A descriptor Takagi-Sugeno approach to frequency weighted nonlinear model reduction

B. Marx

Research Centre for Automatic Control, Nancy, France (CRAN: Centre de Recherche en Automatique de Nancy)

Université de Lorraine, France

Outline of the talk

Problem statement and background

Nonlinear model order reduction

Weighted nonlinear model order reduction

Numerical example

Concluding remarks

Problem statement: model order reduction (MOR)

Model order reduction of a dynamic nonlinear system

$$\Sigma:\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \end{cases} = ? \Rightarrow \quad \Sigma^r:\begin{cases} \dot{x}^r(t) = f^r(x^r(t), u(t)) \\ y^r(t) = g^r(x^r(t), u(t)) \end{cases}$$

- ▶ reduced order: $dim(x^r) = k < dim(x) = n$
- output approximation: $y'(t) \simeq y(t)$
- ▶ approximation error minimization: $\min_{\Sigma_r} e(t)$

- ► Existing techniques for MOR
 - Krylov subspaces

► Hankel norm approximation

 $ightharpoonup \mathcal{H}_{\infty}$ -approach

- Existing techniques for MOR
 - Krylov subspaces series expansion of the matrix transfer of the linear(ized) system
 - + efficient for repeatitive structures
 - local approximation
 - Hankel norm approximation

 $ightharpoonup \mathcal{H}_{\infty}$ -approach

Existing techniques for MOR

- Krylov subspaces series expansion of the matrix transfer of the linear(ized) system
 - + efficient for repeatitive structures
 - local approximation
- Hankel norm approximation truncation of the less controllable and observable states
 - + upper bound of the approximation error
 - for linear systems
- \mathcal{H}_{∞} -approach

Existing techniques for MOR

- Krylov subspaces series expansion of the matrix transfer of the linear(ized) system
 - + efficient for repeatitive structures
 - local approximation
- Hankel norm approximation truncation of the less controllable and observable states
 - + upper bound of the approximation error
 - for linear systems
- $ightharpoonup \mathcal{H}_{\infty}$ -approach

reduced system \sim controller of the approximation error

- + upper bound of the approximation error
- + possible extension to nonlinear systems: $\mathcal{H}_{\infty} \to \mathcal{L}_2$

Some background on the Takagi-Sugeno approach

Any nonlinear system can be written as a Takagi-Sugeno system

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \end{cases} \Rightarrow \begin{cases} \dot{x}(t) = \sum_{i=1}^{r} h_i(z(t))(A_i x(t) + B_i u(t)) \\ y(t) = \sum_{i=1}^{r} h_i(z(t))(C_i x(t) + D_i u(t)) \end{cases}$$

where

- \triangleright z(t) is the decision variable
- \blacktriangleright $h_i(z(t))$ are the activating functions
- the activating functions satisfy the convex sum properties:

$$0 \le h_i(z(t)) \le 1$$
 and $\sum_{i=1}^r h_i(z(t)) = 1$

Some background on the Takagi-Sugeno approach

Any nonlinear system can be written as a Takagi-Sugeno system

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \end{cases} \Rightarrow \begin{cases} \dot{x}(t) = \sum_{i=1}^{r} h_i(z(t))(A_i x(t) + B_i u(t)) \\ y(t) = \sum_{i=1}^{r} h_i(z(t))(C_i x(t) + D_i u(t)) \end{cases}$$

where

- \triangleright z(t) is the decision variable
- \blacktriangleright $h_i(z(t))$ are the activating functions
- the activating functions satisfy the convex sum properties:

$$0 \le h_i(z(t)) \le 1$$
 and $\sum_{i=1}^{r} h_i(z(t)) = 1$

- Assumptions
 - the decision variables z(t) are accessible
 - the derivative of the activating functions are lower bounded:

$$|\dot{h}_i(z(t))| \ge \Phi_i, \quad \forall t > 0, \ i \in \{1, \dots, r-1\}$$

Some background on the Takagi-Sugeno approach

Any nonlinear system can be written as a Takagi-Sugeno system

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \end{cases} \Rightarrow \begin{cases} \dot{x}(t) = \sum_{i=1}^{r} h_i(z(t))(A_i x(t) + B_i u(t)) \\ y(t) = \sum_{i=1}^{r} h_i(z(t))(C_i x(t) + D_i u(t)) \end{cases}$$

