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Problem statement: model order reduction (MOR)

v

Model order reduction of a dynamic nonlinear system

:. {xu) = f(O.u0) o {x‘r(t) = (' (1), u(t)
y(0) = glx(0), u(t) y(t) =g (X (8) u(t)

reduced order: dim(x") = k < dim(x) = n

v

» output approximation: y'(f) ~ y(t)
» approximation error minimization: mins, e(t)

original nonlinear system

ult) — s {r<t>—.f<x<t>, u(t)) (0

y(t)=g(x(t), ut)) | +
e(t)
o AT O=F @@, u) _ Tt
-{y, (t)=g"(="(t), u(t)) v

reduced nonlinear system
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Some background on MOR

» Existing techniques for MOR

> Krylov subspaces
> Hankel norm approximation

> Ho-approach
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Some background on MOR

» Existing techniques for MOR

> Krylov subspaces
series expansion of the matrix transfer of the linear(ized) system
+ efficient for repeatitive structures
— local approximation

> Hankel norm approximation
truncation of the less controllable and observable states
+ upper bound of the approximation error
— for linear systems

> Ho-approach

reduced system ~ controller of the approximation error
+ upper bound of the approximation error
+ possible extension to nonlinear systems: Hoo — Lo
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Some background on the Takagi-Sugeno approach

» Any nonlinear system can be written as a Takagi-Sugeno system

X(t) = fx(®),u(®) {5((1‘) =201 hi(2(0)(Aix(1) + Biu(t))
y(t) = g(x(1), u(t)) y(t) =31y hi(2(D)(Cix(1) + Diu(t))

where

> Zz(t) is the decision variable
> h;(z(t)) are the activating functions
» the activating functions satisfy the convex sum properties:

0< h(z(t)) <1 and >0, hi(2(f) =1
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Ihi(z(1))] > &, Vt>0,ie{1,....,r—1}
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X(t) = fx(®),u(®) {5((1‘) =201 hi(2(0)(Aix(1) + Biu(t))
y(t) = g(x(1), u(t)) y(t) =31y hi(2(D)(Cix(1) + Diu(t))

where

> Zz(t) is the decision variable
> h;(z(t)) are the activating functions
» the activating functions satisfy the convex sum properties:

0< h(z(t)) <1 and >0, hi(2(f) =1

» Assumptions

> the decision variables z(t) are accessible
» the derivative of the activating functions are lower bounded:

Ihi(z(1))] > &, Vt>0,ie{1,....,r—1}

» Notations

Xn = 321 hi(2(8)Xi and Xon = 3574 3574 hi(2(8) h(2(1)) X;
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Descriptor Takagi-Sugeno approach to nonlinear MOR

» TS approach of the system nonlinearity
» H.-approach of the MOR
» Descriptor approach

» Nonquadratic Lyapunov function
» Tuan’s relaxation

Both original and reduced nonlinear systems
are represented by Takagi-Sugeno models

original nonlinear system

u(t) P {i(t)_f(!l?(t)., u(t))

Yy (t)=g"(z"(t), u(t)) l/"(f)
reduced nonlinear system

{.’r’(z‘):f’(.l" (t), u(t))
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» H.-approach of the MOR
» Descriptor approach

» Nonquadratic Lyapunov function
» Tuan’s relaxation

Both original and reduced nonlinear systems
are represented by Takagi-Sugeno models

original nonlinear system

u(t) 5. z(t)=Apx(t)+Bpu(t)
y(t)=Cpa(t)+Dyu(t)

y'(t)=Cpa’(t)+ Dju(t) 1/"(t>
reduced nonlinear system

{.T'(l‘):x'l;y‘l" (t)+Bju(t)
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Descriptor Takagi-Sugeno approach to nonlinear MOR

» TS approach of the system nonlinearity
» H.-approach of the MOR

» Descriptor approach

» Nonquadratic Lyapunov function

» Tuan’s relaxation

Nonlinear reduced order model X" seen as a controller of e by y,
= MOR ~ Find (A}, B/, C/, D]) minimizing the £>-gain from uto e

original nonlinear system

u(t) . {;'L’(t)—Ahx(t)+Bhu(t)
y(t)=Chz(t)+Dpu(t)

y'(t)=Cpa"(t)+ Djult) :l/T(t)

{.w (t)=Ara"(t)+ Bjul(t)

reduced nonlinear system
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» Tuan’s relaxation

