Approche multimodèle pour l'estimation et la tolérance aux fautes

Marx

Centre de Recherche en Automatique de Nancy UMR 7039 CNRS - Université de Lorraine

Plan de la présentation

Introduction aux multimodèles

Introduction intuitive des MM
Tentative de classification des MM
Comment obtenir un MM?

Stabilité, contrôle, observation de MM

Principe de base Quelques raffinements

Estimation d'état de MM

Principe de base Estimation des MM à VPNM Estimation conjointe état / paramètres Quelques remarques

Tolérance aux défauts

Suivi de référence malgré un défaut Retour de sortie malgré une commande saturée

Conclusion

Section 1

Introduction aux multimodèles

Introduction aux multimodèles

Introduction intuitive des MM
Tentative de classification des MM
Comment obtenir un MM?

Stabilité, contrôle, observation de MM

Estimation d'état de MM

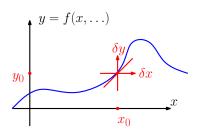
Tolérance aux défauts

Conclusion

► Objectif:

manipuler un système non linéaire : $\dot{x}(t) = f(x(t), u(t))$ avec des méthodes proches de celles des systèmes linéaires

- ▶ Objectif: manipuler un système non linéaire : $\dot{x}(t) = f(x(t), u(t))$ avec des méthodes proches de celles des systèmes linéaires
- ► Linéarisation autour d'un point d'équilibre



$$\Rightarrow \dot{\delta x}(t) = A\delta x(t) + B\delta u(t)$$

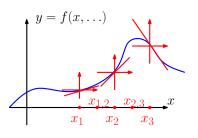
Modèle LTI:

- + simple
- approximation
- local

▶ **Objectif**: manipuler un système non linéaire : $\dot{x}(t) = f(x(t), u(t))$

► Linéarisation autour de plusieurs points et commutation

avec des méthodes proches de celles des systèmes linéaires



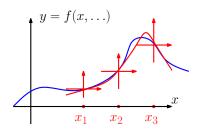
$$\Rightarrow \dot{x}(t) = A_{\sigma}x(t) + B_{\sigma}u(t) + f_{i}$$
avec $\sigma = i$ pour $x_{i-1,i} < x < x_{i,i+1}$

Modèle commuté :

- + global
- non linéaire
- approximation

▶ Objectif: manipuler un système non linéaire : $\dot{x}(t) = f(x(t), u(t))$ avec des méthodes proches de celles des systèmes linéaires

► Linéarisation autour de plusieurs points et pondération



$$\Rightarrow \dot{x}(t) = \sum_{i=1}^{r} \mu_i(x) (A_i x(t) + B_i u(t) + f_i)$$

$$\text{avec } \mu_i(x) \simeq \textit{dist}(x, x_i)$$

Multimodèle:

- global
- non linéaire
- ? approximation

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) \left(A_i x(t) + B_i u(t) \right)$$

$$r$$
 nombre de sous-modèles (A_i, B_i) sous-modèle $\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) \left(A_i x(t) + B_i u(t)\right)$ μ_i fonction d'activation z variable de prémisse

$$r$$
 nombre de sous-modèles (A_i,B_i) sous-modèle
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) \left(A_i x(t) + B_i u(t)\right)$$
 μ_i fonction d'activation z variable de prémisse

- Variables de prémisse (VP)
 - connues (entrée u, sortie y)
 - ▶ inconnues (état x, défaut)

$$r$$
 nombre de sous-modèles (A_i,B_i) sous-modèle $\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) \left(A_i x(t) + B_i u(t)\right)$ μ_i fonction d'activation z variable de prémisse

- Variables de prémisse (VP)
 - ► connues (entrée *u*, sortie *y*)
 - inconnues (état x, défaut)
- Fonctions d'activation (FA) vérifiant les propriétés de somme convexe
 - ▶ positivité : $0 \le \mu_i(z(t)) \le 1$
 - somme unitaire : $\sum_{i=1}^{\gamma} \overline{\mu_i}(z(t)) = 1$

$$r$$
 nombre de sous-modèles (A_i,B_i) sous-modèle $\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) \left(A_i x(t) + B_i u(t)\right)$ μ_i fonction d'activation z variable de prémisse

- Variables de prémisse (VP)
 - connues (entrée u, sortie y)
 - ▶ inconnues (état x, défaut)
- Fonctions d'activation (FA) vérifiant les propriétés de somme convexe
 - ▶ positivité : $0 \le \mu_i(z(t)) \le 1$
 - somme unitaire : $\sum_{i=1}^{r} \mu_i(z(t)) = 1$
- Liens avec d'autres modèles
 - ▶ Si $\mu_i(z(t)) \in \{0;1\}$ \rightarrow systèmes linéaires commutés (discret) $\blacktriangleright \sum_{i=1}^r \mu_i(z(t)) A_i \simeq A(\theta(t))$ \rightarrow systèmes LPV

Tentative de classification des MM : homogènes / découplés (1)

▶ Espace d'état commun à tous les sous-modèles : $x(t) \in \mathbb{R}^n$ modèle polytopique, homogène, de Takagi-Sugeno¹

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(z(t)) (A_{i}x(t) + B_{i}u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(z(t)) (C_{i}x(t) + D_{i}u(t)) \end{cases}$$

^{1.} Takagi, Sugeno, Fuzzy identification of systems and its application to modelling and control. IEEE Trans. on Systems, Man, and Cybernetics, 15, 116-132, 1985.

^{2.} Filey. Fuzzy modeling of complex systems. Int. J. of Approximate Reasoning, 5(3), 281-290,1991

Tentative de classification des MM : homogènes / découplés (1)

▶ Espace d'état commun à tous les sous-modèles : $x(t) \in \mathbb{R}^n$ modèle polytopique, homogène, de Takagi-Sugeno 1

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(A_{i}x(t) + B_{i}u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(C_{i}x(t) + D_{i}u(t)) \end{cases}$$

▶ Espaces d'état distincts propres à chaque sous-modèle : $x_i(t) \in \mathbb{R}^{n_i}$ multimodèles découplés²

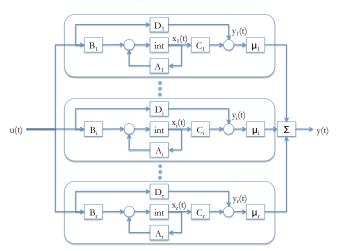
$$\begin{cases} \dot{x}_i(t) = A_i x_i(t) + B_i u(t) \\ y_i(t) = C_i x_i(t) + D_i u(t) \\ y(t) = \sum_{i=1}^r \mu_i(z(t)) y_i(t) \end{cases}$$

^{1.} Takagi, Sugeno, Fuzzy identification of systems and its application to modelling and control. IEEE Trans. on Systems, Man, and Cybernetics, 15, 116-132, 1985.

^{2.} Filey. Fuzzy modeling of complex systems. Int. J. of Approximate Reasoning, 5(3), 281-290,1991

Tentative de classification des MM : homogènes / découplés (2)

Structure des multimodèles découplés



- un vecteur d'état $x_i(t)$ par sous-modèle (A_i, B_i, C_i, D_i)
- ▶ interpolation des équations statiques de sortie : $y(t) = \sum_i \mu_i(z(t))y_i(t)$

Les variables de prémisse z(t) dépendant

- ightharpoonup de grandeurs mesurées : entrée u(t), sortie y(t), etc
- ▶ de grandeurs non mesurées : état x(t), etc

Les variables de prémisse z(t) dépendant

- ightharpoonup de grandeurs mesurées : entrée u(t), sortie y(t), etc
- ▶ de grandeurs non mesurées : état x(t), etc

Le cas de variable de prémisse non mesurables

est plus complexe, par exemple pour l'estimation d'état

$$\begin{cases} \dot{x}(t) = \sum_{i} \mu_{i}(x(t)) \left(A_{i}x(t) + B_{i}u(t) \right) \\ \dot{\hat{x}}(t) = \sum_{i} \mu_{i}(\hat{x}(t)) \left(A_{i}\hat{x}(t) + B_{i}u(t) + K_{i}(y(t) - \hat{y}(t)) \right) \end{cases}$$

Les variables de prémisse z(t) dépendant

- ightharpoonup de grandeurs mesurées : entrée u(t), sortie y(t), etc
- ▶ de grandeurs non mesurées : état x(t), etc

Le cas de variable de prémisse non mesurables

est plus complexe, par exemple pour l'estimation d'état

$$\begin{cases} \dot{x}(t) = \sum_{i} \mu_{i}(x(t)) \left(A_{i}x(t) + B_{i}u(t) \right) \\ \dot{\hat{x}}(t) = \sum_{i} \mu_{i}(\hat{x}(t)) \left(A_{i}\hat{x}(t) + B_{i}u(t) + K_{i}(y(t) - \hat{y}(t)) \right) \end{cases}$$

donc moins étudié

Les variables de prémisse z(t) dépendant

- ightharpoonup de grandeurs mesurées : entrée u(t), sortie y(t), etc
- ▶ de grandeurs non mesurées : état x(t), etc

Le cas de variable de prémisse non mesurables

est plus complexe, par exemple pour l'estimation d'état

$$\begin{cases} \dot{x}(t) = \sum_{i} \mu_{i}(x(t)) \left(A_{i}x(t) + B_{i}u(t) \right) \\ \dot{x}(t) = \sum_{i} \mu_{i}(\hat{x}(t)) \left(A_{i}\hat{x}(t) + B_{i}u(t) + K_{i}(y(t) - \hat{y}(t)) \right) \end{cases}$$

- donc moins étudié
- ▶ bien que naturel (cf exemple précédent : $\mu_i(x) \simeq dist(x, x_i)$)

- ▶ Basé données : identification 3 4
 - données : entrées / sorties
 - choisir : la structure du MM (découplé / TS), les VP (z(t)), les FA (μ_i), ...
 - résolution : minimisation non linéaire de l'erreur de modélisation

^{3.} Gasso, Mourot, Ragot, Prévision des maxima journaliers d'ozone, approche multimodèle, Journal Européen des Systèmes Automatisés, 39 (4), p. 513-532, 2005

^{4.} Orjuela, Marx, Maguin, Ragot. Nonlinear system identification using heterogeneous multiple models, International Journal of Applied Mathematics and Computer Science, 23 (1), 2013

^{5.} Tanaka, Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach, Wiley, 2001

- ▶ Basé données : identification 3 4
 - données : entrées / sorties
 - **choisir**: la structure du MM (découplé / TS), les VP (z(t)), les FA (μ_i), ...
 - résolution : minimisation non linéaire de l'erreur de modélisation

Basé modèle : linéarisations en plusieurs points

- données : le modèle non linéaire
- choisir : les points de linéarisation et les fonctions d'activation
- résolution : approximation par développements de Taylor du modèle

^{3.} Gasso, Mourot, Ragot, Prévision des maxima journaliers d'ozone, approche multimodèle, Journal Européen des Systèmes Automatisés, 39 (4), p. 513-532, 2005