where

- \triangleright z(t) is the decision variable
- \blacktriangleright $h_i(z(t))$ are the activating functions
- the activating functions satisfy the convex sum properties:

$$0 \le h_i(z(t)) \le 1$$
 and $\sum_{i=1}^r h_i(z(t)) = 1$

- Assumptions
 - the decision variables z(t) are accessible
 - the derivative of the activating functions are lower bounded:

$$|\dot{h}_i(z(t))| \ge \Phi_i, \quad \forall t > 0, \ i \in \{1, \dots, r-1\}$$

Notations

$$X_h = \sum_{i=1}^r h_i(z(t)) X_i$$
 and $X_{hh} = \sum_{i=1}^r \sum_{j=1}^r h_i(z(t)) h_j(z(t)) X_{ij}$

- ► TS approach of the system nonlinearity
- ▶ \mathcal{H}_{∞} -approach of the MOR
- Descriptor approach
- Nonquadratic Lyapunov function
- Tuan's relaxation

Both original and reduced nonlinear systems are represented by Takagi-Sugeno models

- ► TS approach of the system nonlinearity
- ▶ \mathcal{H}_{∞} -approach of the MOR
- Descriptor approach
- Nonquadratic Lyapunov function
- ► Tuan's relaxation

Both original and reduced nonlinear systems are represented by Takagi-Sugeno models

- TS approach of the system nonlinearity
- ▶ \mathcal{H}_{∞} -approach of the MOR
- Descriptor approach
- Nonquadratic Lyapunov function
- Tuan's relaxation

Nonlinear reduced order model Σ^r seen as a controller of e by $y_r \Rightarrow \text{MOR} \sim \text{Find}(A_i^r, B_i^r, C_i^r, D_i^r)$ minimizing the \mathcal{L}_2 -gain from u to e

- TS approach of the system nonlinearity
- $ightharpoonup \mathcal{H}_{\infty}$ -approach of the MOR
- Descriptor approach
- Nonquadratic Lyapunov function
- ▶ Tuan's relaxation

Nonlinear reduced order model Σ^r seen as a controller of e by $y_r \Rightarrow MOR \sim Find (A_i^r, B_i^r, C_i^r, D_i^r)$ minimizing the \mathcal{L}_2 -gain from u to e

- TS approach of the system nonlinearity
- ▶ \mathcal{H}_{∞} -approach of the MOR
- Descriptor approach
- Nonquadratic Lyapunov function
- Tuan's relaxation

The closed-loop system from u(t) to e(t):

$$\begin{cases} \dot{\bar{x}} = \bar{A}_h \bar{x} + \bar{B}_h u \\ e = \bar{C}_h \bar{x} + \bar{D}_h u \end{cases}, \bar{x} = \begin{pmatrix} x \\ x^r \end{pmatrix}, \bar{A}_i = \begin{pmatrix} A_i & 0 \\ 0 & A_i^r \end{pmatrix}, \bar{B}_i = \begin{pmatrix} B_i \\ B_i^r \end{pmatrix}, \bar{C}_i = \begin{pmatrix} C_i & -C_i^r \end{pmatrix}, \bar{D}_i = D_i - D_i^r \end{cases}$$

is augmented into an equivalent descriptor TS:

$$\begin{pmatrix} I_{n+k} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \dot{\bar{x}} \\ \dot{\bar{x}} \end{pmatrix} = \begin{pmatrix} \bar{A}_h & 0 \\ I_{n+k} - I_{n+k} \end{pmatrix} \begin{pmatrix} \bar{x} \\ \bar{x} \end{pmatrix} + \begin{pmatrix} \bar{B}_h \\ 0 \end{pmatrix} u$$
$$e = (\bar{C}_h \ 0) \begin{pmatrix} \bar{x} \\ \bar{x} \end{pmatrix} + \bar{D}_h u$$

Conservatism reduction:

- ▶ additional slack variables in the L₂-control design
- decoupling Lyapunov and system matrices (including A_i^r , B_i^r , C_i^r and D_i^r)

- TS approach of the system nonlinearity
- ▶ \mathcal{H}_{∞} -approach of the MOR
- Descriptor approach (conservatism reduction)
- ► Nonquadratic Lyapunov function
- Tuan's relaxation

Following (Tanaka et al., IEEE TFS, 2007), define a nonquadratic Lyapunov function:

$$V(t) = \begin{pmatrix} \bar{x} \\ \bar{x} \end{pmatrix}^T \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}^T \begin{pmatrix} X_h^{11} & 0 \\ X_h^{21} & X_h^{22} \end{pmatrix}^{-1} \begin{pmatrix} \bar{x} \\ \bar{x} \end{pmatrix}$$

Find $(A_i^r, B_i^r, C_i^r, D_i^r)$ and the X_i^{**} minimizing γ , under the constraints:

positivity of the Lyapunov function: 0 < V(t)</p>

•
$$\mathcal{L}_2$$
-norm bound: $0 > \dot{V}(t) + e^T e - \gamma^2 u^T u$

Conservatism reduction:

multiple Lypaunov matrices

- ▶ TS approach of the system nonlinearity
- ▶ \mathcal{H}_{∞} -approach of the MOR
- Descriptor approach
- Nonquadratic Lyapunov function
- ► Tuan's relaxation

Following (Tuan et al., IEEE TFS, 2001), it is known that:

$$X_{hh} < 0$$

is implied by:

$$\begin{cases} 0 > X_{ii}, & 1 \le i \le r \\ 0 > \frac{1}{r-1}X_{ii} + \frac{1}{2}(X_{ij} + X_{ji}), & 1 \le i \ne j \le r \end{cases}$$

LMI Design of the reduced order system

Main result: computation of Σ^r

There exists Σ^r of order k < n minimizing the \mathcal{L}_2 -gain from u(t) to e(t), if there exists matrices X_i^{**} , A_{*i}^r , C_{*i}^r , B_i^r and D_i^r , minimizing $\bar{\gamma}$ under the LMI

$$0 < \begin{bmatrix} X_{i}^{11} & X^{12} \\ X^{12T} & X^{22} \end{bmatrix} \qquad 0 > \Theta_{ii}$$

$$0 \ge X_{i}^{11} - X_{r}^{11} \qquad 0 > \frac{1}{r-1}\Theta_{ii} + \frac{1}{2}(\Theta_{ij} + \Theta_{ji})$$

with Θ_{ij} linear in the LMI variables X_i^{**} , A_{1i}^r , A_{2i}^r , C_{1i}^r , C_{2i}^r , B_i^r , D_i^r and $\bar{\gamma}$.

$$\Theta_{ij} = \begin{bmatrix} \mathbb{S}(A_i X_j^{11}) - \sum_{k=1}^{r-1} \Phi_k(X_k^{11} - X_i^{11}) & * & * & * & * & * \\ A_{1j}^r + (A_i X^{12})^T & \mathbb{S}(A_{2j}^r) & * & * & * & * & * \\ X_j^{11} - X_j^{31} & X^{12} - X_j^{32} & -\mathbb{S}(X_j^{33}) & * & * & * \\ X^{12T} - X_j^{41} & X^{22} - X_j^{42} - X_j^{43} - X_j^{34T} - \mathbb{S}(X_j^{44}) & * & * \\ B_i^T & B_i^{rT} & 0 & 0 & -\bar{\gamma}I & * \\ C_i X_j^{11} - C_{1i}^r & C_i X^{12} - C_{2i}^r & 0 & 0 & D_i - D_i^r - I \end{bmatrix}$$

with: $\mathbb{S}(M) = M + M^T$.