Nonlinear reduced order model X" seen as a controller of e by y,
= MOR ~ Find (A}, B/, C/, D]) minimizing the £>-gain from uto e

original nonlinear_system

e T e e e e e
]

ult) Z:{;'L’(t)—Ahx(t)+Bhu(t) L e
y(t) = Char(t)+ Dyu(t) _ﬁ)g

{:v(r;:A;rz-' ()+Byu(t) |}

Y (t)=Cha’(t)+ Dju(t) | ; u(t)
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Descriptor Takagi-Sugeno approach to nonlinear MOR

» TS approach of the system nonlinearity
» H.-approach of the MOR

» Descriptor approach

» Nonquadratic Lyapunov function

» Tuan’s relaxation

The closed-loop system from u(t) to e(t):

);(:Ah)_(“réhu - [ X y A 0O B_ Bi =~ N r
{e “ex o) A(0 ) B() 00 -0 .0-0-0
is augmented into an equivalent descriptor TS:

Ik O\ (X\ _[(Ar O X B,
(50 () - () () +(3)
_ X _
e=(Cn0) ()_() + Dyu
Conservatism reduction:

» additional slack variables in the £>-control design
» decoupling Lyapunov and system matrices (including A7, B/, C/ and Dy)
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Descriptor Takagi-Sugeno approach to nonlinear MOR

» TS approach of the system nonlinearity

» H.-approach of the MOR

» Descriptor approach (conservatism reduction)
» Nonquadratic Lyapunov function

» Tuan’s relaxation

Following (Tanaka et al., IEEE TFS, 2007), define a nonquadratic Lyapunov

function:
T T 11 —1 —
(X 10 X, 0 X
vo=(3) (o) () (5)
Find (A7, Bf, C/, Dj) and the X;** minimizing -, under the constraints:
» positivity of the Lyapunov function: 0 < V/(t)

» L-norm bound: 0> V(t)+eTe—~2u"u

Conservatism reduction:
» multiple Lypaunov matrices
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Descriptor Takagi-Sugeno approach to nonlinear MOR

» TS approach of the system nonlinearity
» H.-approach of the MOR

» Descriptor approach

» Nonquadratic Lyapunov function

» Tuan’s relaxation

Following (Tuan et al., IEEE TFS, 2001), it is known that:
Xhh <0
is implied by:

0 > Xi, 1<i<r
0> X+ (X +X), 1<i#j<r
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LMI Design of the reduced order system

Main result: computation of ¥’

There exists X" of order k < n minimizing the £2-gain from u(t) to e(t),
if there exists matrices X;**, A,;, C.;, B/ and D], minimizing 5 under the LMI

X11 X12
0< {er X2 0>0;
0>X"—x" 0> ——0i+y (e,,+e,,)
with @ linear in the LMI variables X;**, Aj;, A, Cf;, Cs;, B, D and 7.
S(A X”) Z,’( Dr(XT=XI) * * * * *
+ (A X‘2)T S(AL;) * * %
X/ X 31 x12_ X32 —S(Xj33) * * *
ef/ = X12T X.41 X22—X-42 _X_43_X_34T —S(X.44) * *
J / ] Ji
B8] BT 0 0 -5«
cxit-c, cx?-cy, 0 0 DDl -

with: S(M) = M + M7,
an
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LMI Design of the reduced order system

Main result: computation of ¥’

There exists £" of order k < n minimizing the £,-gain from u(t) to e(t),
if there exists matrices X;"*, AL;, C.;, Bf and D}, minimizing 5 under the LMI

X11 X12
0< {er Xzz} 0> i
0> X" - X" 0> _— 19,,+2(@u+®//)

with ©j linear in the LMI variables X**, A{;, Az, Cf;, Cs;, B, D and 7.

» Reduced system X": B/ and D} are LMI variables and A,f and Cf are
obtained by:

Al =(ALX? + A XP2)(XTPT X2 4 P2 X2
Cf =(C1iX" + CoiXP)(X'2TX"2 4+ X#2x%2)
> Lop-gain from u(t) to e(t): v = /7
G
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Weighted nonlinear model order reduction

» Frequency weighting function ¥’ can be introduced
to relax the L£,-constraint in some frequency range(s)

u(t e(t Loel(t
® o =+ B + <) o il = Alad + Ble H ®)
“\y=Cur+ Dy T\ =T nle [
- H
H
N
H
H
................................................ H
R ARELEEELEELEELEE .
H
o = A+ Bl
v = Cpa" + Dju
y'(t) u(t)

