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Abstract. This chapter aims to detect oscillatory failures affecting a flight
control surface (FCS) -specifically an aileron- of an aircraft. It presents the
principle of supervision and the design of a soft sensor for the oscillatory fail-
ure case detection. The chosen principle for diagnosis is based on testing the
adequacy of available measures in a control system (CS) servo-loop toward its
model. Two kinds of failures must be detected, which are identified as ”liquid
failure” and ”solid failure” as a disturbing signal is superimposed on or replaces
the control signal. The chapter tackles the problem of fault detection and iso-
lation (FDI) by the test of standard deviation. This problem is treated by a
correlation test between several residuals. The quantitative analysis of residues
confirms visual study and shows how the recognition is automatically processed
from a numerical point of view.
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1 Introduction

The safe operation of a physical process can be harmed on the occurrence of
faults, these faults may affect the process itself or its conduct bodies. This
observation has naturally led to the implementation of surveillance systems
whose objective is to be able at any moment, to provide operating status of
the various organs constituting the system. When a fault occurs, it must be
detected as soon as possible, even where all observed signals remain in their
allowable limits. It must then be located and its cause identified. Thus, the
steps of observation and monitoring must be assisted by a “smarter” step.

This step, called supervision, uses all available information through an im-
plicit or explicit model. Here, the goal is the detection of oscillatory failures
affecting a flight control system (FCS) -specifically an aileron- of an aircraft.
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For these oscillatory failures, airworthiness regulations applied worldwide by all
manufacturers require precaution designed to detect and to accommodate these
failures [5, 10]. Software embedded on the Airbus A380, for example, is entirely
compliant to the current regulations. However, improvements [9] could be used
for the next generation of aircraft from European manufacturer to accompany
the future technological innovations and meet changing regulations. That is the
purpose of this study. Examples of oscillatory failures detection in other areas
can be found in [3, 6]. Note also that these oscillatory failures are different from
Pilot-Induced Oscillations (PIO) caused by the pilot [7, 11]. In the following,
some elements leading to a methodology to detect such failures are presented,
which are based on existing sensors and on soft (or virtual) sensors capable of
reconstructing some informations through a model of the sensors.

The principle of supervision is presented in the section 2 and the design
of a soft sensor for the oscillatory failure case detection in the section 3. The
section 4 tackled the problem of fault detection and isolation (FDI) by the
test of standard deviation. This problem is treated in the section 5 by a test
of correlation between several residuals. Conclusion and perspectives end the
paper.

2 Modeling of studied system

The traditional approach to detecting and isolating faults in a flight control
system makes use of hardware redundancy by a replication of hardware [5]
such as sensors, actuators or even flight control computers [13]. However, in
respect to financial cost, there is a growing interest in methods which do not
require additional hardware redundancy, these methods being based on software
redundancy [1, 15, 12, 2].

Fault diagnosis methods are generally classified into two groups, model-based
and data-driven methods depending on the knowledge we have or not on the
system under investigation. Here we are involved with a relatively simple sys-
tem that can be modeled easily from mechanical considerations and physical
assumptions.

The chosen principle for diagnosis is based on testing the adequacy of avail-
able measures in a CS servo-loop towards its model. Thus, it is necessary to
establish the model of the system, generating through this model and the avail-
able measures an indicator of failure. This indicator must be analyzed to detect
the presence of this failure as soon as possible. A model called failure-free can
be proposed simulating the system behavior in the absence of failure. Failure
models corresponding to system behaviors in occurrence of oscillations can also
be established. Two kinds of failures must be detected, which are identified as
“liquid failure” and “solid failure” as a disturbing signal is superimposed on or
replaces the control signal [9, 14]. The probable sources of oscillatory failure are
presented in figure 1.