LMI Design of the reduced order system

Main result: computation of Σ^r

There exists Σ^r of order k < n minimizing the \mathcal{L}_2 -gain from u(t) to e(t), if there exists matrices X_i^{**} , A_{*i}^r , C_{*i}^r , B_i^r and D_i^r , minimizing $\bar{\gamma}$ under the LMI

$$0 < \begin{bmatrix} X_{i}^{11} & X^{12} \\ X^{12T} & X^{22} \end{bmatrix} \qquad 0 > \Theta_{ii}$$

$$0 \ge X_{i}^{11} - X_{r}^{11} \qquad 0 > \frac{1}{r-1}\Theta_{ii} + \frac{1}{2}(\Theta_{ij} + \Theta_{ji})$$

with Θ_{ij} linear in the LMI variables X_i^{**} , A_{1i}^r , A_{2i}^r , C_{1i}^r , C_{2i}^r , B_i^r , D_i^r and $\bar{\gamma}$.

▶ Reduced system Σ^r : B_i^r and D_i^r are LMI variables and A_i^r and C_i^r are obtained by:

$$A_i^r = (A_{1i}^r X^{12} + A_{2i}^r X^{22})(X^{12T} X^{12} + X^{22} X^{22})^{-1}$$

$$C_i^r = (C_{1i}^r X^{12} + C_{2i}^r X^{22})(X^{12T} X^{12} + X^{22} X^{22})^{-1}$$

• \mathcal{L}_2 -gain from u(t) to e(t): $\gamma = \sqrt{\overline{\gamma}}$

Weighted nonlinear model order reduction

Frequency weighting function Σ^f can be introduced to relax the \mathcal{L}_2 -constraint in some frequency range(s)

► The same machinery is applied to the augmented system

$$\begin{pmatrix} \dot{x}^f \\ \dot{x} \\ \dot{x}^r \end{pmatrix} = \begin{pmatrix} A^f & B^f C_h - B^f C_h^r \\ 0 & A_h & 0 \\ 0 & 0 & A_h^r \end{pmatrix} \begin{pmatrix} x^f \\ x \\ x^r \end{pmatrix} + \begin{pmatrix} B^f (D_h - D_h^r) \\ B_h \\ B_h^r \end{pmatrix} u$$

$$e^f = \begin{pmatrix} C^f & D^f C_h - D^f C_h^r \\ x \\ x^r \end{pmatrix} + D^f (D_h - D_h^r) u$$

Numerical example

Consider the system of order n = 5 with r = 3 submodels:

$$A_{1} = \begin{bmatrix} -12 & -32 & 38 & -38 & 0 \\ 1.67 & -26 & -2.33 & -1.67 & 0 \\ -1.33 & -24 & -6.33 & 1.33 & 8 \\ -4.33 & -8 & 40.67 & -45.67 & 8 \\ 1.67 & -25 & -2.33 & -1.67 & -1 \end{bmatrix} \qquad B_{1} = \begin{bmatrix} 0.57 & 0.41 \\ -0.11 & -0.037 \\ 0.98 & 0.45 \\ 0.92 & 0.44 \\ 0.28 & 0.08 \end{bmatrix} \qquad C_{1}^{T} = \begin{bmatrix} 0.667 \\ 0 \\ -1.33 \\ 1.33 \\ 0 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} -7.33 & -32 & 24.67 & -24.67 & 0 \\ 6 & -41 & 2 & -6 & 0 \\ 2.33 & -18 & -15.67 & -2.33 & 2 \\ 6 & -2 & 20 & -38 & 2 \\ 6 & -33 & 2 & -6 & -8 \end{bmatrix} \qquad B_{2} = \begin{bmatrix} -0.5 & -0.26 \\ -0.22 & -0.13 \\ 0.21 & 0.084 \\ 0.25 & 0.11 \\ -0.22 & -0.15 \end{bmatrix} \qquad C_{2}^{T} = \begin{bmatrix} 0.17 \\ 0 \\ -0.33 \\ 0.33 & 0 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -15.33 & -32 & 34.67 & -34.67 & 0 \\ 0.333 & -23 & -7.67 & -0.333 & 0 \\ -3 & -24 & -8 & 3 & 8 \\ -4.33 & -8 & 40.67 & -45.67 & 8 \\ 0.333 & -22 & -7.67 & -0.333 & -1 \end{bmatrix} \qquad B_{3} = \begin{bmatrix} 0.41 & 0.25 \\ -0.19 & -0.13 \\ 0.52 & 0.36 \\ 0.088 & 0.09 \end{bmatrix} \qquad C_{3} = \begin{bmatrix} 0.33 \\ 0 & -0.67 \\ 0.67 \\ 0 & 0 \end{bmatrix}$$

$$D_{1} = \begin{bmatrix} 0.005 & 0.005 \end{bmatrix} \qquad D_{2} = \begin{bmatrix} 0.004 & 0.002 \end{bmatrix} \qquad D_{3} = \begin{bmatrix} 0.004 & 0.002 \end{bmatrix}$$