^{4.} Orjuela, Marx, Maguin, Ragot. Nonlinear system identification using heterogeneous multiple models, International Journal of Applied Mathematics and Computer Science, 23 (1), 2013

^{5.} Tanaka, Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach, Wiley, 2001

- ► Basé données : identification 3 4
 - données : entrées / sorties
 - ▶ choisir : la structure du MM (découplé / TS), les VP (z(t)), les FA (μ_i), ...
 - résolution : minimisation non linéaire de l'erreur de modélisation

Basé modèle : linéarisations en plusieurs points

- données : le modèle non linéaire
- choisir : les points de linéarisation et les fonctions d'activation
- résolution : **approximation** par développements de Taylor du modèle

▶ Basé modèle : ré-écriture polytopique ⁵

- données : le modèle non linéaire
- ▶ hypothèses : non-linéarités bornées ou x(t) dans à un compact de \mathbb{R}^n
- résolution : ré-écriture MM exacte des équations du modèle

^{3.} Gasso, Mourot, Ragot, Prévision des maxima journaliers d'ozone, approche multimodèle, Journal Européen des Systèmes Automatisés, 39 (4), p. 513-532, 2005

^{4.} Orjuela, Marx, Maquin, Ragot. Nonlinear system identification using heterogeneous multiple models, *International Journal of Applied Mathematics and Computer Science*, 23 (1), 2013

^{5.} Tanaka, Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach, Wiley, 2001

- ▶ Basé données : identification 3 4
 - données : entrées / sorties
 - ▶ choisir : la structure du MM (découplé / TS), les VP (z(t)), les FA (μ_i), ...
 - résolution : minimisation non linéaire de l'erreur de modélisation

Basé modèle : linéarisations en plusieurs points

- données : le modèle non linéaire
- choisir : les points de linéarisation et les fonctions d'activation
- résolution : **approximation** par développements de Taylor du modèle
- Basé modèle : ré-écriture polytopique⁵
 - données : le modèle non linéaire
 - ▶ hypothèses : non-linéarités bornées ou x(t) dans à un compact de \mathbb{R}^n
 - résolution : ré-écriture MM exacte des équations du modèle

^{3.} Gasso, Mourot, Ragot, Prévision des maxima journaliers d'ozone, approche multimodèle, Journal Européen des Systèmes Automatisés, 39 (4), p. 513-532, 2005

^{4.} Orjuela, Marx, Maquin, Ragot. Nonlinear system identification using heterogeneous multiple models, *International Journal of Applied Mathematics and Computer Science*, 23 (1), 2013

^{5.} Tanaka, Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach, Wiley, 2001

▶ On considère le système non linéaire

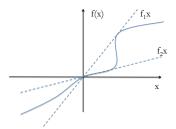
$$\dot{x}(t) = f(x(t))$$
 avec $f(0) = 0$

On considère le système non linéaire

$$\dot{x}(t) = f(x(t))$$
 avec $f(0) = 0$

▶ Il est possible de trouver des bornes f_1 et f_2 telles que

$$f_2x \leq f(x) \leq f_1x, \forall x$$

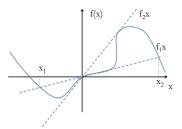


On considère le système non linéaire

$$\dot{x}(t) = f(x(t))$$
 avec $f(0) = 0$

▶ Il est possible de trouver des bornes f₁ et f₂ telles que

$$f_2x \leq f(x) \leq f_1x, \forall x$$



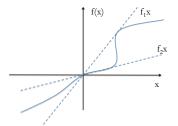
(ou au moins localement pour $x_1 \le x(t) \le x_2$)

On considère le système non linéaire

$$\dot{x}(t) = f(x(t))$$
 avec $f(0) = 0$

▶ Il est possible de trouver des bornes f_1 et f_2 telles que

$$f_2x \leq f(x) \leq f_1x, \forall x$$



▶ On peut alors écrire :

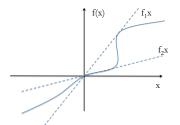
$$\dot{x}(t) = \left(\frac{f(x)/x - f_2}{f_1 - f_2}\right) f_1 x(t) + \left(\frac{f_1 - f(x)/x}{f_1 - f_2}\right) f_2 x(t)$$

On considère le système non linéaire

$$\dot{x}(t) = f(x(t))$$
 avec $f(0) = 0$

▶ Il est possible de trouver des bornes f_1 et f_2 telles que

$$f_2x \leq f(x) \leq f_1x, \forall x$$



► On peut alors écrire :

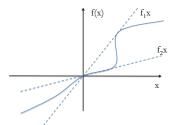
$$\dot{x}(t) = \underbrace{\left(\frac{f(x)/x - f_2}{f_1 - f_2}\right)}_{\mu_1(x)} \underbrace{f_1}_{A_1} x(t) + \underbrace{\left(\frac{f_1 - f(x)/x}{f_1 - f_2}\right)}_{\mu_2(x)} \underbrace{f_2}_{A_2} x(t)$$

On considère le système non linéaire

$$\dot{x}(t) = f(x(t))$$
 avec $f(0) = 0$

▶ Il est possible de trouver des bornes f_1 et f_2 telles que

$$f_2x \leq f(x) \leq f_1x, \forall x$$



▶ On peut alors écrire :

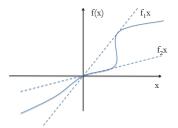
$$\dot{x}(t) = \sum_{i=1}^{2} \mu_i(x(t)) A_i x(t)$$

On considère le système non linéaire

$$\dot{x}(t) = f(x(t))$$
 avec $f(0) = 0$

▶ Il est possible de trouver des bornes f₁ et f₂ telles que

$$f_2x \leq f(x) \leq f_1x, \forall x$$



► Pour résumer :

$$\underbrace{\dot{x} = f(x, u)}_{SNL} \Rightarrow \underbrace{\dot{x} = A(x, u)x + B(x, u)u}_{aLPV} \Rightarrow \underbrace{\dot{x} = \sum_{i} \mu_{i}(A_{i}x + B_{i}u)}_{T-S}$$

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t), \ avec \ -1 \le u(t) \le 1$$

▶ On choisit la VP : $z(t) = (\sin(x(t))u(t))/(x(t)) \in [-1 \ 1].$

$$Z(t) = \underbrace{\left(\frac{Z(t) - (-1)}{2}\right)}_{\mu_1(Z(t))} (1) + \underbrace{\left(\frac{1 - Z(t)}{2}\right)}_{\mu_2(Z(t))} (-1)$$

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t), \ avec \ -1 \le u(t) \le 1$$

▶ On choisit la VP : $z(t) = (\sin(x(t))u(t))/(x(t)) \in [-1 \ 1].$

$$z(t) = \underbrace{\left(\frac{z(t) - (-1)}{2}\right)}_{\mu_1(z(t))} (1) + \underbrace{\left(\frac{1 - z(t)}{2}\right)}_{\mu_2(z(t))} (-1)$$

Le système devient

$$\dot{x}(t) = (-0.5 + \mu_1(z(t))(1) + \mu_2(z(t))(-1))x(t)$$

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t), \ avec \ -1 \le u(t) \le 1$$

▶ On choisit la VP : $z(t) = (\sin(x(t))u(t))/(x(t)) \in [-1 \ 1].$

$$Z(t) = \underbrace{\left(\frac{Z(t) - (-1)}{2}\right)}_{\mu_1(Z(t))} (1) + \underbrace{\left(\frac{1 - Z(t)}{2}\right)}_{\mu_2(Z(t))} (-1)$$

Le système devient

$$\dot{x}(t) = (\mu_1(z(t))(0.5) + \mu_2(z(t))(-1.5))x(t)$$

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t), \ avec \ -1 \le u(t) \le 1$$

▶ On choisit la VP : $z(t) = (\sin(x(t))u(t))/(x(t)) \in [-1 \ 1].$

$$Z(t) = \underbrace{\left(\frac{Z(t) - (-1)}{2}\right)}_{\mu_1(Z(t))} (1) + \underbrace{\left(\frac{1 - Z(t)}{2}\right)}_{\mu_2(Z(t))} (-1)$$

Le système devient

$$\dot{x}(t) = (\mu_1(z(t))(0.5) + \mu_2(z(t))(-1.5))x(t)$$

On a un MM:

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

$$A_1 = 0.5 \quad A_2 = -1.5 \quad B_1 = B_2 = 0$$

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t), \ avec \ -1 \le u(t) \le 1$$

▶ On choisit la VP : $z(t) = \frac{\sin(x(t))u(t)}{x(t)} \in [-1 \ 1].$

$$z(t) = \underbrace{\left(\frac{z(t) - (-1)}{2}\right)}_{\mu_1(z(t))} (1) + \underbrace{\left(\frac{1 - z(t)}{2}\right)}_{\mu_2(z(t))} (-1)$$

Le système devient

$$\dot{x}(t) = (\mu_1(z(t))(0.5) + \mu_2(z(t))(-1.5))x(t)$$

On a un MM:

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

$$A_1 = 0.5 \quad A_2 = -1.5 \quad B_1 = B_2 = 0$$

$$A_1 = 0.5$$
 $A_2 = -1.5$ $B_1 = B_2 = 0$

• système instable ($A_1 > 0$) sous-modèles non commandable ($B_i = 0$)

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t)$$
, avec $-1 \le u(t) \le 1$

▶ On choisit comme VP : $z(t) = \sin(x(t)) \in [-1 \ 1]$.

$$z(t) = \underbrace{\left(\frac{z(t) - (-1)}{2}\right)}_{\mu_1(z(t))} (1) + \underbrace{\left(\frac{1 - z(t)}{2}\right)}_{\mu_2(z(t))} (-1)$$

Transformation polytopique: exemple

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t)$$
, avec $-1 \le u(t) \le 1$

▶ On choisit comme VP : $z(t) = \sin(x(t)) \in [-1 \ 1]$.

$$Z(t) = \underbrace{\left(\frac{Z(t) - (-1)}{2}\right)}_{\mu_1(Z(t))} (1) + \underbrace{\left(\frac{1 - Z(t)}{2}\right)}_{\mu_2(Z(t))} (-1)$$

Le système devient

$$\dot{x}(t) = -0.5x(t) + (\mu_1(z(t))(1) + \mu_2(z(t))(-1)) u(t)$$

Transformation polytopique: exemple

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t), \ avec \ -1 \le u(t) \le 1$$

▶ On choisit comme VP : $z(t) = \sin(x(t)) \in [-1 \ 1]$.

$$z(t) = \underbrace{\left(\frac{z(t) - (-1)}{2}\right)}_{\mu_1(z(t))} (1) + \underbrace{\left(\frac{1 - z(t)}{2}\right)}_{\mu_2(z(t))} (-1)$$

Le système devient

$$\dot{x}(t) = -0.5x(t) + (\mu_1(z(t))(1) + \mu_2(z(t))(-1)) u(t)$$

On a un MM:

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

$$A_1 = A_2 = -0.5 \quad B_1 = 1 \quad B_2 = -1$$

Transformation polytopique: exemple

Un système non linéaire à entrée saturée :

$$\dot{x}(t) = -0.5x + \sin(x(t))u(t), \ avec \ -1 \le u(t) \le 1$$

▶ On choisit comme VP : $z(t) = \sin(x(t)) \in [-1 \ 1]$.

$$Z(t) = \underbrace{\left(\frac{Z(t) - (-1)}{2}\right)}_{\mu_1(Z(t))} (1) + \underbrace{\left(\frac{1 - Z(t)}{2}\right)}_{\mu_2(Z(t))} (-1)$$

Le système devient

$$\dot{x}(t) = -0.5x(t) + (\mu_1(z(t))(1) + \mu_2(z(t))(-1)) u(t)$$

On a un MM:

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t))(A_ix(t) + B_iu(t))$$

$$A_1 = A_2 = -0.5 \quad B_1 = 1 \quad B_2 = -1$$

▶ système stable ($\exists P > 0$ t.q. $PA_i + (PA_i)^T < 0$) sous-modèles commandables

Transformation polytopique: avantages / inconvénients

- le choix des variables de décision n'est pas unique ;
- les variables d'état apparaissent souvent dans les variables de décision ;
- nombre de sous-modèles : $r = 2^{n_z}$, où n_z est le nombre de VP :

13/39

^{6.} Nagy, Mourot, Marx, Ragot, Schutz, Systematic multi-modeling methodology applied to an activated sludge reactor model. Industrial & Engineering Chemistry Research, 46(6), 2790-2799.

Transformation polytopique : avantages / inconvénients

- le choix des variables de décision n'est pas unique ;
- les variables d'état apparaissent souvent dans les variables de décision ;
- nombre de sous-modèles : $r = 2^{n_z}$, où n_z est le nombre de VP :
- + la TP est toujours possible, au moins sur un compact de l'espace d'état.
- + la TP est une ré-écriture exacte du modèle non linéaire ;

13/39

^{6.} Nagy, Mourot, Marx, Ragot, Schutz, Systematic multi-modeling methodology applied to an activated sludge reactor model. Industrial & Engineering Chemistry Research, 46(6), 2790-2799. 4 □ ▶ 4 周 ▶ 4 ■ ▶ 4 ■ ▶ 9 Q ○

Transformation polytopique: avantages / inconvénients

- le choix des variables de décision n'est pas unique;
- les variables d'état apparaissent souvent dans les variables de décision;
- nombre de sous-modèles : $r = 2^{n_z}$, où n_z est le nombre de VP;
- + la TP est toujours possible, au moins sur un compact de l'espace d'état.
- + la TP est une ré-écriture exacte du modèle non linéaire ;
- +/- ré-écritures exactes -donc équivalentes- donnant des résultats différents ⁶.

^{6.} Nagy, Mourot, Marx, Ragot, Schutz, Systematic multi-modeling methodology applied to an activated sludge reactor model, *Industrial & Engineering Chemistry Research*, 46(6), 2790-2799, 2010

Section 2

Stabilité, contrôle, observation de MM

Introduction aux multimodèles

Stabilité, contrôle, observation de MM Principe de base Quelques raffinements

Estimation d'état de MM

Tolérance aux défauts

Conclusion

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{r} \mu_{i}(z(t))F_{i}x(t)$$

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t))(A_ix(t) + B_iu(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{t} \mu_i(z(t)) F_i x(t)$$

▶ Démarche :

► fonction de Lyapunov :
$$V(x(t)) = x^T(t)Px(t)$$
, où $P > 0$

stabilisation
$$\Leftrightarrow \dot{V}(x(t)) < 0$$

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t))(A_ix(t) + B_iu(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{r} \mu_{i}(z(t))F_{i}x(t)$$

Démarche :

► fonction de Lyapunov : $V(x(t)) = x^{T}(t)Px(t)$, où P > 0

$$x^{T}\left(P\sum_{i=1}^{r}\sum_{j=1}^{r}\mu_{i}\mu_{j}(A_{i}+B_{i}F_{j})+\left(...\right)^{T}\right)x<0$$

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{r} \mu_{i}(z(t))F_{i}x(t)$$

Démarche :

► fonction de Lyapunov : $V(x(t)) = x^{T}(t)Px(t)$, où P > 0

$$\sum_{i=1}^{r} \sum_{i=1}^{r} \mu_{i} \mu_{j} \left(x^{T} \left(\mathbf{P} (\mathbf{A}_{i} + \mathbf{B}_{i} \mathbf{F}_{j}) + (\mathbf{A}_{i} + \mathbf{B}_{i} \mathbf{F}_{j})^{T} \mathbf{P} \right) x \right) < 0$$

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{r} \mu_i(z(t)) F_i x(t)$$

► Démarche :

- ► fonction de Lyapunov : $V(x(t)) = x^T(t)Px(t)$, où P > 0
- convexité et positivité des FA : $0 \le \mu_i(z(t)) \le 1$

$$\sum_{i=1}^{r} \sum_{i=1}^{r} \mu_{i} \mu_{j} \left(\boldsymbol{x}^{T} \left(\boldsymbol{P} (\boldsymbol{A}_{i} + \boldsymbol{B}_{i} \boldsymbol{F}_{j}) + (\boldsymbol{A}_{i} + \boldsymbol{B}_{i} \boldsymbol{F}_{j})^{T} \boldsymbol{P} \right) \boldsymbol{x} \right) < 0$$

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{r} \mu_i(z(t)) F_i x(t)$$

Démarche :

- ► fonction de Lyapunov : $V(x(t)) = x^T(t)Px(t)$, où P > 0
- convexité et positivité des FA : $0 \le \mu_i(z(t)) \le 1$
- ▶ inégalités matricielles sur les sommets A_i, B_i.

$$P(A_i + B_i F_j) + (A_i + B_i F_j)^T P < 0, \quad 1 \le i, j \le r$$

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{r} \mu_i(z(t)) F_i x(t)$$

Démarche :

- ► fonction de Lyapunov : $V(x(t)) = x^T(t)Px(t)$, où P > 0
- convexité et positivité des FA : $0 \le \mu_i(z(t)) \le 1$
- inégalités matricielles sur les sommets A₁, B₁.
- ightharpoonup congruence, changements de variables, ... ightharpoonup LMI

$$(A_i + B_i F_i)X + X(A_i + B_i F_i)^T < 0$$
, avec $X = P^{-1}$

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t))(A_ix(t) + B_iu(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{r} \mu_i(z(t)) F_i x(t)$$

Démarche :

- ► fonction de Lyapunov : $V(x(t)) = x^T(t)Px(t)$, où P > 0
- convexité et positivité des FA : $0 \le \mu_i(z(t)) \le 1$
- inégalités matricielles sur les sommets A₁, B₁.
- ightharpoonup congruence, changements de variables, ... ightharpoonup LMI

$$(A_iX + B_i\tilde{F}_i) + (A_iX + B_i\tilde{F}_i)^T < 0$$
, avec $\tilde{F}_i = F_iX$

Objectif:

stabiliser le MM :
$$\dot{x}(t) = \sum_{i=1}^r \mu_i(z(t)) (A_i x(t) + B_i u(t))$$

avec le retour d'état :
$$u(t) = \sum_{i=1}^{r} \mu_i(z(t)) F_i x(t)$$

Démarche :

- ► fonction de Lyapunov : $V(x(t)) = x^T(t)Px(t)$, où P > 0
- ▶ convexité et positivité des FA : $0 \le \mu_i(z(t)) \le 1$
- ▶ inégalités matricielles sur les sommets A_i, B_i.
- $\,\blacktriangleright\,$ congruence, changements de variables, ... \to LMI

► Solution : conditions suffisantes LMI

 $\rightarrow u(t)$ stabilise le MM **si** il existe $X = X^T > 0$ et \tilde{F}_i t.q., pour $1 \le i, j \le r$

$$(A_iX + B_i\tilde{F}_j) + (A_iX + B_i\tilde{F}_j)^T < 0$$
, et $F_i = \tilde{F}_iX^{-1}$

Quelques remarques:

+ même démarche pour :

- estimation d'état : $\dot{V}(x(t) - \hat{x}(t)) < 0$

- gain \mathcal{L}_2 borné : $\dot{V}(t) + y^T(t)y(t) - \gamma^2 u^T(t)u(t) < 0$

– taux de décroissance : $\dot{V}(t) + 2\alpha V(t) < 0$

Quelques remarques:

+ même démarche pour :

– estimation d'état : $\dot{V}(x(t) - \hat{x}(t)) < 0$

– gain \mathcal{L}_2 borné : $\dot{V}(t) + y^T(t)y(t) - \gamma^2 u^T(t)u(t) < 0$

- taux de décroissance : $\dot{V}(t) + 2\alpha V(t) < 0$

- + outils linéaires (LMI) pour systèmes non linéaires
- + solution constructive

Quelques remarques:

+ même démarche pour :

- estimation d'état : $\dot{V}(x(t) - \hat{x}(t)) < 0$

– gain \mathcal{L}_2 borné : $\dot{V}(t) + y^T(t)y(t) - \gamma^2 u^T(t)u(t) < 0$

– taux de décroissance : $\dot{V}(t) + 2\alpha V(t) < 0$

- + outils linéaires (LMI) pour systèmes non linéaires
- + solution constructive
- dépend uniquement des sommets
- nombre de LMI polynomial en r
- conditions suffisantes → conservatisme

Quelques raffinements : V(x(t)) non quadratique

► Fonction polyquadratique ⁷

$$V(x(t)) = \sum_{i=1}^{r} \mu_i(z(t)) x^{T}(t) P_i x(t)$$

^{7.} Tanaka, Hori, Wang, A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems, IEEE Tr. Fuzzy Systems, 11(4), 582-589, 2003

^{8.} Guerra, Vermeiren, LMI-based relaxed non quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, Automatica, 40, 823-829, 2004

^{9.} Kruszewski, Wang, Guerra., Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete-time TS fuzzy models: A new approach, IEEE Tr. Automatic Control. 53(2), 606-611. 2008

Quelques raffinements : V(x(t)) non quadratique

► Fonction polyquadratique ⁷

$$V(x(t)) = \sum_{i=1}^{r} \mu_i(z(t)) x^{T}(t) P_i x(t)$$

► Fonction non quadratique 8

$$V(x(t)) = x^{T}(t) \left(\sum_{i=1}^{r} \mu_{i}(z(t)) P_{i} \right)^{-1} x(t)$$

^{7.} Tanaka, Hori, Wang, A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems, *IEEE Tr. Fuzzy Systems*, 11(4), 582-589, 2003

^{8.} Guerra, Vermeiren, LMI-based relaxed non quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, *Automatica*, 40, 823-829, 2004