In this application, the characteristic variables of CS servo-loop are given in
the table 1.
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Figure 1: The probable sources of oscillatory failure

xb(t) position of the rod of CS actuator (aileron)
u(t) position’s order of CS actuator
Fa(t) aerodynamic forces applied on the CS
Ma(t) aerodynamic force moment
∆P (t) difference of hydraulic pressure in the input of the FCS actu-

ator
V0(t) speed computed by flight control computer
x(t) position (in degrees) of the CS
Ka(t) damping coefficient of adjacent actuator (case of 2 actuators

per CS)
∆Pref pressure of reference
τ transmission delay of the sensor
S surface area of the actuator’s piston
K control gain

Table 1: Characteristic variables and constants of CS servo-loop

The failure-free model Mb is described structurally as follows:

Mb =



ẋb(t) = V0(t)

√
S∆P (t) + sign(V0(t))Fa(t)

S∆Pref +Ka(t)V 2
0 (t)

V0(t) = K(u(t) − xb(t− τ))
∆P (t) = f1(xd(t))
Ka(t) = f2(xd(t))
Fa(t) = f3(Ma(t), xd(t))
x(t) = f4(xb(t), τ)

(1)

where the structure of functions fi(.) are not detailed here. The quantities
∆P (t), Ka(t) and Fa(t), generally unmeasurable, play the role of disturbance of
which one can know the domain of variation. Failure models of solid and liquid
types take the following forms respectively:

Ms =

 ẋs(t) = V0,s(t)

√
S∆P (t) + sign(V0,s(t))Fa(t)

S∆Pref +Ka(t)V 2
0,s(t)

V0,s(t) = Sdef,s(t)

(2)
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M` =

 ẋ`(t) = V0,l(t)

√
S∆P (t) + sign(V0,`(t))Fa(t)

S∆Pref +Ka(t)V 2
0,`(t)

V0,`(t) = K(u(t) − x`(t− τ)) + Sdef,`(t)

(3)

where the magnitudes of ∆P (t), Ka(t) and Fa(t) depend on flight scenario;
Sdef (t) represents the oscillatory failure signal of unknown frequency, but char-
acterized by a known frequency range (from 0.5 Hz to 12 Hz). It is important
to note that the two models Mb, Ms are related to the failure of a non-linear
way. That will explain the further comments in section about the frequency of
the failure 4.4).

The principle of supervision, which is therefore to determine at every mo-
ment, which mode of the system Mb, Ms or M` is active, is the subject of Section
3. Note that after recognition of a faulty mode, we have to define and apply
a control signal allowing the reduction of the oscillations, but this is not the
purpose of the current presentation, which is however addressed in some works
[8].

3 Design of a soft sensor for the oscillatory fail-
ure detection

The evolution of outputs noted respectively xb, xs and x` are computed by
integrating, according to the time, the equations related to the three modes
of operation of CS. In this case, one speaks about soft sensor, because the
simulation provides information comparable to what gives a physical sensor,
under condition that the model is well representative of the system. At each
time, this allows to propose a diagnostic strategy summarized in the table (2).

E1 At time t, acquire the available measures
E2 Evaluate the outputs (xb(t), xs(t), x`(t)) of the three soft

sensors
E3 Calculate the residuals rλ(t) = x(t) − xλ(t), λ = b, s, `
E4 Compare the residuals rλ(t) in respect to given thresholds
E5 Test of persistence over time of the result of statistic tests
E6 Take the decision of the occurrence of a failure

Table 2: Strategy for Fault Detection

The comparison between the outputs of these soft sensors and the growths
measured by physical sensors results in three residual signals allowing to de-
termine the most representative model of the behavior of the CS and thus to
determine the type of the potentially occurring failure. Note that one of the ma-
jor difficulties in the implementation of this technique is due to the fact that the
physical system is subjected to hardly measurable disturbances (∆P (t), Ka(t)
and Fa(t)). In [9], the authors have shown that ∆P (t) and Fa(t) cannot be
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identified simultaneously and they have chosen to set ∆P (t) to its most likely
value then identify Ka(t) and Fa(t). Taking into account the complexity of the
estimation of Ka(t) and Fa(t) as well as the limited power of the flight control
computer, the model was simplified by fixing the three perturbations ∆P (t),
Ka(t) and Fa(t) with fixed nominal values ∆Pb, Kab and Fab

