value
of r. If the T-S model is obtained by sector nonlinearity transformatiatepends on the numbet

of nonlinearities in the modeB} andr = 2. The weighing functiong; are nonlinear and depend
on the premise variablé(t) which can be measurable (ewgi) or y(t)) or not measurable (e.g.
x(t)). It is commonly assumed in LPV and switched systems that these parametexst &nown
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Figure 1. Sensor fault tolerant control scheme

a priori but available at real-time. The same assumption is made in the present pagertid
premise variablg(t) is supposed to be measurable.
The weighting functions satisfy the following convex sum property:

D omiE) =1, 0< pi(€(t) <1, ¥, Vi=1,...,7 (5)
i=1

This property allows the generalization of the tools developed for linedemsgsto nonlinear
systems.

3. FAULT TOLERANT CONTROLLER DESIGN FOR T-S SYSTEMS

3.1. Outline of the proposed approach

The proposed fault tolerant control strategy is described in the figjuiiene residual generator
aims at detecting and isolating each sensor fault based on a dedicatedlrsgjdal. Each of thg
observers is designed to estimate the state vector of the system from oee ofitputs. Hence, if a
given sensor is faulty, the estimated state provided by the corresporiiagser is corrupted but the
others are healthy. The controller is the well known observer-basetwrthe used estimated state
is obtained from a weighted sum of the estimated states provided by eaclkiesb$be weighting
functions that weight each state vector are designed in such a way tg gaisbnvex sum property
and the continuity to avoid the switching phenomenon. These functions dlepethe residual
vector. If a given sensor is faulty then the corresponding weightingtimm goes to zero and only
healthy estimated states are used in the closed-loop feedback, then thiefashsloes not affect
the nominal operating of the closed-loop system. In the following sectiondgibign of such fault
tolerant controller is detailed.

3.2. Residual generator for sensor fault detection and isolation

The robust residual generator design is based on the same framesvfa®.aThe gains of the
residual generator are determined in order to minimize Ahegain of the transfer from the
disturbance vector(t) = [dT(t) fT(¢)]” to the fault estimation error.(t) = r(t) — f(t). As a
consequence, the obtained residu@a) is an estimation of the fault, achieving both its detection
and isolation.
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SENSOR FAULT TOLERANT CONTROL OF NONLINEAR TAKAGI-SUGENOYSSTEMS 5

Based on the modetl], the following residual generator is then proposed
2(t) = ; pi(§(2)) (Ai(t) + Biu(t) + Li(y(t) — 9(t)))
i) = 3 ()Gt (6)

r(t) = M(y(t) = 9(t))

This residual generator is designed for providing a residual ve¢tpsuch that itg*” component
is only sensitive to the'* sensor fault (residual structuration). The gain matridésand L;
of the residual generator satisfying the specifications of sensor fstithagion and perturbation
attenuation are determined by solving the optimization problem given in the théore

Theorem 1

The robust residual generatds) (exists if there exists a symmetric and positive definite matrix
P = PT >0, matricesL; and M, and a positive scalay, solution to the following optimization
problem

min ¥ (7)
P, L;, M
under the following LMI constraints
X < 0, 1=1,..,r (8)
2 X+ Xij+ X <0, i, j=1,..,ri#j

whereX;;, for (i, j) € {1,...,r}, are defined by
ATP+PA, - LC; - CILT PE; - L,G; —-L; C/M"

X = EI'P—-GTLT —I 0 GZTMT )
E —LT 0 I MT -1
MC; MG, M—1 I

The residual generator gains are givenlhy= P~'L; and M. The attenuation level from(t) to
the fault estimation errof, (t) is given by~.

Proof

The LMI (9) are obtained using the well-known Bounded Real Lemma and the Tuderstien.
The proof is omitted but the reader can refer28,[24] where that residual generator is studied in
details. O

3.3. Sensor fault tolerant control design

After generating the residual vecto(t) that estimates the sensor faults, the objective is now to use
it in order to actively reconfigure the control law by eliminating (or at leastimmizing) the fault
effect on the system. This section describes the three steps in designfagltiielerant controller:
the first step concerns the design of an observer bank that estimataattheector from each
output separately, the second step concerns the choice of the strictineecontroller that uses a
new estimated state vector derived from the weighted estimated state vedtinedlat the first
step. Finally, the third step is devoted to the stability analysis of the closed I@b@nsywith the
observer-based controller and LMI conditions are established fagrdparpose.