^{9.} Kruszewski, Wang, Guerra., Nonquadratic stabilization conditions for a class of uncertain non-linear discrete-time TS fuzzy models: A new approach, *IEEE Tr. Automatic Control*, 53(2), 606-611, 2008

Quelques raffinements : $\overline{V(x(t))}$ non quadratique

► Fonction polyquadratique ⁷

$$V(x(t)) = \sum_{i=1}^{r} \mu_i(z(t)) x^{T}(t) P_i x(t)$$

Fonction non quadratique⁸

$$V(x(t)) = x^{T}(t) \left(\sum_{i=1}^{r} \mu_{i}(z(t)) P_{i} \right)^{-1} x(t)$$

▶ Cas discret : calculer la $\Delta V(x(t))$ entre deux instants non consécutifs 9

$$\Delta_k V(x(t)) = V(x(t+k)) - V(x(t))$$

^{7.} Tanaka, Hori, Wang, A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems, *IEEE Tr. Fuzzy Systems*, 11(4), 582-589, 2003

^{8.} Guerra, Vermeiren, LMI-based relaxed non quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, *Automatica*, 40, 823-829, 2004

^{9.} Kruszewski, Wang, Guerra., Nonquadratic stabilization conditions for a class of uncertain non-linear discrete-time TS fuzzy models: A new approach, *IEEE Tr. Automatic Control*, 53(2), 606-611, 2008

Quelques raffinements : mieux que $M_{ij} < 0 \Rightarrow \sum_{i} \sum_{i} M_{ij} < 0$

▶ Factorisation des termes en $\mu_i \mu_i^{10 11}$

$$\frac{1}{r-1} \mathit{M}_{ii} + \frac{1}{2} (\mathit{M}_{ij} + \mathit{M}_{ji}) < 0$$

^{10.} Tanaka, Ikeda, Wang, Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs, IEEE Tr. Fuzzy Systems, 6(2), 250-265, 1998

^{11.} Tuan, Apkarian, Narikiyo et Yamamoto, Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design, IEEE Tr. Fuzzy Systems, 9(2), 324-332, 2001

^{12.} Sala, Arino, Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem, Fuzzy Sets and Systems, 158, 2671-2686, 2007 13. F. Delmotte, Guerra, Ksantini, Continuous Takagi-Sugeno's models: reduction of the number

of LMI conditions in various fuzzy control design technics. IEEE Tr. Fuzzy Systems. 15(3), 426-438. 2007

Quelques raffinements : mieux que $M_{ij} < 0 \Rightarrow \sum_{i} \sum_{i} M_{ij} < 0$

▶ Factorisation des termes en $\mu_i \mu_i^{10 11}$

$$\frac{1}{r-1}M_{ii}+\frac{1}{2}(M_{ij}+M_{ji})<0$$

▶ Idem, mais après multiplication par $\left(\sum_{i=1}^{r} \mu_i(z(t))\right)^{p}$ 12

^{10.} Tanaka, Ikeda, Wang, Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs, IEEE Tr. Fuzzy Systems, 6(2), 250-265, 1998

^{11.} Tuan, Apkarian, Narikiyo et Yamamoto, Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design, IEEE Tr. Fuzzy Systems, 9(2), 324-332, 2001

^{12.} Sala, Arino, Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem, Fuzzy Sets and Systems, 158, 2671-2686, 2007 13. F. Delmotte, Guerra, Ksantini, Continuous Takagi-Sugeno's models: reduction of the number

of LMI conditions in various fuzzy control design technics. IEEE Tr. Fuzzy Systems. 15(3), 426-438. 2007

Quelques raffinements : mieux que $M_{ij} < 0 \Rightarrow \sum_i \sum_i M_{ij} < 0$

▶ Factorisation des termes en $\mu_i \mu_i$ 10 11

$$\frac{1}{r-1}M_{ii}+\frac{1}{2}(M_{ij}+M_{ji})<0$$

- ▶ Idem, mais après multiplication par $\left(\sum_{i=1}^{r} \mu_i(z(t))\right)^{p}$ 12
- Ajout de variables LMI supplémentaires pour découpler A_i et P_j ¹³ (comme en switché (de Oliveira et. al., 1999) ou (Daafouz et. al., 2002))

^{10.} Tanaka, Ikeda, Wang, Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs, *IEEE Tr. Fuzzy Systems*, 6(2), 250-265, 1998

^{11.} Tuan, Apkarian, Narikiyo et Yamamoto, Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design, *IEEE Tr. Fuzzy Systems*, 9(2), 324-332, 2001

^{12.} Sala, Arino, Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem, *Fuzzy Sets and Systems*, 158, 2671-2686, 2007

13. F. Delmotte, Guerra, Ksantini, Continuous Takagi-Sugeno's models: reduction of the number

of LMI conditions in various fuzzy control design technics, IEEE Tr. Fuzzy Systems, 15(3), 426-438, 2007

Concaténation de relations dynamiques et statiques 14

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = C_{\mu}x(t) + D_{\mu}u(t) \\ u(t) = K_{\mu}y(t) \end{cases}$$

^{14.} K. Tanaka, Ohtake, Wang, A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions, *IEEE Tr. Fuzzy Systems*, 15(3), 333-341, 2007

^{15.} Mozelli, Palhares, Souza, Mendes, A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, *Information Sciences*, 179, 1149-1162, 2009

Concaténation de relations dynamiques et statiques 14

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = C_{\mu}x(t) + D_{\mu}u(t) \\ u(t) = K_{\mu}y(t) \end{cases} \Rightarrow \underbrace{\begin{bmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\begin{pmatrix} \dot{x}(t) \\ \dot{u}(t) \\ \dot{y}(t) \end{pmatrix}}_{E} = \begin{bmatrix} A_{\mu} & B_{\mu} & 0 \\ 0 & -I & K_{\mu} \\ C_{\mu} & D_{\mu} & -I \end{bmatrix} \begin{pmatrix} x(t) \\ u(t) \\ y(t) \end{pmatrix}$$

$$\text{avec } V(t) = \bar{x}^{T}(t) P E \bar{x}(t) = x^{T}(t) P_{11}x(t)$$

^{14.} K. Tanaka, Ohtake, Wang, A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions, IEEE Tr. Fuzzy Systems, 15(3), 333-341, 2007

^{15.} Mozelli, Palhares, Souza, Mendes, A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems. Information Sciences. 179, 1149-1162. 2009

Concaténation de relations dynamiques et statiques ¹⁴

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = C_{\mu}x(t) + D_{\mu}u(t) \\ u(t) = K_{\mu}y(t) \end{cases} \Rightarrow \underbrace{\begin{bmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\begin{pmatrix} \dot{x}(t) \\ \dot{u}(t) \\ \dot{y}(t) \end{pmatrix}}_{E} = \begin{bmatrix} A_{\mu} & B_{\mu} & 0 \\ 0 & -I & K_{\mu} \\ C_{\mu} & D_{\mu} & -I \end{bmatrix} \begin{pmatrix} x(t) \\ u(t) \\ y(t) \end{pmatrix}$$

avec
$$V(t) = \bar{x}^T(t)PE\bar{x}(t) = x^T(t)P_{11}x(t)$$

Augmentation de l'état par sa dérivée 15

$$0 > \begin{pmatrix} \dot{x}(t) \\ x(t) \end{pmatrix}^{T} \underbrace{\begin{bmatrix} 0 & P \\ P & 0 \end{bmatrix}}_{=\dot{V}(x(t))} \begin{pmatrix} \dot{x}(t) \\ x(t) \end{pmatrix}$$

^{14.} K. Tanaka, Ohtake, Wang, A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions, *IEEE Tr. Fuzzy Systems*, 15(3), 333-341, 2007

^{15.} Mozelli, Palhares, Souza, Mendes, A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, *Information Sciences*, 179, 1149-1162, 2009

Concaténation de relations dynamiques et statiques ¹⁴

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = C_{\mu}x(t) + D_{\mu}u(t) \\ u(t) = K_{\mu}y(t) \end{cases} \Rightarrow \underbrace{\begin{bmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\begin{pmatrix} \dot{x}(t) \\ \dot{u}(t) \\ \dot{y}(t) \end{pmatrix}}_{E} = \begin{bmatrix} A_{\mu} & B_{\mu} & 0 \\ 0 & -I & K_{\mu} \\ C_{\mu} & D_{\mu} & -I \end{bmatrix} \begin{pmatrix} x(t) \\ u(t) \\ y(t) \end{pmatrix}$$

avec
$$V(t) = \bar{x}^T(t)PE\bar{x}(t) = x^T(t)P_{11}x(t)$$

Augmentation de l'état par sa dérivée 15

$$0 > \begin{pmatrix} \dot{x}(t) \\ x(t) \end{pmatrix}^{T} \underbrace{\left(\begin{bmatrix} 0 & P \\ P & 0 \end{bmatrix} \right)}_{=\dot{V}(x(t))} + \underbrace{\begin{bmatrix} M_{1} \\ M_{2} \end{bmatrix} \begin{bmatrix} -I & A_{\mu} \end{bmatrix} + \begin{bmatrix} -I \\ A_{\mu} \end{bmatrix} \begin{bmatrix} M_{1}^{T} & M_{2}^{T} \end{bmatrix}}_{=0} \begin{pmatrix} \dot{x}(t) \\ x(t) \end{pmatrix}$$

^{14.} K. Tanaka, Ohtake, Wang, A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions, *IEEE Tr. Fuzzy Systems*, 15(3), 333-341, 2007

^{15.} Mozelli, Palhares, Souza, Mendes, A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, *Information Sciences*, 179, 1149-1162, 2009

Concaténation de relations dynamiques et statiques ¹⁴

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = C_{\mu}x(t) + D_{\mu}u(t) \\ u(t) = K_{\mu}y(t) \end{cases} \Rightarrow \underbrace{\begin{bmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\begin{pmatrix} \dot{x}(t) \\ \dot{u}(t) \\ \dot{y}(t) \end{pmatrix}}_{E} = \begin{bmatrix} A_{\mu} & B_{\mu} & 0 \\ 0 & -I & K_{\mu} \\ C_{\mu} & D_{\mu} & -I \end{bmatrix} \begin{pmatrix} x(t) \\ u(t) \\ y(t) \end{pmatrix}$$

avec
$$V(t) = \bar{x}^T(t)PE\bar{x}(t) = x^T(t)P_{11}x(t)$$

Augmentation de l'état par sa dérivée 15

$$0 > \begin{pmatrix} \dot{x}(t) \\ x(t) \end{pmatrix}^{T} \underbrace{\left(\begin{bmatrix} 0 & P \\ P & 0 \end{bmatrix} \right)}_{=\dot{V}(x(t))} + \underbrace{\begin{bmatrix} M_{1} \\ M_{2} \end{bmatrix} \begin{bmatrix} -I & A_{\mu} \end{bmatrix} + \begin{bmatrix} -I \\ A_{\mu} \end{bmatrix} \begin{bmatrix} M_{1}^{T} & M_{2}^{T} \end{bmatrix} \right)}_{=0} \begin{pmatrix} \dot{x}(t) \\ x(t) \end{pmatrix}$$