Numerical example

System inputs

Weighting functions

$$w_1(t) = (tanh((u_1(t)u_2(t))/6) + 1)$$

$$w_2(t) = (tanh((u_1(t) + u_2(t))/6) + 1)$$

$$w_3(t) = (tanh((u_1(t) - u_2(t))/6) + 1)$$

$$h_i(t) = \frac{w_i(t)}{\sum_{k=1}^r w_k(t)}$$

Numerical example

Nonlinear MOR results, for k = 2

▶ without frequency weighting £₂-gain from u to e:

$$\gamma = 0.14$$

with frequency weighting:

$$W^{f}(s) = \frac{0.0625(s+0.005)^{2}(s+2000)^{2}}{(s+0.02)^{2}(s+500)^{2}}$$

 \mathcal{L}_2 -gain from u to e:

$$\gamma = 0.08$$

Concluding remarks

 No a priori upper/lower bound on the approximation error can be set... ... but γ is a result of the LMI problem

¹B. Marx, A descriptor Takagi-Sugeno approach to nonlinear model reduction, *Linear Algebra* and its Applications, 479, 52-72,2015

Concluding remarks

- No a priori upper/lower bound on the approximation error can be set... ... but γ is a result of the LMI problem
- Dedicated to MOR of *not so large* scale systems: the overall LMI problem complexity is $\mathcal{O}(N_d^2 M_r) \sim \mathcal{O}(n^5, k^5)$ with N_d scalar decision variables and M_r rows in the matrix inequality

$$\begin{split} N_d &= n^2 \left(\frac{5r}{2}\right) + n\left(\frac{r}{2} + 5kr + k + n_y r\right) + k^2 \left(3r + \frac{1}{2}\right) + k\left(\frac{1}{2} + n_y r + n_u r\right) + 1 \\ M_r &= n(2r^2 + 2r - 1) + k(2r^2 + r) + r^2(n_u + n_y) \end{split}$$

¹B. Marx, A descriptor Takagi-Sugeno approach to nonlinear model reduction, *Linear Algebra* and its Applications, 479, 52-72,2015

Concluding remarks

- No a priori upper/lower bound on the approximation error can be set... ... but γ is a result of the LMI problem
- Dedicated to MOR of *not so large* scale systems: the overall LMI problem complexity is $\mathcal{O}(N_d^2 M_r) \sim \mathcal{O}(n^5, k^5)$ with N_d scalar decision variables and M_r rows in the matrix inequality

$$N_{d} = n^{2} \left(\frac{5r}{2}\right) + n\left(\frac{r}{2} + 5kr + k + n_{y}r\right) + k^{2} \left(3r + \frac{1}{2}\right) + k\left(\frac{1}{2} + n_{y}r + n_{u}r\right) + 1$$

$$M_{r} = n(2r^{2} + 2r - 1) + k(2r^{2} + r) + r^{2}(n_{u} + n_{y})$$

- + The reduced system order k, is tunable
- The special case of a 0th order approximation is easily treated¹
- + Extension of the results to time varying uncertain systems is easy¹
- + Polya's scheme of (Sala and Ariño, Fuzzy Sets Syst., 158(24), 2671-2686,2007) can be applied to obtain relaxed LMI conditions¹

¹B. Marx, A descriptor Takagi-Sugeno approach to nonlinear model reduction, *Linear Algebra* and its Applications, 479, 52-72,2015

A descriptor Takagi-Sugeno approach to frequency weighted nonlinear model reduction

B. Marx

Research Centre for Automatic Control, Nancy, France (CRAN: Centre de Recherche en Automatique de Nancy)

Université de Lorraine, France