Firstly, an observer bank is designed. TH& observer is fed with the control input vectoft)
and thek!" system outpug”(¢) as illustrated in the figuré. If a fault occurs on a sensor different
of the k" one, the observer using thi&" output provides a fault-free state vector estimation.

Thek!” observerk = 1, ..., p) has the following form:

(1) = 22 (1) (A () + Bru()+LE (v (1) -5"(1))
i (10)
g ()= ; pi(€(t))CFa*(t)
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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6 DALIL ICHALAL

whereC¥ is thek'" row of the matrixC; corresponding to thé!" sensor and*(t) represents the
kth entry of they(t) vector. Thek!" observer provides the estimated state veetdt) based on the
knowledge of the input and thé" output. The different state estimat&gt), k = 1,...,p are then

blended to build a representative state estimation veié{@y according to:

(1) = 3 hr(t)# (1) (11)
k=1

The blending is ensured by the weighting nonlinear functior(s(t)) depending on the residual
vectorr(t) (6). These functions satisfy the smoothness and the convex sum progecty allow
the derivation of LMI design conditions in the next. The design of sucltfans is based on the
idea that if thek!” sensor is faulty, thé! component of the residual vector, namejyt), deviates
from zero. Consequently, the corresponding weighting fungiidin(¢)) has to converge to zero in
order to decouple the state estimatét) from the fault acting on thé*" sensor. Hencei, (t) is
turned to a convex weighted sum of the estimated states excegttbae. The effect of the fault is
then minimized. Different structures of the weighting functiagnscan be proposed. In this paper,
the chosen weighting functioris,, for k. = 1, ..., p are defined by:

wr(re(t)) = exp(—r,%(t /L) (12a)

)
hi(r(1) = %

where the parameters, are used to take into account the spreading around zerg, ahe k'
component of the residual vecto(t). The Gaussian weight functionZg exponentially decreases
to zero whenr, deviates from zero. EquatioiZb) ensures the normalization of the different
functions such that the convex sum propegyHolds.

The second step deals with the choice of the control law. Here, the mopostrol law is a
classical observer-based PDC control law, but the estimated state Ygiowm by one observer
in the classical version of this structure) is replaced by the weighted stetter vig(¢) which is
fault-free. The control law is then given by:

(12b)

u(t) = =3 1y (€)1 13)

Contrarily to [L9], where the stability of the closed loop system with the switching mechanism
between the different dedicated controllers is not guaranteed, theggd@pproach aims at the
stabilization of the closed loop system, including the controller bank and thétireigstrategy.

In the third step, the stability of the closed-loop system is studied using claapigeoaches
developed for T-S models. ThHé" state estimation erraf* (t) = z(t) — 2*(t) is generated by the
following differential equation, obtained frord)and (L0):

eM(t) = Z Z pa(€(0)us (E(1)) ((As — LECH)eM(t) + (B — LiGy)d(t) — Li f(t))  (14)

The closed-loop system is then described by the following equations (elthiom equations

(4) and (L3))

B(t) =D D D halr(O)m(EM)p (§(1)) (Asa(t) — Bil;a* (1) + Eid(t)) (15)
i=1 j=1 k=1
= SOSTST h () a6y (68) ((As = BiK)ae(t) + B ;e (1) + Eid(t))  (16)
i=1 j=1 k=1
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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SENSOR FAULT TOLERANT CONTROL OF NONLINEAR TAKAGI-SUGENOYSSTEMS 7

Defining the augmented state vector
a:T(t) = (a:T(t) elT(t) epT(t)) a7)

a

the following closed-loop system is obtained (from equatidd$ énd (L6))