- introduire des degrés de liberté
- ► découpler / linéariser K_i et P_i
- 14. K. Tanaka, Ohtake, Wang, A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions, *IEEE Tr. Fuzzy Systems*, 15(3), 333-341, 2007
- 15. Mozelli, Palhares, Souza, Mendes, A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, *Information Sciences*, 179, 1149-1162, 2009

Section 3

Estimation d'état de MM

Introduction aux multimodèles

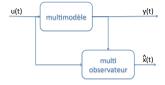
Stabilité, contrôle, observation de MM

Estimation d'état de MM

Principe de base Estimation des MM à VPNM Estimation conjointe état / paramètres Quelques remarques

Tolérance aux défauts

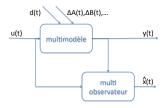
Conclusion



► Objectif:

- \rightarrow reconstruire l'état du système x(t)
- ightarrow connaissant l'entrée u(t), la sortie y(t) et un modèle les liant

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i x(t) + B_i u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_i(z(t)) (D_i x(t) + D_i u(t)) \end{cases}$$

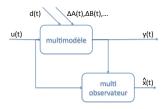


► Objectif:

- \rightarrow reconstruire l'état du système x(t)
- \rightarrow connaissant l'entrée u(t), la sortie y(t) et un modèle les liant

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(z(t))((A_{i} + \Delta A_{i}(t))x(t) + (B_{i}\Delta B_{i}(t))u(t) + F_{i}d(t)...) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(z(t))((C_{i} + \Delta C_{i}(t))x(t) + (D_{i}\Delta D_{i}(t))u(t) + G_{i}d(t)...) \end{cases}$$

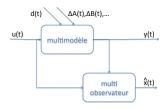
- Difficultés habituelles :
 - → perturbations, incertitudes de modèle, entrées inconnues



- ▶ Objectif :
 - \rightarrow reconstruire l'état du système x(t)
 - \rightarrow connaissant l'entrée u(t), la sortie y(t) et un modèle les liant

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(x(t))(A_{i}x(t) + B_{i}u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(x(t))(C_{i}x(t) + D_{i}u(t)) \end{cases}$$

- Difficultés habituelles :
 - → perturbations, incertitudes de modèle, entrées inconnues
- ► Difficultés propres aux MM :
 - → variables de décision non mesurables (VDNM)



- ▶ Objectif :
 - \rightarrow reconstruire l'état du système x(t)
 - \rightarrow connaissant l'entrée u(t), la sortie y(t) et un modèle les liant

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(x(t))(A_{i}x(t) + B_{i}u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(x(t))(C_{i}x(t) + D_{i}u(t)) \end{cases}$$

- ▶ Difficultés habituelles :
 - → perturbations, incertitudes de modèle, entrées inconnues
- ► Difficultés propres aux MM :
 - → variables de décision non mesurables (VDNM)
- ► Méthode :
 - \rightarrow fonction de Lyapunov de $e = (x \hat{x})$ et écriture LMI

► MM à observer, avec z(t) mesurable

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(A_{i}x(t) + B_{i}u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(C_{i}x(t) + D_{i}u(t)) \end{cases}$$

Estimation d'état de MM : principe de base

► MM à observer, avec z(t) mesurable

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(A_{i}x(t) + B_{i}u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(C_{i}x(t) + D_{i}u(t)) \end{cases}$$

▶ Un multi-observateur

$$\begin{cases} \dot{\hat{x}}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i \hat{x}(t) + B_i u(t) + L_i(y(t) - \hat{y})) \\ \hat{y}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (C_i \hat{x}(t) + D_i u(t)) \end{cases}$$

gains L_i à trouver afin que $\hat{x}(t) \rightarrow x(t)$

Estimation d'état de MM : principe de base

▶ MM à observer, avec z(t) mesurable

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(A_{i}x(t) + B_{i}u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(C_{i}x(t) + D_{i}u(t)) \end{cases}$$

▶ Un multi-observateur

$$\begin{cases} \dot{\hat{x}}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i \hat{x}(t) + B_i u(t) + L_i(y(t) - \hat{y})) \\ \hat{y}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (C_i \hat{x}(t) + D_i u(t)) \end{cases}$$

gains L_i à trouver afin que $\hat{x}(t) \rightarrow x(t)$

► Erreur d'estimation $e(t) = (x(t) - \hat{x}(t))$

$$\dot{e}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_i(z(t)) \mu_j(z(t)) (A_i - L_i C_j) e(t)$$

Estimation d'état de MM : principe de base

► MM à observer, avec z(t) mesurable

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(A_{i}x(t) + B_{i}u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_{i}(z(t))(C_{i}x(t) + D_{i}u(t)) \end{cases}$$

Un multi-observateur

$$\begin{cases} \dot{\hat{x}}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (A_i \hat{x}(t) + B_i u(t) + L_i(y(t) - \hat{y})) \\ \hat{y}(t) = \sum_{i=1}^{r} \mu_i(z(t)) (C_i \hat{x}(t) + D_i u(t)) \end{cases}$$

gains L_i à trouver afin que $\hat{x}(t) \rightarrow x(t)$

► Erreur d'estimation $e(t) = (x(t) - \hat{x}(t))$

$$\dot{e}(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_{i}(z(t)) \mu_{j}(z(t)) (A_{i} - L_{i}C_{j}) e(t)$$

▶ Conditions suffisantes à la décroissance de $V(e(t)) = e^{T}(t)Pe(t)$

$$(PA_i + \overline{L}_iC_j) + (PA_i + \overline{L}_iC_j)^T < 0$$
, pour $1 \le i, j \le r$
 $L_i = P^{-1}\overline{L}_i$, pour $1 < i < r$

 MM dont les FA dépendent de l'état x(t) (fréquent lorsque le MM est obtenu par transformation polytopique)

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = Cx(t) + Du(t) \end{cases}, \text{ où } X_{\mu} = \sum_{i=1}^{r} \mu_{i}(x(t))X_{i}$$

 MM dont les FA dépendent de l'état x(t) (fréquent lorsque le MM est obtenu par transformation polytopique)

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = Cx(t) + Du(t) \end{cases}, \text{ où } X_{\mu} = \sum_{i=1}^{r} \mu_{i}(x(t))X_{i}$$

L'état est inconnu pour les FA de l'observateur → on utilise l'estimée de l'état au lieu de l'état

$$\begin{cases} \dot{\hat{x}}(t) = A_{\hat{\mu}}\hat{x}(t) + B_{\hat{\mu}}u(t) + L_{\hat{\mu}}(y(t) - \hat{x}(t))) \\ \hat{y}(t) = C\hat{x}(t) + Du(t) \end{cases}, \text{ où } X_{\hat{\mu}} = \sum_{i=1}^{r} \mu_{i}(\hat{x}(t))X_{i}$$

 MM dont les FA dépendent de l'état x(t) (fréquent lorsque le MM est obtenu par transformation polytopique)

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = Cx(t) + Du(t) \end{cases}, \text{ où } X_{\mu} = \sum_{i=1}^{r} \mu_{i}(x(t))X_{i}$$

L'état est inconnu pour les FA de l'observateur → on utilise l'estimée de l'état au lieu de l'état

$$\begin{cases} \dot{\hat{x}}(t) = A_{\hat{\mu}}\hat{x}(t) + B_{\hat{\mu}}u(t) + L_{\hat{\mu}}(y(t) - \hat{x}(t))) \\ \hat{y}(t) = C\hat{x}(t) + Du(t) \end{cases}, \text{ où } X_{\hat{\mu}} = \sum_{i=1}^{r} \mu_{i}(\hat{x}(t))X_{i}$$

▶ Écrire l'erreur d'estimation sous une forme exploitable

▶ Pour faciliter l'écriture de *e*(*t*), on ré-écrit le système sous la forme :

$$\dot{x}(t) = A_{\hat{\mu}}x(t) + B_{\hat{\mu}}u(t) + (A_{\mu} - A_{\hat{\mu}})x(t) + (B_{\mu} - B_{\hat{\mu}})u(t)$$

▶ Pour faciliter l'écriture de e(t), on ré-écrit le système sous la forme :

$$\dot{x}(t) = A_{\hat{\mu}}x(t) + B_{\hat{\mu}}u(t) + (A_{\mu} - A_{\hat{\mu}})x(t) + (B_{\mu} - B_{\hat{\mu}})u(t)$$

Les termes $(X_{\mu} - X_{\hat{\mu}})$ peuvent s'écrire comme des incertitudes

$$X_{\mu} - X_{\hat{\mu}} = \underbrace{\begin{bmatrix} X_1 & \dots & X_r \end{bmatrix}}_{M^X} \underbrace{\begin{bmatrix} \mu_1(x) - \mu_1(\hat{x}) & 0 \\ & \ddots & \\ 0 & & \mu_r(x) - \mu_r(\hat{x}) \end{bmatrix}}_{\Sigma^X(t)} \underbrace{\begin{bmatrix} I \\ I \end{bmatrix}}_{N^X}$$

▶ Pour faciliter l'écriture de *e*(*t*), on ré-écrit le système sous la forme :

$$\dot{x}(t) = A_{\hat{\mu}}x(t) + B_{\hat{\mu}}u(t) + (A_{\mu} - A_{\hat{\mu}})x(t) + (B_{\mu} - B_{\hat{\mu}})u(t)$$

Les termes $(X_{\mu} - X_{\hat{\mu}})$ peuvent s'écrire comme des incertitudes

$$X_{\mu} - X_{\hat{\mu}} = \underbrace{\begin{bmatrix} X_1 & \dots & X_r \end{bmatrix}}_{M^X} \underbrace{\begin{bmatrix} \mu_1(x) - \mu_1(\hat{x}) & 0 \\ & \ddots & \\ 0 & \mu_r(x) - \mu_r(\hat{x}) \end{bmatrix}}_{\Sigma^X(t)} \underbrace{\begin{bmatrix} f \\ \vdots \\ f \end{bmatrix}}_{N^X}$$

On a donc

$$A_{\mu} - A_{\hat{\mu}} = \Delta A(t) = M^A \Sigma^A(t) N^A$$

 $B_{\mu} - B_{\hat{\mu}} = \Delta B(t) = M^B \Sigma^B(t) N^B$

▶ Pour faciliter l'écriture de *e*(*t*), on ré-écrit le système sous la forme :

$$\dot{x}(t) = A_{\hat{\mu}}x(t) + B_{\hat{\mu}}u(t) + (A_{\mu} - A_{\hat{\mu}})x(t) + (B_{\mu} - B_{\hat{\mu}})u(t)$$