1. From equation
(1), the corresponding evolution of the output xb(t) is then reduced to:

Mb =

 ẋb(t) = V0(t)

√
S∆Pb + sign(V0(t))Fab
S∆Pref +KabV 2

0 (t)

V0(t) = K(u(t) − xb(t− τ))

(4)

In fact, there are several flight scenario (for example cruise phase, nose-up,
triggering of pitch protection, yaw-angle-mode), and for each scenario the values
of ∆Pb, Kab and Fab are adapted; this adaptation is not a handicap, because
the recognition of the scenario is pretty obvious. Figure 2 shows the input of
the system, the output of the nonlinear model (1) and that of its simplified
model (4); the low amplitude of the difference between the two outputs fully
justifies the use of simplified model (4). For this reason, constant values are

Figure 2: Validation of simplified model

also chosen for the perturbations in the solid and liquid failure models (2 and
3). In following the isolation of an oscillation of 0.5 degree amplitude and 1.5
Hz frequency will be considered. More generally, this case corresponds to an
oscillatory failure signal Sdef (t) (for liquid and solid failures) described by:

Sdef (t) = A sin (2πf.t) (5)

The whole FD procedure summarized in table 2 is applied, using the model of
oscillatory failure signal (5) with the failure models (2 and 3), with a range of

1Numerical values of the system parameters are not given here for the sake of confidentiality
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amplitude from 0.5 deg to 1 deg and a range of frequency from 0.5 Hz to 12 Hz
(the sampling period for data acquisition is 0.01s).

4 Fault detection by standard deviation test

4.1 Residual generation

With the actual measurement x of the CS position and outputs corresponding
to the modes of operation of the system, three residuals are obtained from the
simplified models Mb, Ms and M` as shown in figure 3. Figure 4, represents

Figure 3: Bank of residues for the detection of failure

the residuals rb(t), rs(t) and r`(t) in the case without failure. In the absence of
failure, model Mb really fits this situation, the amplitude of the residual rb(t)
is clearly limited to approximately 0.2 deg; however, residuals rs(t) and r`(t)
oscillate with a significantly greater amplitude that is justified by the fact that
in absence of failure, model M` and Ms do not correspond to this situation.

Figure 4: Residuals rb(t), rs(t) and r`(t) : case without failure

6



Figure 5: Residuals rb(t), rs(t) and r`(t) : case of liquid failure

Figure 6: Residuals rb(t), rs(t) and r`(t) : case of solid failure

Two other situations are now considered. Figure 5 (resp. figure 6) represents
the residuals in the case of liquid failure (resp. solid failure). The failure is
simulated between 5.3 s and 15.3 s. In this time interval, there is an increase of
the variation of the residue rb(t) and a reduction in the variation of the residue
r`(t) (resp. residue rs(t)) in the presence of the liquid failure (resp. solid failure).
These residues are used for the FDI procedure, the signatures of the residues
being well differentiated according to the type of failure. Table 3 relates to the
theoretical signatures and gives the impact of the modes of functioning on the
three residuals.

In the so-called incidence matrix or fault signature matrix of 3, 1 element
indicates that the residual does repond to the failure, while 0 means that it
does not [4]. At each time instant this table is used to recognize the situation.
For example, if at a given time instant yhe observed signature is [1 0 1], the
Hamming distance vector will be [2 0 3]; this allow to deduce, from choosing
the smallest distance, that liquid failure situation has occurred.
The previous qualitative visual study showed the ability of three residues to
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free solid liquid
fault failure failure

rb 0 1 1
rs 1 0 1
r` 1 1 0

Table 3: Fault signatures

easily recognize the actual operational situation. In the next section, the quan-
titative analysis of residues confirms this study and shows how the recognition
is processed from a numerical point of view.