La(t) = Z Z 1 (€)1 (€(1)) ((Auij + A (8))2a(t) + Eijv (L)) (18)
where
A~B;K; 0 0 0
0 A~L}C} 0 0
A= 0 0 A-L2C? . : (19)
: : _ .
0 0 0  A-LCY
and
0 ha(r(t))BiK;  ha(r(t))BiK; hp(r(t)) Bi K
0 0
AA;(t)=|0 0 0 : (20)
: : 0
0 0 0 0
Dy =( Bl (B —LIG)T (B, —L}G)T - o (Bi—LG)" )" (21)
Fiy=(0 (-LDT (<LHT o (<LDT ) (22)
Ej=(Diy Fy) (23)

The controller is then designed in such a way to minimize the effect of the patiom termy(t)
on the fault estimation error. Finally, the computation of the gains of the olaseand those of the
controller are obtained by solving the following constrained optimization tineore

Theorem 2

Given the system4]) and a positive scalas, the sensor fault tolerant observer based controller
(10)-(13) ensures the asymptotic stability of the system in the presence of senisr(veth no
disturbances) and a bounded stability with an attenuation I&gegi&in)n of the transfer function
from the perturbation vectar(t) to the state estimation error, if there are symmetric and positive
definite matrice®), P, (k = 1, ..., p), matricesF; and M} and positive scalarsand ;. solution to

the following optimization problem

min i
Q,P1,cs Py, Fiyeo oy, Fr ) MY MP M MP £ A A
Hii <0 i=1,...,r
s.t. . . 24
{ rleiiJr’HijJr'Hji<0 Li=1,..,7r 1#] (24)
where B R
g 0 0 Rij ?z :0 0 Q
0 0 —el, 0 0 0 0 0
RT. 0 0 —28Q 0 0 BI O
i i
Mozl gl 5 0 0 gL, 0 0 0 (25)
0o S5 oo 0 0 -, 0 0
0 0 0 BI 0 0 —A 0
Q 0 0 0 0 0 0o -1,
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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8 DALIL ICHALAL

and

Bij = QAl + A;Q— BiF; — F/' B (26)
./\/lij = diag(Q}j,...,Qﬁ’j) (27)
oF = A{Pk+PkAi—Mfcf—(Mfo)T+(Ak+1)I, k=1,...p (28)
Ry = B;F; --- B;F; (29)

p terms
SEo= ((Bi—MG)T - (B;—MIGH)T) (30)
SLo= (—hHT - ()T ) (31)
A = diaghl,,..., \pIn) (32)
Q = diagQ,...Q) (33)

N——

p terms

The gains of the controller and the observers are derived fioms F;Q~! and Lt = P, ' MF.
The transfer fromv(t) to z,(t) is quantified by the gain = /7.

Proof
It is well known that thel,-gain fromu(t) to z,(t) is bounded byy if there exists a Lyapunov
function satisfying 5]

V(a(t) + 25 (za(t) — v (t)u(t) < 0 (34)
Consider the quadratic Lyapunov functibifz, (t)) = 1 (t) Pz, (t) whereP = PT > 0 is given

by the diagonal structurB = diag( X, P), with P = diag(P,, ..., P,). With (18), the inequality 84)
becomes

xl (AfﬂP—f—PAW—&—AAZM(t)P—&—PAAW(t) + 1) zo(t) + 22L () PELv () — v (t)v(t) <0

The time varying matricea.4;,(¢) in (35) can be written afd\A;; (t) = /C;; X(t) with %)
0 BK; - Bk,
S(t) = diag(0n, by (r(1)), ..., hp(r()) and Ky =|° P 5 (36)
o 0 o
Recalling that the functionk, (r(t)) satisfy the convex sum propert§)( it follows that
YT ()% (t) < diag(0,, I,p) (37)

Using the lemmal, the terma (£)(AAT, ()P + PAA,,(t))z,(t) in (35 can be bounded as
follows

zo (1) (AAL ()P + PAA (1) 24(t) < xf (1) (ST (0)AS(t) + P AT'K)L,P) z4(t)  (38)

whereA = diagel,,, \In, ..., \pI,), Withe, A1, ..., A, > 0, is a diagonal positive definite matrix.
The termX7AY. can be bounded by using the inequali7), this leads toX” A < A where
A =diag0, A\ L, ..., A\, I,,) and it follows

a2l (t) (AAL ()P + PAALL(1) za(t) < 2l (t) (A + PK ATTKL P) 24(t) (39)