Les termes $(X_{\mu} - X_{\hat{\mu}})$ peuvent s'écrire comme des incertitudes

$$X_{\mu} - X_{\hat{\mu}} = \underbrace{\begin{bmatrix} X_1 & \dots & X_r \end{bmatrix}}_{M^X} \underbrace{\begin{bmatrix} \mu_1(x) - \mu_1(\hat{x}) & 0 \\ & \ddots & \\ 0 & \mu_r(x) - \mu_r(\hat{x}) \end{bmatrix}}_{\Sigma^X(t)} \underbrace{\begin{bmatrix} I \\ \vdots \\ I \end{bmatrix}}_{N^X}$$

On a donc

$$A_{\mu} - A_{\hat{\mu}} = \Delta A(t) = M^{A} \Sigma^{A}(t) N^{A}$$

$$B_{\mu} - B_{\hat{\mu}} = \Delta B(t) = M^{B} \Sigma^{B}(t) N^{B}$$

▶ Comme $0 \le \mu_i(x(t)) \le 1$ et $0 \le \mu_i(\hat{x}(t)) \le 1$, il vient :

$$(\Sigma^{A}(t))^{T}\Sigma^{A}(t) \leq I$$
 et $(\Sigma^{B}(t))^{T}\Sigma^{B}(t) \leq I$

 Le problème d'estimation de MM à VDNM, se ramène à celui d'un MM incertain avec des variables de décision mesurables

$$\dot{x}(t) = (A_{\hat{\mu}} + \Delta A(t))x(t) + (B_{\hat{\mu}} + \Delta B(t))u(t)$$

$$y(t) = Cx(t) + Du(t)$$

par l'observateur

$$\dot{\hat{x}}(t) = A_{\hat{\mu}}\hat{x}(t) + B_{\hat{\mu}}u(t) + L_{\hat{\mu}}(y(t) - \hat{y}(t))$$

 $\hat{y}(t) = C\hat{x}(t) + Du(t)$

 Le problème d'estimation de MM à VDNM, se ramène à celui d'un MM incertain avec des variables de décision mesurables

$$\dot{x}(t) = (A_{\hat{\mu}} + \Delta A(t))x(t) + (B_{\hat{\mu}} + \Delta B(t))u(t)$$

$$y(t) = Cx(t) + Du(t)$$

par l'observateur

$$\dot{\hat{x}}(t) = A_{\hat{\mu}}\hat{x}(t) + B_{\hat{\mu}}u(t) + L_{\hat{\mu}}(y(t) - \hat{y}(t))$$

 $\hat{y}(t) = C\hat{x}(t) + Du(t)$

On peut écrire le système augmenté :

$$\begin{pmatrix} \dot{e}(t) \\ \dot{x}(t) \end{pmatrix} = \begin{pmatrix} A_{\hat{\mu}} - L_{\hat{\mu}}C & \Delta A(t) \\ 0 & A_{\mu} \end{pmatrix} \begin{pmatrix} e(t) \\ x(t) \end{pmatrix} + \begin{pmatrix} \Delta B(t) \\ B_{\mu} \end{pmatrix} u(t)$$

 Le problème d'estimation de MM à VDNM, se ramène à celui d'un MM incertain avec des variables de décision mesurables

$$\dot{x}(t) = (A_{\hat{\mu}} + \Delta A(t))x(t) + (B_{\hat{\mu}} + \Delta B(t))u(t)$$

$$y(t) = Cx(t) + Du(t)$$

par l'observateur

$$\dot{\hat{x}}(t) = A_{\hat{\mu}}\hat{x}(t) + B_{\hat{\mu}}u(t) + L_{\hat{\mu}}(y(t) - \hat{y}(t))$$

 $\hat{y}(t) = C\hat{x}(t) + Du(t)$

On peut écrire le système augmenté :

$$\begin{pmatrix} \dot{e}(t) \\ \dot{x}(t) \end{pmatrix} = \begin{pmatrix} A_{\hat{\mu}} - L_{\hat{\mu}}C & \Delta A(t) \\ 0 & A_{\mu} \end{pmatrix} \begin{pmatrix} e(t) \\ x(t) \end{pmatrix} + \begin{pmatrix} \Delta B(t) \\ B_{\mu} \end{pmatrix} u(t)$$

▶ Et chercher les L_i qui minimisent le gain L_2 de u(t) vers e(t).

Fonction de Lyapunov de e(t) et x(t)

$$V(e,x) = e^{T}(t)P_1e(t) + x^{T}(t)P_2x(t)$$

avec
$$P_1 = P_1 > 0$$
 et $P_2 = P_2^T > 0$

▶ Gain \mathcal{L}_2 de u(t) vers e(t) borné si

$$\begin{pmatrix} \mathbb{S}(P_1A_{\hat{\mu}} - P_1L_{\hat{\mu}}C) + I & P_1\Delta A(t) & P_1\Delta B(t) \\ (P_1\Delta A(t))^T & \mathbb{S}(P_2A_{\mu}) & P_2B_{\mu} \\ (P_1\Delta B(t))^T & (P_2B_{\mu})^T & -\gamma^2 I \end{pmatrix} < 0$$

Fonction de Lyapunov de e(t) et x(t)

$$V(e, x) = e^{T}(t)P_{1}e(t) + x^{T}(t)P_{2}x(t)$$

avec
$$P_1 = P_1 > 0$$
 et $P_2 = P_2^T > 0$

► Gain L₂ de u(t) vers e(t) borné si

$$\begin{pmatrix} \mathbb{S}(P_1A_{\hat{\mu}} - P_1L_{\hat{\mu}}C) + I & P_1\Delta A(t) & P_1\Delta B(t) \\ (P_1\Delta A(t))^T & \mathbb{S}(P_2A_{\mu}) & P_2B_{\mu} \\ (P_1\Delta B(t))^T & (P_2B_{\mu})^T & -\gamma^2I \end{pmatrix} < 0$$

- Manipulations pour avoir des conditions suffisantes LMI :
 - \rightarrow séparer partie certaine / incertaine ($\triangle A(t)$ et $\triangle B(t)$)
 - \rightarrow majoration par : pour $\Delta^T(t)\Delta(t) < I$ et $\lambda > 0$

$$X^{\mathsf{T}}\Delta^{\mathsf{T}}(t)Y + Y^{\mathsf{T}}\Delta(t)X \leq \lambda X^{\mathsf{T}}X + \lambda^{-1}Y^{\mathsf{T}}Y$$

- → complément de Schur
- \rightarrow changement de variables $\bar{L}_i = P_1 L_i$
- → positivité des FA

Synthèse de multiobservateur pour MM à VDNM 16

Système MM à VDNM :
$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$
 Multi-observateur :
$$\begin{cases} \dot{\hat{x}}(t) = A_{\hat{\mu}}\hat{x}(t) + B_{\hat{\mu}}u(t) + L_{\hat{\mu}}(y(t) - \hat{y}(t))) \\ \hat{y}(t) = C\hat{x}(t) + Du(t) \end{cases}$$

L'erreur d'estimation d'état vérifie : $\int_0^\infty e^T(t)e(t)dt \le \gamma^2 \int_0^\infty u^T(t)u(t)dt$ s'il existe $P_1 = P_1^T > 0$, $P_2 = P_2^T > 0$, λ^A , λ^B et \bar{L}_i minimisant γ^2 s.c.

$$\begin{pmatrix} \mathbb{S}(P_1A_i \!\!-\!\! \bar{L}_iC) \!\!+\!\! I & 0 & 0 & P_1M_i^A & P_1M_i^B \\ 0 & \mathbb{S}(P_2A_i) \!\!+\!\! N^{AT}\lambda^AN^A & P_2B_i & 0 & 0 \\ 0 & (P_2B_i)^T & N^{BT}\lambda^BN^B \!-\! \gamma^2I & 0 & 0 \\ (P_1M^A)^T & 0 & 0 & -\lambda^AI & 0 \\ (P_1M^B)^T & 0 & 0 & 0 & -\lambda^BI \end{pmatrix} < 0$$

pour i = 1, ..., r. Les gains de l'observateur sont donnés par : $L_i = P_1^{-1} \bar{L}_i$.

Ichalal, Marx, Ragot, Maquin, State estimation of Takagi-Sugeno systems with unmeasurable

Cette approche se généralise

► MM à VDNM avec incertitudes / entrées inconnues additives

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(x(t)) (A_{i}x(t) + B_{i}u(t) + F_{i}d(t)) \\ y(t) = Cx(t) + Du(t) + Gd(t) \end{cases}$$

28/39

^{17.} Nagy-Kiss, Marx, Mourot, Schutz, Ragot, State estimation of two-time scale multiple models. Application to wastewater treatment plant, *Control Engineering Practice*, 19(11), 1354-1362, 2011

^{18.} Nagy-Kiss, Marx, Mourot, Schutz, Ragot, Observer design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs. Application to a wastewater treatment plant, *Journal of Process Control*, 21(7), 1105-1114, 2011

Cette approche se généralise

MM à VDNM avec incertitudes / entrées inconnues additives

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(x(t)) (A_{i}x(t) + B_{i}u(t) + F_{i}d(t)) \\ y(t) = Cx(t) + Du(t) + Gd(t) \end{cases}$$

► MM singuliers à VDNM avec entrées inconnues ¹⁷

$$\begin{cases} E\dot{x}(t) = \sum_{i=1}^{r} \mu_i(x(t)) \left(A_i x(t) + B_i u(t) + F_i d(t) \right) \\ y(t) = Cx(t) + Du(t) + Gd(t) \end{cases}$$

Séminaire COpHy, 26 / 06 / 2014

^{17.} Nagy-Kiss, Marx, Mourot, Schutz, Ragot, State estimation of two-time scale multiple models. Application to wastewater treatment plant, *Control Engineering Practice*, 19(11), 1354-1362, 2011

^{18.} Nagy-Kiss, Marx, Mourot, Schutz, Ragot, Observer design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs. Application to a wastewater treatment plant, *Journal of Process Control*, 21(7), 1105-1114, 2011

Cette approche se généralise

MM à VDNM avec incertitudes / entrées inconnues additives

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(x(t)) (A_{i}x(t) + B_{i}u(t) + F_{i}d(t)) \\ y(t) = Cx(t) + Du(t) + Gd(t) \end{cases}$$

MM singuliers à VDNM avec entrées inconnues ¹⁷

$$\begin{cases} E\dot{x}(t) = \sum_{i=1}^{r} \mu_{i}(x(t)) (A_{i}x(t) + B_{i}u(t) + F_{i}d(t)) \\ y(t) = Cx(t) + Du(t) + Gd(t) \end{cases}$$

► MM à VDNM avec incertitudes paramétriques ¹⁸

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_i(x(t)) \left((A_i + \Delta A_i(t)) x(t) + (B_i + \Delta B_i(t)) u(t) \right) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

^{17.} Nagy-Kiss, Marx, Mourot, Schutz, Ragot, State estimation of two-time scale multiple models. Application to wastewater treatment plant, *Control Engineering Practice*, 19(11), 1354-1362, 2011