» The same machinery is applied to the augmented system

xf Al BfC, —BfCp\ [xf B(Dy — DY)
x| = 0 Ap 0 X | + By, u
X" 0 0 A X" B,

xf

x> + D'(Dp — DL)u
r

e = (¢' D'c, —D'CY) (
X
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r—12 -32

1.67 —26
—1.33 —24
—4.33 -8
L 1.67 —25

[—7.33 —32
6 —41
2.33 —18
6 -2
6 —33

—15.33 —32
0.333 —-23

-3 24
—4.33 -8
L 0.333 —22

[0.005 0.005]

38 -38 0
233 —167 0
-6.33 1.33 8
40.67 —45.67 8
233 —1.67 —1
24.67 —24.67 07
2 -6 0
~15.67 —2.33 2
20 -38 2
2 -6 -8
34.67 —34.67 0
—7.67 —0.333 0
-8 3 8
40.67 —45.67 8
—7.67 —0.333 —1

ro.57 0.41
~0.11 —0.037
0.98 0.45
0.92 0.44

| 0.28 0.08

r—0.5 —0.267
~0.22 —0.13
0.21 0.084
0.25 0.1

| —0.22 —0.15]

ro0.41 0.257
~0.19 —0.13
0.62 0.42
0.52 0.36

1 0.088 0.09 |

[0.004 0.002]

Numerical example

Consider the system of order n = 5 with r = 3 submodels:

[0.667
0
—1.33
1.33
L O
ro0.17
0
—0.33
L 0.33 0

[ 0.33
0
—0.67
0.67

L O

[0.004 0.002]
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Numerical example

System inputs

u®

u®

Weighting functions

50
time [s]

40

s e 70 8 %0 100 _oa
time [s] g,
T

P T

a i L L e e e e
wi (t) = (tanh((u (t)ux(t))/6) + 1)
wa(t) = (tanh((u (f) 4 u(t))/6) + 1)
wa(t) = (tanh((u (f) — ua(1))/6) + 1)
hf(UZiwi 0

> k=1 Wi (D)
G
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Numerical example

Nonlinear MOR results, for k = 2

» without frequency weighting
L>-gain from u to e: 0s

v=0.14

» with frequency weighting:

f __ 0.0625(s+0.005)?(s+2000)2
Wi(s) = (5+0.02)2(s+500)2

L>-gain from u to e:

¥,(0) () and y(1) (.)
o

v =0.08 “ et *
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Concluding remarks

— No a priori upper/lower bound on the approximation error can be set...
... but v is a result of the LMI problem

1 . . - on Li (RAA
B. Marx, A descriptor Takagi-Sugeno approach to nonlinear model reduction, Linear Algebra\_s
and its Applications, 479, 52-72,2015
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Concluding remarks

— No a priori upper/lower bound on the approximation error can be set...
... but v is a result of the LMI problem

— Dedicated to MOR of not so large scale systems:
the overall LMI problem complexity is O(N3M;) ~ O(n°, k®)
with Ny scalar decision variables and M, rows in the matrix inequality

2 2 2
M, = n(2r24+-2r—1)+k(2r2+r)+r?(ny+ny)

1 1
Ng = r? (ﬂ) +n (£+5kr+k+nyr>+k2 (3r+—> +k (—+nyr+nur> +1

1 . . - on Li (RAA
B. Marx, A descriptor Takagi-Sugeno approach to nonlinear model reduction, Linear Algebra\_s
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Concluding remarks

+ o+ 4+ o+

No a priori upper/lower bound on the approximation error can be set...
... but v is a result of the LMI problem

Dedicated to MOR of not so large scale systems:
the overall LMI problem complexity is O(N3M;) ~ O(n°, k®)
with Ny scalar decision variables and M, rows in the matrix inequality

Ny = n? (%) +n (£+5kr+k+nyr> +k2 (3r+%> +k (%+nyr+nur> +1
M, = n(2r24+-2r—1)+k(2r2+r)+r?(ny+ny)

The reduced system order k, is tunable

The special case of a 0" order approximation is easily treated’

Extension of the results to time varying uncertain systems is easy'

Polya’s scheme of (Sala and Arifio, Fuzzy Sets Syst., 158(24),
2671-2686,2007) can be applied to obtain relaxed LMI conditions'

1 . : - on Li (RAA
B. Marx, A descriptor Takagi-Sugeno approach to nonlinear model reduction, Linear Algebra\_s
and its Applications, 479, 52-72,2015
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