Hp B

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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SENSOR FAULT TOLERANT CONTROL OF NONLINEAR TAKAGI-SUGENOYSSTEMS 9

Considering the augmented vectdft) = (27'(t) VT(t)>T, with (39), the inequality 85) is
satisfied if the following inequality holds

pp B

AT p+ PA,,+ A+ PK, A KT P+1 PE,,
( ot T p M 77)/211 <0 (40)

o

Applying the Schur complement Lemm2q], the inequality 40) is equivalent to

AL P+PA, +A+1 PK,, PE,
/céﬂp A0 |<o (41)
El 0 —n?I

Keeping in mind thatP = diag X, P) with P = diag P, ..., P,), the inequality 41) can be
detailed as

S, 0 0  XRu, XE, 0
0 Muu 0 0 PSHH PSHM
0 0 —el, 0 0 0
RLX o 0o -k 0 o | =Y (42)
T T D
E'X SLP 0 0 -, O
0 TP 0 0 0 -2,
whereA = diag A\, I, ..., \,1,,) and
S = AJX+XA,-XB,K,-K.BIX+1I (43)
M, = diagQ,,, ... ) (44)
QF = ATPy+ PA, — PBIECY — (PLECK) + (O +1) 1 (45)
R, = | B.K, .- B,K, (46)
p terms
T T
st = ((B-126)" - (126" (47)
oT T T
Swo= ()" =) (48)

The inequality 42) is a sufficient condition for a bounded;-gain from v(t) to x,(%).
Unfortunately, itis not linear in the unknown matrices and it is time varying iz af the weighting
functionsy;(.). In the remaining of the proof, sufficient LMI conditions are derivedt us define
the matrixiW by

W = dlaq@, Inp7 Ina Q» Ind’ IP)

whereQ = X! andQ = diagQ, ---,Q). In order to obtain LMI, let us defing? = 77 and apply
N——

p matrices

the congruence lemniato (42) by pre and post multiplying bj#/, it follows

Q2.,,Q 0 0 Ru@ E, 0
0 M 0 0 PS,,, PSuu
0 0 —el, 0 0 0
QRT, 0 0 —-OAQ 0 0 <0 (49)
T T P _
E# @#]? 0 0 -1y, (_)
0 SWP 0 0 0 -1,
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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10 DALIL ICHALAL

By using the lemma& on the matrix block-QAQ as well as a Schur complement, inequalitg)(
is implied by#,,,, < 0 with

Eu@Q 0 0 R,@ E, 0 0
0 My, 0 0 PSu PSu 0
0 0 -, 0 0 0 0
Huy=| QRL, 0 0 =28Q 0 0 BI (50)
ET STP 0 0 —il, 0 0
T _
o SLP 0 0 0 —nl, 0
0 0 0 Bl 0 0 -A

where 3 is a positive scalar. Consequently, if the inequality,, < 0 holds, then inequality3p5)
holds too. Due to the convex sum property of the weighting functions, giowd but conservative
set of sufficient conditions is given by;; <0 (for 7,5 =1,...,r). The conservativeness is
considerably reduced by applying the result proposed by Tuafdpn the sufficient conditions
are the following

Hii <0, t=1,..,r
2 4, o o (51)
M+ Hig +H <0, =1, 0%#]
where#,;; is defined by
QE,Q 0 0 R;Q@ E 0 0
~0 0 —el,, 0 ) 0 0 0
Hy=| QRL, 0 0 —28Q 0 0 BI (52)
ET SLP 0 0 i, 0 0
o SLp 0 0 0 -, 0
0 0 0 BI 0 0 —A

The variable changes; = K;Q and M} = P, L} are used and a Schur complement on the term
QQ inthe(1,1) block is performed to obtain the LMI conditions of the theorgmvhich ends the
proof. O