^{18.} Nagy-Kiss, Marx, Mourot, Schutz, Ragot, Observer design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs. Application to a wastewater treatment plant, *Journal of Process Control*, 21(7), 1105-1114, 2011

 Représentation d'un système non linéaire à paramètres bornés variants dans le temps

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_i(x(t)) (A_i(\theta(t))x(t) + B_i(\theta(t))u(t)) \\ y(t) = Cx(t) \end{cases}$$

$$\theta_j(t) \in \left[\underline{\theta}_j \ \overline{\theta}_j\right] \qquad A_i(\theta(t)) = \overline{A}_i + \sum_{j=1}^n \theta_j(t) \overline{A}_{ij} \quad \text{et} \quad B_i(\theta(t)) = \overline{B}_i + \sum_{j=1}^n \theta_j(t) \overline{B}_{ij}$$

 Représentation d'un système non linéaire à paramètres bornés variants dans le temps

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_i(x(t)) (A_i(\theta(t))x(t) + B_i(\theta(t))u(t)) \\ y(t) = Cx(t) \end{cases}$$

$$\theta_j(t) \in \left[\underline{\theta}_j \ \overline{\theta}_j\right] \qquad A_i(\theta(t)) = \overline{A}_i + \sum_{j=1}^n \theta_j(t) \overline{A}_{ij} \quad \text{et} \quad B_i(\theta(t)) = \overline{B}_i + \sum_{j=1}^n \theta_j(t) \overline{B}_{ij}$$

lacktriangle Transformation polytopique appliquée à chaque $heta_j(t)$ borné

$$\theta_j(t) = \tilde{\lambda}_1(\theta_j(t))\overline{\theta_j} + \tilde{\lambda}_2(\theta_j(t))\underline{\theta_j}$$

 Représentation d'un système non linéaire à paramètres bornés variants dans le temps

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \mu_i(x(t)) (A_i(\theta(t))x(t) + B_i(\theta(t))u(t)) \\ y(t) = Cx(t) \end{cases}$$

$$heta_j(t) \in \left[\underline{\theta}_j \ \overline{\theta}_j\right] \qquad A_i(\theta(t)) = \overline{A}_i + \sum_{j=1}^n \theta_j(t) \overline{A}_{ij} \quad \text{et} \quad B_i(\theta(t)) = \overline{B}_i + \sum_{j=1}^n \theta_j(t) \overline{B}_{ij}$$

▶ Transformation polytopique appliquée à chaque $\theta_j(t)$ borné

$$\theta_j(t) = \tilde{\lambda}_1(\theta_j(t))\overline{\theta_j} + \tilde{\lambda}_2(\theta_j(t))\underline{\theta_j}$$

Écriture MM du système non linéaire à paramètres variants

$$\begin{cases} \dot{x}(t) = \sum_{i=1}^{r} \sum_{i=j}^{2^{n}} \mu_{i}(x(t)) \lambda_{j}(\theta(t)) (\mathcal{A}_{ij}x(t) + \mathcal{B}_{ij}u(t)) \\ y(t) = Cx(t) \end{cases}$$

Système non linéaire à paramètres variants

$$\begin{cases} \dot{x}(t) = \mathcal{A}_{\mu\lambda}x(t) + \mathcal{B}_{\mu\lambda}u(t) \\ y(t) = Cx(t) \end{cases}$$

Proche de MM à VDNM avec un état augmenté

$$\bar{x}^T(t) = \left[x^T(t) \ \theta^T(t)\right]$$

Système non linéaire à paramètres variants

$$\begin{cases} \dot{x}(t) = \mathcal{A}_{\mu\lambda}x(t) + \mathcal{B}_{\mu\lambda}u(t) \\ y(t) = Cx(t) \end{cases}$$

Proche de MM à VDNM avec un état augmenté

$$\bar{x}^T(t) = \left[x^T(t) \ \theta^T(t)\right]$$

Observateur proche d'une structure PI estimant état et paramètres

$$\begin{cases} \dot{\hat{x}(t)} = \mathcal{A}_{\hat{\mu}\hat{\lambda}}\hat{x}(t) + \mathcal{B}_{\hat{\mu}\hat{\lambda}}u(t) + \mathcal{L}_{\hat{\mu}\hat{\lambda}}(y(t) - \hat{y}(t)) \\ \dot{\hat{\theta}}(t) = -\alpha_{\hat{\mu}\hat{\lambda}}\hat{\theta} + \mathcal{K}_{\hat{\mu}\hat{\lambda}}(y(t) - \hat{t})) \\ \hat{y}(t) = \hat{C}x(t) \end{cases}$$

Séminaire COpHy, 26 / 06 / 2014

^{19.} Bezzaoucha, Marx, Maguin, Ragot, Nonlinear Joint State and Parameter Estimation: Application to a Wastewater Treatment Plant, Control Engineering and Practice, 21(10), 1377-1385, 2013 90 00

Système non linéaire à paramètres variants

$$\begin{cases} \dot{x}(t) = \mathcal{A}_{\mu\lambda}x(t) + \mathcal{B}_{\mu\lambda}u(t) \\ y(t) = Cx(t) \end{cases}$$

Proche de MM à VDNM avec un état augmenté

$$\bar{x}^T(t) = \left[x^T(t) \ \theta^T(t)\right]$$

Observateur proche d'une structure PI estimant état et paramètres

$$\begin{cases} \dot{x}(t) = \mathcal{A}_{\hat{\mu}\hat{\lambda}}\hat{x}(t) + \mathcal{B}_{\hat{\mu}\hat{\lambda}}u(t) + \mathcal{L}_{\hat{\mu}\hat{\lambda}}(y(t) - \hat{y}(t)) \\ \dot{\hat{\theta}}(t) = -\alpha_{\hat{\mu}\hat{\lambda}}\hat{\theta} + \mathcal{K}_{\hat{\mu}\hat{\lambda}}(y(t) - \hat{t})) \\ \hat{y}(t) = \hat{C}x(t) \end{cases}$$

Conditions LMI suffisantes à l'existence de l'observateur et détermination des gains $L_{\hat{n}\hat{\lambda}}$, $K_{\hat{n}\hat{\lambda}}$ et $\alpha_{\hat{n}\hat{\lambda}}$ ¹⁹

^{19.} Bezzaoucha, Marx, Maguin, Ragot, Nonlinear Joint State and Parameter Estimation: Application to a Wastewater Treatment Plant, Control Engineering and Practice, 21(±0), 1377-1385, 2013 🐇 🛷 🤉

Application à un modèle de station d'épuration à boues activées

$$\begin{cases} \dot{X}_{DCO}(t) = -\frac{1}{Y_h}[\varphi_1(t) + \varphi_2(t)] + (1 - f_p)(\varphi_4(t) + \varphi_5(t)) + D_1(t) \\ \dot{S}_O(t) = \frac{Y_h - 1}{Y_h}\varphi_1(t) + \frac{Y_a - 4.57}{Y_a}\varphi_3(t) + D_2(t) \\ \dot{S}_{NH}(t) = -i_{xb}[\varphi_1(t) + \varphi_2(t)] - \left[i_{xb} + \frac{1}{Y_a}\right]\varphi_3(t) + (i_{xb} - f_p i_{xp})[\varphi_4(t) + \varphi_5(t)] + D_3(t) \\ \dot{S}_{NO}(t) = \frac{Y_h - 1}{2.86Y_h}\varphi_2(t) + \frac{1}{Y_a}\varphi_3(t) + D_4(t) \\ \dot{X}_{BH}(t) = \varphi_1(t) + \varphi_2(t) - \varphi_4(t) + D_5(t) \\ \dot{X}_{BA}(t) = \varphi_3(t) - \varphi_5(t) + D_6(t) \end{cases}$$

Application à un modèle de station d'épuration à boues activées

$$\begin{cases} \varphi_{1}(t) = \mu_{h} \frac{X_{DCO}(t)}{K_{DCO} + X_{DCO}(t)} \frac{S_{O}(t)}{K_{OH} + S_{O}(t)} X_{BH}(t) \\ \varphi_{2}(t) = \mu_{h} \eta_{NOg} \frac{S_{DCO}(t)}{K_{DCO} + X_{DCO}(t)} \frac{S_{NO}(t)}{K_{NO} + S_{NO}(t)} \frac{K_{OH}}{K_{OH} + S_{O}(t)} X_{BH}(t) \\ \varphi_{3}(t) = \mu_{a} \frac{S_{NH}(t)}{K_{NH,A} + S_{NH}(t)} \frac{S_{O}(t)}{K_{O,A} + S_{O}(t)} X_{BA}(t) \\ \varphi_{4}(t) = b_{H} X_{BH}(t) \\ \varphi_{5}(t) = b_{A} X_{BA}(t) \\ D_{1}(t) = D_{in}(t) [X_{DCO,in}(t) - X_{DCO}(t)] \\ D_{2}(t) = D_{in}(t) [-S_{O}(t)] + Kq_{a}(t) [S_{O,sat} - S_{O}(t)] \\ D_{3}(t) = D_{in}(t) [S_{NH,in}(t) - S_{NH}(t)] \\ D_{4}(t) = D_{in}(t) [X_{BH,in}(t) - X_{BH}(t) + \frac{f_{r}(1 - f_{w})}{f_{r} + f_{w}} X_{BH}(t)] \\ D_{6}(t) = D_{in}(t) [-X_{BA}(t) + \frac{f_{r}(1 - f_{w})}{f_{r} + f_{w}} X_{BA}(t)] \end{cases}$$

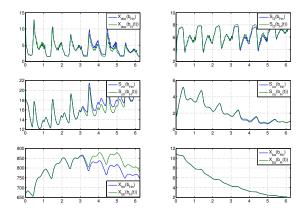
Application à un modèle de station d'épuration à boues activées

- ▶ n = 6 variables d'état
- 4 variables de prémisse

$$\begin{cases} z_{1}(x(t), u(t)) = \frac{q_{in}(t)}{V} \\ z_{2}(x(t), u(t)) = \frac{\kappa_{DCO}(t)}{\kappa_{DCO} + \lambda_{DCO}(t)} \frac{S_{O}(t)}{\kappa_{OH} + S_{O}(t)} \\ z_{3}(x(t), u(t)) = \frac{\kappa_{DCO}(t)}{\kappa_{DCO} + \lambda_{DCO}(t)} \frac{S_{NO}(t)}{\kappa_{NO} + S_{NO}(t)} \frac{\kappa_{OH}}{\kappa_{OH} + S_{O}(t)} \\ z_{4}(x(t), u(t)) = \frac{1}{\kappa_{OA} + S_{O}(t)} \frac{S_{NH}(t)}{\kappa_{NH,A} + S_{NH}(t)} X_{BA}(t) \end{cases}$$