4.2 Generation of failure indication

With the residuals generated from the three operating models, the procedure for
detecting and isolating faults reveals quite simple to implement. The principle
is that the detection of amplitude variations of the residues, any sudden change
can be interpreted as a change in operating mode. The standard deviation
measures the dispersion of data set around its mean value, its variations may
indicate the occurrence or disappearance of a failure. For a residue r(t), this
deviation may be calculated (with the discrete time k) over a sliding window of
appropriate width N as follows:

σrλ(k) =

√
1

N−1

k∑
m=k−N+1

(rλ(m) − rλ(k))2

rλ(k) = 1
N

k∑
m=k−N+1

rλ(m)

(6)

This assessment is carried out on residuals (rλ, λ = b, s, `) from failure-free
model Mb and failure models Ms and M`. It is well known that the computa-
tion of the standard deviation may be performed using a recursive formulation.
Another possibility, allowing a significant reduction of computation, is to use
a exponentially weighted expression of the mean and the standard deviation of
the residuals.

4.3 Failure detection by standard deviation test

Thanks to residual deviations, the detection of the operational mode and there-
fore failure may be performed as summarizes the algorithm 1. The principle
of this algorithm is to evaluate the relationship between the calculated devia-
tions over sliding windows of appropriate dimensions with the initial deviations
(calculated in the absence of failure).

Algorithm 1 Failure detection by standard deviation test

1. Initialization : Calculate the initial deviations σb,0, σ`,0 and σs,0 from data
collected in the free-failure mode.

8



2. Calculate the deviations σλ(k), λ = b, s, ` over sliding windows

3. Onset of failure: If the failure was not yet detected and that for a period
of time, and if σb(k) ≥ 2σb,0, the model Mb does not reflect the present
situation. Moreover:

• If σ`(k) ≤ 0.5 σ`,0, then the occurrence of the liquid failure is con-
firmed.

• If σs(k) ≤ 0.5 σs,0, then the occurrence of the solide failure is con-
firmed.

4. Disappearance of the failure: If a failure has already been detected and that
for a period of time and if :

• σb(k) ≤ 1.5 σb,0, σ`(k) ≥ 0.75 σ`,0 and σs(k) ≥ 0.75 σs,0

then the disappearance of the failure is confirmed.

Obviously, the quantities 0.5, 0.75, 1.5 and 2 involved in the inequality tests
should be considered as parameters to be set according to the admissible level
of false alarms and also to the different flight scenario. The length of the sliding
window is also a parameter that must be adjusted according to tradeoff between
delay time detection and insensitivity to measurement noise.

The result of failure detection by the algorithm 1 is illustrated by figures 7,
8 and 9 for the failure free case, the liquid case and the solid case respectively.
As previously, the failure affects the system between 5.3 sec. and 15.3 sec and
is considered at the particular frequency 1.5 Hz.

Figure 7: Result of the detection: case without failure

On each figure, the failure flag noted Ind is 1 if the liquid failure is detected,
2 if the solid failure is detected and 0 if no failure is detected. The quantity rb
(resp. rs and r`) is the ratio between the calculated deviation on rb(t) (resp.
rs(t) and r`(t)) and the initial standard deviation σb,0, σ`,0 and σs,0. This
definition justifies the values taken by these ratio around the value 1 for normal
operating conditions. The analysis of the different graphs, i.e. the deviation of
the quantity r of its normal value 1, clearly leads to the successful conclusion
of situation recognition, in all cases we have analyzed the detection of liquid
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Figure 8: Result of the detection: case of liquid failure