Tuan’s Lemma10] has been considered in the previous section to relax the stability conditions
of the proposed sensor fault tolerant observer based controllero@tly, there exists many other
relaxation techniques. Particularly, the quadratic Lyapunov functionbeareplaced by a non-
quadratic one. Here is only mentionned an interesting approach, debicrjid], where the authors
have provided asymptotic necessary and sufficient conditions for tiegiviéy of the double sum
inequalityz(t)7Y,,,2(t) < 0. In the following, the Polya’s theorem is recalled (as givertifjfand
applied to the proposed result in the theor2rKnowing that

(Z m(f(ﬂ)) =1 (53)

whereq is a positive integer, the inequalit§@) is equivalent to

(Z i (f(ﬂ)) Hup <0 (54)
i=1

By developing $4) with respect to the weighting functions, relaxed LMI conditions are obthine
Furthermore, ifg — oo, asymptotic necessary and sufficient conditions are obtaih&d For
example, assuming= 1 the LMI constraintsZ4) are replaced by

Hii <0, i=1,...,r (55)
Hig +Hij +Hji <0, 4,5=1,....1, i #]
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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The LMIs (55) are clearly less conservative than the Tuan’s ones. Of coursegihereases, the
number of LMIs increases too but the number of variables remains the saene is no additional
slack variables).

3.4. Fault tolerant control design algorithm

The design of the proposed sensor fault tolerant controller can be sugethas follows.

1. Compute the gains of the residual generator by solving the optimizatiofepraimder LMI
constraints given byg).

2. Compute the gains of the FT controller by solving the optimization problemrulidé
constraints given by24).

3. Implement the residual generat6) that provides:(¢) and the weighting functiond.p).

4. Implement the observers(), compute the blended state estimati@d)(and finally the FT
controller (L3).

Remark 1

It is important to point out that the use of the Dedicated Observer Stru@@®&) in the FTC
block requires the observability of each péait;, Cf) which is not always satisfied. A solution to
overcome such a problem is to use the Generalized Observer Struc@®.(Gonsequently, before
designing the FTC strategy, it is necessary to check the observability sefshem state from each
output separately. If the state is not observable from a set of outpet& @S structure may be
suitable. Doing so, it is possible to identify the sensor set with possible fampensation before
designing the FTC.

4. AN ALTERNATIVE APPROACH

The proposed approach consists in designing a bank of observersstiouct a weighted state vector
which is used by a PDC controller. In this section, a slight modification of teeigus controller
structure is briefly considered. This FTC strategy is different in theesthrat a bank of observer-
based controllers is designed as in classical point of view and eacloksigmal is associated to a
weighting function depending on the residual signal. Then, if a fault rsccuthek” sensor, the
corresponding control signal(¢) is disabled by forcing the weighting functidn,((¢)) to zero.
The applied control signal to the system is then expressed by

u(t) =Y ha(r(t)u”(t) (56)

k=1

This approach is illustrated in the figuBewhich can be compared to those of figureThe
equations related to this new structure are

B(t) = 3 u(€(D) (A () + Bab (1) + Li(y(t) — (1))

RG Y gty = Ci ) &0
r(t) = M(y(t) — 9(t))
and i
ak(t) = ; i(€(1)) (Aid™ () + Biu®(t) + LE(y* (1) — §*(1)))
g4 (t) = CFak (1)
FIO Y wb () = = 3 e KAa 1) 9)
() = 3 IO}t 0)
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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¢ '(t)
u
| Obsl| |Contr1| ;
uP(2)
’ Obg 2| |Con.tr 2 | > u(t) _— y(t)

p
Z hkuk
k=1

| Ob;<; p| |Con.trp |

r(t) Residual [~
hi(r () Generator

Figure 2. Sensor fault tolerant control scheme 2

The residual generator RG and the weighting functiosis(t)) are designed in the same manner
as in the first approach. The closed-loop system is then described fojltvd@ng equation:

ZZZm () (r(t)) (Aia(t) — B 2" (1) + Eid(1)) (59)
=1 j=1 k=1

— Z Z Z e E)he(r(t) (A — BiKF) a(t) + BiK e (t) + E;d(t))  (60)
i=1 j=1 k=1

The equation0) is similar to the equationl@) of the first approach where the matricks of
the controller are simply replaced bsg/f Therefore, stability conditions expressed in terms of LMI
can be established using the same reasoning.

5. VEHICLE LATERAL DYNAMICS SENSOR FTC

In this section, some simulations are provided to illustrate the proposed FTGaapp The lateral
dynamics control of a vehicle in the presence of sensor faults is coadidgirstly, a T-S model
is established from the model of the vehicle lateral dynamics by considerendpitgitudinal
velocity v, as time-varying. Secondly, a residual generator is constructed anatealidith real
data measurements. Finally, the FTC controller is designed and simulated widateeaffected by
simulated faults.

5.1. Vehicle lateral dynamics model

To illustrate the proposed approach and the design of the sensor faudintotentroller, let us
consider the lateral dynamics model described by the following equations

{ 0y (1) = 7 (Fy (1) + Fyr(1)) — va()(2) (61)
V() = 1 (apFyr(t) — arFye(1) + 7-ult)

whereu, (t) andy(t) denote, respectively, the lateral velocity and the yaw r&je(t) and F,,,.(t)

are the lateral forces acting, respectively, on the front and reaelah&he parameter; (resp.

a,) represent the distance from the front (resp. rear) wheel to thercehgravity. I, is the yaw
moment of inertiayn is the total mass of the vehicle and(¢) is the longitudinal velocity. The
control input is defined by(¢) which represents a force moment generated by differential braking

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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on the vehicle rear wheels. This control input aims at stabilizing the yaw matlbthe variables
and the parameters are summarized in the table

Time varying variables

P yaw rate

Vg, Uy longitudinal and lateral velocities

FJ§ , ES steady-state front and rear steady state lateral efforts

F; ,F, front and rear lateral efforts

Constant parameters

e, Ty relaxation length of the front and rear tires

m, 1, mass of the vehicle and the yaw moment

ag, ar distances from the front and rear axle to the center of gravity

B;, C;, D;andE;,i = {f,r} characteristic matrices of the tires in the Pacejka’s model

Table I. Table of variables and parameters

Due to the characteristics of the tires, it is generally assumed that the Byeg$ and F),,.(¢)
are generated by dynamical systems described by

%Fyf(t) + Fyf(t) = Fg}gf(t)
T T S (62)
which takes into account the transient phase of the tires responseeWher {r, f} are the

relaxation lengths which are positive scalars. The indUis(t) and F;).(t) are the steady-state
(static) forces expressed by the “magic formula” of Pacepéh [

F,i(t) = D, sin (CZ- tan~* (Bi (1— E;)a;(t) + E;tan™* (Biai(t)))) , ie{f,r} (63)

whereB;, C;, D; and E; are parameters depending on the characteristics of the tires and the road.
ay(t) anda,(t) represent the tire slip angles of the front and the rear wheels resggativich are
expressed by

— tan~! (

+tan~!

ap(t) = -2

ar(t) = =2

ay
Vx (t)

ar

Ux(t)

d(t)cos (22(3) ) + 050
J(0)cos (2429 ©y
vy (1)

Uz (t)
whered¢(t) is the front steering angle. The body sideslip angle is defineg(by= tan—! (mw)-
In normal driving situations, the lateral velocity is small which allows to apipnate the sideslip
angle bys ~ 7t (t) ; this angle is also small in this driving mode. Consequently, the wheel sideslip

anglesa(t) andar( ) do not excee® degrees, therefore, the equati@#)(can be simplified as
follows

_vy(t)

(t) Va (t)W )+ 65 (t)
'Uy(t

—2 T )

#(t)) andF5 (- (t)) are in the linear zone which can be expressed

yr

ar

(65)

Consequently, the forcdéff(a
by the linear expressions

Fip(t) = Cr (=405 — 4y (0) +65(1)) .
Fit) = Co (248 + 2250()
whereCy = D;C; By andC, = D,.C, B,. By using the following change of coordinates
z1(t) = vy(t)
Ta(t) = P(t)
24(1) = & (Fyy(6) + Fyn(t) o
z4(t) = 7. (anyf(t) — arFy, (1))