Figure 9: Result of the detection: case of solid failure

or solid failure is unambiguous. As explained in section 4.1, a fault matrix
signature is used to recognize at each time instant the operating mode. Using
the definition of the ratio r, table (4) has been constructed, in which element
1 indicates that the residual does repond to the failure, while 0 means that it
does not

free liquid solid
fault failure failure

rb 0 1 1
rs 0 0 1
r` 0 1 0

Table 4: Fault signatures

When using noisy data, fault isolation may become difficult. For that, avoid-
ing misisolation of the fault needs to use a specific coding of the signatures such
that no degrading code is identical to a valid code. It is the case of the sig-
natures in tables 3 and 4 which are different, but the two set of signatures are
strongly isolating, according to the classical terminology [4].
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4.4 Discussion on failure detection by standard deviation
test

The outcomes of algorithm 1 show that the failure is detected and identified at
approximately 1.0 oscillation periods after its occurrence (0.89s for the liquid
failure case and 0.93 s for the solid failure case). This result is compliant with
the required specifications, that is to say the detection time.

If one focuses only on the failure detection (without isolation), then only the
test of standard deviation of the residual rb(k) is needed, without using the two
failure models. In this case, the failure detection condition should be reduced
to σb(k) ≥ 1.75 σb,0 for a period of time (algorithm 1). The different examples
show that we can detect any solid and liquid failure on the frequency range
[0.5 . . . 10.0] Hz even at very low amplitude (0.16 degree).

However, if the goal is to detect and isolate all failures that may appear in
the control loop, the three models need to be used. Moreover, the frequency of
oscillation to detect is not known a priori, only the range of variation is known.

Thus, we must consider several frequencies in the pattern of oscillation Sdef
(5) because the failure models Ms (2) and M` (3) depend on this frequency. The
number of failure models described by equations (2) and (3) must be increased
and therefore different frequencies of oscillations must be taken into considera-
tion. Each failure model whose parameters are fixed is specific to a particular
solid or liquid failure (of type (5)). With the principle used by the algorithm 1,
any solid and liquid failure characterized by a frequency in [0.5 . . . 10.0] Hz and
an amplitude in [0.5 . . . 1.0] deg can be detected and isolated for many flight sce-
narios. This procedure has been developed and successfully tested on different
flight situations.

However, to reduce the number of failure models, another approach is to use
a correlation test that is developed in the next section.

5 Fault detection by correlation test

The dysfunction models (2 and 3) allow to study the behavior of the system in
the presence of a failure, liquid or solid. In the simulation of dysfunction models,
by forcing the command to zero, the impact of the failure on the output can
be directly identified and estimated. In this way, patterns of failures can be
generated offline to be compared to the residue rb(t) or output x(t) to detect
and isolate the failure.
Figure 10 shows the procedure to be implemented. The first residue rb(t),
generated by the model Mb has already been defined. Signals fi(t) correspond
to failures (5) characterized by some specific frequencies (0.5 Hz, 1.5 Hz, 7
Hz for example) whose effect is assessed based on the failure models M` thus
generating signatures xLi(t) specific to each of these frequencies. It is important
to note that xLi(t) reflect only the influence of the failure, since the input u is
not applied to the models M`. Moreover, by construction, residual rb(t) is
also insensitive to u(t) but reflect the influence of the fault f if it is present.
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Such frequencies are called “selected” because this work aims at detecting and
isolating the failures of these frequencies. These signatures are then compared
(by correlation over sliding windows) to the previously evaluated residue rb(t) or
output x(t). This principle applies to liquid failure with model M` as indicated
on figure 10. The same procedure applies for solid failure with model M`.

u(t)

f1 (t)

f2 (t)

f3 (t)

+
−

S

Mb

x(t)

xL1(t)

xL2(t)

xL3(t)

Figure 10: Generation of residues for correlation test. Case of liquid failure

5.1 Pattern generation

In this subsection patterns at 0.5 Hz, 1.5 Hz and 7.0 Hz are generated from
models Ms and M` by putting the command to zero. As the correlation test
does not distinguish the amplitudes of sinusoidal signals, these patterns are
generated so that they correspond with the oscillation of 0.75 deg. Each pattern
is a sequence of length equal to two periods of the failure of the same frequency.
The objective is to detect and to isolate the three failures f(t) = 0.75sin(2πf.t)
for the frequencies 0.5 Hz, 1.5 Hz and 7.0 Hz.