Copyright© 2014 John Wiley & Sons, Ltd.
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the following dynamical system is obtained

i1 (t) = —va ()22(t) + w3(1)

o (t) = wa(t) + T-ult)

() = — 2=y (1) + 220 (FS,(1) + FS.(1)) (68)
aa(t) = ==y (t) + 2D (ap F5,(t) — a, Fo.(t))

The change of variables aims at scaling the state variables and the matricdsriricoreduce
the conservatism related to the LMI constraints. Note also that the relaxatioatg andr, are
considered identical and denotedhyBy assuming that the longitudinal velocity is time-varying,
which is more realistic than a constant one as commonly used in the literaturby axgressing
the system in matrix formulation, one obtains

@(t) = A(ve(t))z(t) + Bs, (v2(t))d5 (t) + Bu(t) (69)

whereu(t) is the control input and(t) is known (can thus be provided to the residual generator
and observers) but not controllable (and thus cannot be set by titrier) and where

0 —v.(t) 1 0 0 0
| o 0 0 1 B 0 L
A(U(E(t)) - asi a3 a33Ux(t) 0 5 B5f (Um(t)) = b3vy(t) R B = 0
@41 (42 0 4404 (t) byve () 0
and
Cy
az = — L = prag = G énaf
a- = Qa = —l a. — La‘ — arCf
33 44 541 = o o
a0y C,d?
(42 _C_ I.r é;r
by = L by =

Assuming that the vehicle longitudinal velocity is bounded as follOWS vy, < v, (t) <
Umax < 400, and using the sector nonlinearity approath the following T-S model is obtained

2
o(t) = Z 1i(vg (1)) (Asz(t) + Bis, 65 + Bu(t)) (70)
i=1
where the activating functions are defined by
Vg t) — Umin Umax — Uz t
a0 (1)) = 220 ) = e = ()

Umax — Umin Umax — Umin

and the sub-model matrices are given by

0  —VUmax 1 0 0
0 0 0 1 0
A = 0 » B, =
asi as2 a33Umax 3Vmax
a41 a42 0 A44Umax b4vmax
0 —Umin 1 0 0
0 0 0 1 0
Ay = 0 » Bas, =
a31 a32 @33Umin ’ 3Umin
41 Q42 0 (144 Vmin b4Vmin

The vehicle is equipped by sensors providing the measurement of theayavi(t) and the
lateral acceleration,. Sincea, = = (F,¢(t) + Fy.(t)) — va(£)0(t) = z3(t) — vy (t)x2(t). Taking
into account the additive sensor faylft) possibly affecting each sensor, the output equation is

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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defined as follows

Z.uz Ugc )+f() (71)

0 1 0 0 0 1 0 0
Cl o ( 0 —Umax 1 0 ) ’ C2 a ( 0 —Umin 10 )

Note that in {1), f(¢) describes an additive fault but it can also represents a class of garame
faults. Indeed assume that parametric faults occur, this can be rejgetssrfollows

where

0 1+p(t) 0 0
y(t) = ( 0 p%t) L+pa(t) 0 >x(t) (72)
(0 1 00 pi(t)z2(t)
- < 0 ve(t) 1 0 )I(tH < pa(t)z3(t) ) (73)
N——
C(va(t)) f(t)

where p; (t) and p,(t) are sensor parametric faults. The longitudinal velocity is assumed to be
available at real-time and fault-free. The proposed fault tolerant d@rtoan now be implemented.

5.2. Residual generator

In order to perform fault detection and isolation, the following residuakgator is constructed by
solving the optimization problem given in the theorém

z(t) = Z pi(va(t)) (Aiw(t) + Bis, 07 () + Bu(t) + Li(y(t) — 5(1)))

(1) = Ci(t)
r(t) = M(y(t) = 4(t))

After solving the optimization problem of the theordimthe gains of the residual generator are
computed and the simulations results are depicted in the figurethis simulation, the inputsy,
v, Of the residual generator are taken from real data measurementsg{s@s3fiand the outputs
y(t) are those simulated by the nonlinear system with nonlinear tire fétgeand £, and sideslip
anglesa; andc,.. Two faults f1(¢) and f2(¢) are added to system outputs. From flgare)ne can
see that the residual signals estimate perfectly the fgults and f5(¢).