5.1.1 Patterns of liquid failures

For the liquid failures, three following patterns are generated (table 5) with a
sampling period of 0.01 sec.

These three patterns xL1, xL2 and xL3 are presented in figure 11. They
will be used in a correlation test with the signal rb(t) defined previously by
rb(t) = x(t) − xb(t).
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Pattern Sequence Frequency
xL1 400 samples 0.5 Hz.
xL2 134 samples 1.5 Hz.
xL3 29 samples 7.0 Hz.

Table 5: Liquid failure patterns
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Figure 11: Patterns xL1, xL2 and xL3

As explained before, the patterns xL1, xL2 and xL3 are the direct impacts
of liquid failures (without the influence of the command u(t)) on the output of
the system and they are comparable in some way with the residue rb(t) under
the presence of a failure. Indeed, the difference x(t) − xb(t) reflects the impact
of the failure on the output since the effect of the command u(t) on x(t) and
xb(t) is canceled by difference.

5.1.2 Patterns of solid failures

For the solid failures, three following patterns are generated (table 6). These

Pattern Sequence Frequency
xS1 400 samples 0.5 Hz.
xS2 134 samples 1.5 Hz.
xS3 29 samples 7.0 Hz.

Table 6: Solid failure patterns

three patterns xS1, xS2 and xS3 are presented in figure 12. They are analyzed
by correlation test with the actual output x(t).

5.2 Failure indicator generation and fault detection by
correlation test

The correlation between two or more variables, such as rb and xLi is the inten-
sity of the relation that may exist between these variables. A measure of this
correlation is obtained by the calculation of the linear correlation coefficient.
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Figure 12: Patterns xS1, xS2 and xS3

The linear correlation coefficient between two variables rb and xLi is noted by
τb,Li.
With the correlation test, FD can be performed as summarized in Algorithm 2.
The principle of this algorithm is to compute the linear correlation coefficients
over a sliding window, on the one hand between the residue rb(t) with signals
xL1, xL2 and xL3 which represent liquid failures; on the other hand between
the output x(t) with signals xS1, xS2 and xS3 which represent solid failures. If
one of these coefficients calculated over a sliding window exceeds a threshold a
certain number of times within a limited time, a failure is detected.

Algorithm 2 Fault detection by correlation test

1. Initialization :

• Read the patterns for the liquid failure xL1, xL2 and xL3

• Read the patterns for the solid failurexS1, xS2 and xS3

• Define the vector of pattern sizes p = [400 134 29]

• Chose one threshold as for example Vs = 0.6.

2. Perform calculations of linear correlation coefficients for each kth sampling
step:

• Calculate the correlation for liquide failure τrb(k−p(i)+1:k),xLi for i =
1, 2, 3.

• Calculate the correlation for solid failure τx(k−p(i)+1:k),xSi for i =
1, 2, 3.

3. Evaluate the linear correlation coefficients by counting exceedances:

• If a correlation coefficient is greater than Vs or smaller than −Vs,
the number of so-called overruns associated with this coefficient is
increased by one unit.

• If no exceedance were observed within a limited time, the number of
overruns is set to zero.

4. Onset of failure: If the failure has not yet been detected and if one of the
overruns is greater than or equal to 4; then:
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• The onset of failure is confirmed.

• The nature of the failure (liquid or solid) as well as its frequency are
indicated by the pattern xLi or xSi whose number of exceedances was
observed with its correlation coefficient. If it is a pattern xLi, the
failure is liquid; if it is a pattern xSi, the failure is solid. The value
of i (1, 2 or 3) indicates the frequency of the failure.

5. Disappearance of the failure: If a failure has already been detected and no
exceedance was observed within a limited time; then

• the failure is declared to have disappeared.

The correlation coefficients calculated during the time are shown first in
figure 13 for the case without failure. The result of failure detection by the
algorithm 2 is shown in figures 14, 15 and 16. Figure 14 (resp. 15 and 16) rep-
resents the result obtained with the liquid failure of 0.5 Hz frequency (resp. the
liquid failure of 1.5 Hz frequency and with the solid failure of 7.0 Hz frequency).
Failures are simulated between 5.3 and 15.3 seconds.

Figure 13: Calculated correlation coefficients : case without failure

The first column represents the correlation coefficient which led to the failure
detection (τrb,xL1

, τrb,xL2
and τx,xS3

respectively). The indicator of nature of
the failure is noted by Nat in the second column. If Nat = 1, a liquid failure
is detected, if Nat = 2, a solid failure is detected, and Nat = 0 is used in the
free-failure case. The frequency of the failure is indicated in the third column.
With this method, the detection and isolation of failure can be performed in less
than three periods of the failure, which is in fact compliant with the required
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Figure 14: Result of detection : liquid failure of 0.5 Hz frequency

Figure 15: Result of detection : liquid failure of 1.5 Hz frequency

Figure 16: Result of detection : solid failure of 7.0 Hz frequency

specifications. More precisely, frequency 0.5 Hz corresponds to period of 2 sec.
On figure 14, the detection et the recognition of the failure is performed at 10
sec., i.e. with a delay of 4.7 sec. which is less that three periods of the failure.
The same analysis should be done for the two other cases.

5.3 Discussion on the failure detection by correlation test

Failure detection by correlation test has reduced significantly the number of
failure models compared to deviation test. In fact, boarding only failure-free
model in flight control computer to generate the residue rb(t) is sufficient. All the
pattern describing liquid and solid failures are generated in advance and stored
and thus the on-line computation task is easy to perform. Different treated flight
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scenarios show that any solid and liquid failure characterized by frequencies in
the frequency range [0.5 . . . 10.0] Hz, even at low amplitude (0.16 deg) can be
detected and isolated. However, this analysis does not estimate the amplitude
of the failure.

It should be noted that, in its current version, the algorithm 2 uses six
correlation tests at every step of simulation (two types of default, three selected
frequencies). Although the calculations are simple and need basic operators, it
is possible to substantially reduce the computational load :

• The patterns xL1, xL2, xL3, xS1, xS2 and xS3 are determined by the type
of failure. Their means and standard deviations over a window can be
calculated offline and stored.

• Means, standard deviations of the output x(t) and the residue rb(t) cal-
culated over a window can be performed recursively when moving a step
time of the observation window.

• The covariance, and consequently the correlation, between a reference
pattern and a signal x(t) or rb(t) over a window can also be calculated in
recursive way.

These recurrences are easy to establish, so the correlation tests can be carried
out with a reasonable computational load.

6 Conclusion

This paper addresses the problem of detecting the oscillatory failure in the
control system of a control surface of a civil aircraft. Two fault detection meth-
ods are proposed, based on a simplified model validated regarding the nonlin-
ear models usually used. Any solid and liquid failure in the frequency range
[0.5 . . . 10.0] Hz can be detected by standard deviation test, as well as any solid
and liquid failure of selected frequencies by correlation test. Both methods have
been successfully tested for a variety of flight scenarios, even with failures of low
amplitude (0.16 degree). Future works will consist in extending these methods
to other control surfaces (rudder or elevator), by trying to reduce the complexity
as well as the number of failure models. The improvement of the robustness of
the correlation test for the failures of frequencies neighboring the selected ones
is also to be considered.
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