(74)

5K —— Longitudinal velocity (m/s) | |

40
time (s)

Figure 3. Real input data for the residual generator

In order to validate the residual generator with real data, the considatpdtsy(t) are also real
obtained from adequate sensors (central unit). The fgu(ts and f»(¢) are not real but artificially
included in the measurement outputs. The obtained residual signals aedépthe figures.

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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0.4- —hoy
-1
0.2 ]

T - T T
0 10 20 30

40
time (s)

Figure 4. Residual generation: (top) fayit(¢) affecting the sensor 1 and the residuglt) detectingf; (¢),
(bottom) faultf; (¢) affecting the sensor 2 and the residug(t) detectingfa(t)

0 10 20 30 40 50 60 70 80
time (s)

Figure 5. Residual generator validation with real measergm

5.3. Fault tolerant controller

After generating the residual signals, fault tolerant controller is dedighiestly, the following
weighting functionsh, ((t)) andhy(r(t)) are defined according ta%) with oy = o2 = 0.001. The
fault tolerant controller is designed by solving the optimization probl24 ic the theoren® with

B = 2. A comparison between the states of the closed-loop system in both faulafick faulty
cases is illustrated in the figufe In this simulation, the real measurements pfandv,, are used
but the outputg,(¢) are generated by the nonlinear system explained in the previous gdidrsec
(residual generation). One can see that the effect of the faults amglely eliminated in the state
signals. The weighting functions, the faults and their estimates are depictesl figihe7. It can
be seen that when the first sensor is faulty, the weighting funétjon(t)) is close to to zero and
disables the faulty state obtained from the observer 1 using the first o8tpuilarly, when the fault
f2(t) occurs in the second sensor, the state provided by the observer 2ukedibg the weighting
functionha(r(t)).

In order to compare the obtained result, a classical observer-basedll®y is designed by using
the two outputs of the syster,[27] without taking into account the faults. In the same simulation
conditions, the closed-loop system is simulated in fault-free and faulty easiisistrated in the
figure 8. One can see that, with this classical closed-loop control, the faults cldfaty the state
vector. Integrating the yaw raig(¢) form the initial angle(0) = 0, the vehicle trajectory from its

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2014)
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Figure 7. Faults, residual signals and weighting functisis(t))
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Figure 8. Classical control in both faulty and fault-freriations

initial positionz(0) = y(0) = 0 can be computed from the following equations

2(t) = [ (cos(ih(t))vL(t) — sin(y(t))v, (1)) dt
(75)

y(t) = [ (sin(e(t))va(t) + cos(v(t))vy () dt

o Lo
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The trajectories of the fault-free vehicle in open-loop, the faulty sensithsFTC and the faulty
sensors with classical control are illustrated in the figur&s an illustration of the efficiency of the
proposed FT controller, in the faulty case with FTC the trajectory is close tortbén the fault free
case, whereas a classical controller cannot counteract the dffbetfault on the vehicle trajectory.

E g R

> .
—10- e, i
—12F ) i
~14r [—Fauts with FTC 7
e | Faults with classical control .

- - - Fault-free Open—-Loop i
-18 Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000

x (m)

Figure 9. Vehicle trajectories

6. CONCLUSIONS

In this paper, a novel approach is proposed to design a sensor fatdirtiocontroller for nonlinear
systems represented by a T-S model. The approach is based on a baskmkr-based controllers,
a residual generator for diagnosis and a smooth selecting mechanismogedo adequate state
estimate to compensate the effects of the faults on the measurements. The sththityvbole
system is studied by the Lyapunov theory and LMI constraints are prbvimelesign the gain
matrices of the different components of the proposed FTC scheme. fewe fworks, it will be
interesting to consider the case of T-S systems with unmeasurable premagegrlt is also
interesting to study the choice of the functiohg(r(¢)). Finally, the dedicated scheme may be
inapplicable in some cases since the system state needs to be reconsigetbdibeach output.
Consequently the proposed strategy could be extended using a Gexte@itigerver Scheme.
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