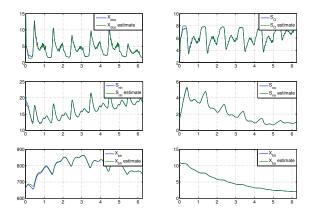
- 1 paramètre borné variant dans le temps
- $r = 2^4 \times 2^1 = 32$ sous-modèles

Application à un modèle de station d'épuration à boues activées



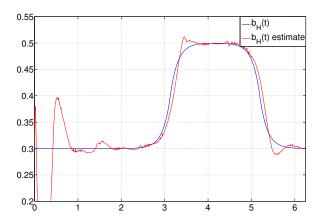
Effet du paramètre variant (sans : bleu / avec : vert)

Application à un modèle de station d'épuration à boues activées



Estimation des variables d'état (réelles : bleu / estimées : vert)

Application à un modèle de station d'épuration à boues activées



Estimation du paramètre variant (réel : bleu / estimé : rouge)

Estimation d'état : quelques remarques

- L'accent n'a pas encore été mis sur la minimisation du conservatisme des LMIs
 - utilisation de fonctions de Lyapunov multiples
 - relaxation de (Tuan et. al., 2001) pour limiter le nombre de LMIs
 - approche descripteur pour limiter le nombre de LMIs et éviter les termes non linéaires

Estimation d'état : quelques remarques

- L'accent n'a pas encore été mis sur la minimisation du conservatisme des LMIs
 - utilisation de fonctions de Lyapunov multiples
 - relaxation de (Tuan et. al., 2001) pour limiter le nombre de LMIs
 - approche descripteur pour limiter le nombre de LMIs et éviter les termes non linéaires
- Extensions existantes des résultats présentés
 - Observateur PI (PMI): augmentation de l'état pour estimer les entrées inconnues constantes (ou pas)
 - utilisation de l'état estimé pour la commande
 - utilisation des estimées de l'état et des entrées inconnues pour le diagnostic et / ou la commande tolérante aux fautes

Section 4

Tolérance aux défauts

Introduction aux multimodèles

Stabilité, contrôle, observation de MM

Estimation d'état de MM

Tolérance aux défauts

Suivi de référence malgré un défaut Retour de sortie malgré une commande saturée

Conclusion

Suivi de référence malgré un défaut

Objectifs et difficulté

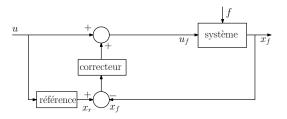
suivi de trajectoire d'un modèle de référence :

$$\dot{x}_r(t) = A^r x_r(t) + B^r u(t)$$

• en présence de défaut capteur et actionneur :

$$\begin{cases} \dot{x}_{f}(t) = A_{\mu}x_{f}(t) + B_{\mu}u_{f}(t) + G_{\mu}f(t) \\ y_{f}(t) = C_{\mu}x_{f}(t) + D_{\mu}u_{f}(t) + W_{\mu}f(t) \end{cases}$$

Principe



Suivi de référence malgré un défaut

Objectifs et difficulté

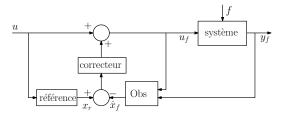
suivi de trajectoire d'un modèle de référence :

$$\dot{x}_r(t) = A^r x_r(t) + B^r u(t)$$

• en présence de défaut capteur et actionneur :

$$\begin{cases} \dot{x}_f(t) = A_{\mu} x_f(t) + B_{\mu} u_f(t) + G_{\mu} f(t) \\ y_f(t) = C_{\mu} x_f(t) + D_{\mu} u_f(t) + W_{\mu} f(t) \end{cases}$$

Principe



Suivi de référence malgré un défaut

Objectifs et difficulté

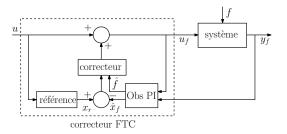
suivi de trajectoire d'un modèle de référence :

$$\dot{x}_r(t) = A^r x_r(t) + B^r u(t)$$

• en présence de défaut capteur et actionneur :

$$\begin{cases} \dot{x}_f(t) = A_{\mu} x_f(t) + B_{\mu} u_f(t) + G_{\mu} f(t) \\ y_f(t) = C_{\mu} x_f(t) + D_{\mu} u_f(t) + W_{\mu} f(t) \end{cases}$$

Principe



Suivi de référence malgré un défaut

Objectifs et difficulté

suivi de trajectoire d'un modèle de référence :

$$\dot{x}_r(t) = A^r x_r(t) + B^r u(t)$$

en présence de défaut capteur et actionneur :

$$\begin{cases} \dot{x}_f(t) = A_{\mu} x_f(t) + B_{\mu} u_f(t) + G_{\mu} f(t) \\ y_f(t) = C_{\mu} x_f(t) + D_{\mu} u_f(t) + W_{\mu} f(t) \end{cases}$$

Principe

réguler l'erreur de poursuite et compenser le défaut

$$u_f(t) = u(t) + K_{\mu}(x_r - \hat{x}_f) + K_{\mu}^f \hat{f}(t)$$

► P(M)IO pour estimer l'état en défaut et le défaut :

$$\begin{cases} \dot{\hat{x}}_{f}(t) = A_{\mu}\hat{x}_{f}(t) + B_{\mu}u_{f}(t) + G_{\mu}\hat{f}(t) + L_{\mu}^{1}(y_{f}(t) - \hat{y}_{f}(t)) \\ \dot{\hat{f}}(t) = L_{\mu}^{2}(y_{f}(t) - \hat{y}_{f}(t)) - \hat{f}(t) \\ (\cdots = \cdots) \\ \hat{y}_{f}(t) = C_{\mu}\hat{x}_{f}(t) + D_{\mu}u_{f}(t) + W_{\mu}\hat{f}(t) \end{cases}$$

Séminaire COpHy, 26 / 06 / 2014

34/39

^{20.} Bouarar, Marx, Maquin, Ragot, Fault tolerant control for uncertain Takagi-Sugeno systems by trajectory tracking: a descriptor approach, *IET Control Theory and Applications*, 4(14), 1793-1805, 2013.

Suivi de référence malgré un défaut

Objectifs et difficulté

suivi de trajectoire d'un modèle de référence :

$$\dot{x}_r(t) = A^r x_r(t) + B^r u(t)$$

en présence de défaut capteur et actionneur :

$$\begin{cases} \dot{x}_f(t) = A_{\mu} x_f(t) + B_{\mu} u_f(t) + G_{\mu} f(t) \\ y_f(t) = C_{\mu} x_f(t) + D_{\mu} u_f(t) + W_{\mu} f(t) \end{cases}$$

Principe

réguler l'erreur de poursuite et compenser le défaut

$$u_f(t) = u(t) + K_{\mu}(x_r - \hat{x}_f) + K_{\mu}^f \hat{f}(t)$$

► P(M)IO pour estimer l'état en défaut et le défaut :

$$\begin{cases} \dot{\hat{x}}_{f}(t) = A_{\mu}\hat{x}_{f}(t) + B_{\mu}u_{f}(t) + G_{\mu}\hat{f}(t) + L_{\mu}^{1}(y_{f}(t) - \hat{y}_{f}(t)) \\ \dot{\hat{f}}(t) = L_{\mu}^{2}(y_{f}(t) - \hat{y}_{f}(t)) - \hat{f}(t) \\ (\cdots = \cdots) \\ \hat{y}_{f}(t) = C_{\mu}\hat{x}_{f}(t) + D_{\mu}u_{f}(t) + W_{\mu}\hat{f}(t) \end{cases}$$

- approche descripteur
- minimisation du gain \mathcal{L}_2 de f vers les erreurs de poursuite et d'estimation 20

34/39

^{20.} Bouarar, Marx, Maquin, Ragot, Fault tolerant control for uncertain Takagi-Sugeno systems by trajectory tracking: a descriptor approach, *IET Control Theory and Applications*, 4(14), 1793-1805, 2013.

- Objectif et difficulté
 - Stabiliser le système MM

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t) \\ y(t) = C_{\mu}x(t) + D_{\mu}u(t) \end{cases}$$

▶ par un retour de sortie

"statique" ou dynamique
$$u(t)=K_{\mu}y(t) \qquad \qquad \dot{x}_{c}(t)=A_{\mu}^{c}x_{c}(t)+B_{\mu}^{c}y(t) \\ u(t)=C_{\mu}^{c}x_{c}(t)+D_{\mu}^{c}y(t)$$

Objectif et difficulté

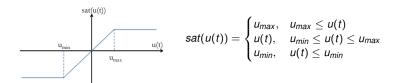
Stabiliser le système MM

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}sat(u(t)) \\ y(t) = C_{\mu}x(t) + D_{\mu}sat(u(t)) \end{cases}$$

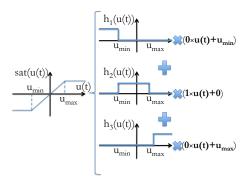
par un retour de sortie

"statique" ou dynamique
$$u(t)=K_{\mu}y(t) \qquad \qquad \dot{x}_{\mathcal{C}}(t)=A_{\mu}^{\mathcal{C}}x_{\mathcal{C}}(t)+B_{\mu}^{\mathcal{C}}y(t) \\ u(t)=C_{\mu}^{\mathcal{C}}x_{\mathcal{C}}(t)+D_{\mu}^{\mathcal{C}}y(t)$$

malgré une commande saturée



- Démarche : représentation MM de la saturation
 - Commande saturée scalaire sous forme polytopique :



- Démarche : représentation MM de la saturation
 - Commande saturée scalaire sous forme polytopique :

$$sat(u(t)) = \sum_{i=1}^{3} h_i(u(t))(\lambda_i u(t) + \gamma_i)$$

où les $h_i(u(t))$ sont positives et de somme unitaire

- Démarche : représentation MM de la saturation
 - Commande saturée scalaire sous forme polytopique :

$$sat(u(t)) = \sum_{i=1}^{3} h_i(u(t))(\lambda_i u(t) + \gamma_i)$$

où les $h_i(u(t))$ sont positives et de somme unitaire

Généralisation au cas d'une commande saturée vectorielle

$$sat(u(t)) = \sum_{i=1}^{3^{n_u}} h_i(u(t))(\Lambda_i u(t) + \Gamma_i)$$

- ▶ **Démarche** : représentation MM de la saturation
 - Commande saturée scalaire sous forme polytopique :

$$sat(u(t)) = \sum_{i=1}^{3} h_i(u(t))(\lambda_i u(t) + \gamma_i)$$

où les $h_i(u(t))$ sont positives et de somme unitaire

Généralisation au cas d'une commande saturée vectorielle

$$sat(u(t)) = \sum_{i=1}^{3^{nu}} h_i(u(t))(\Lambda_i u(t) + \Gamma_i)$$

Le système MM avec commande saturée s'écrit

$$\begin{cases} \dot{x}(t) = \sum_{j=1}^{r} \mu_j(z) (A_j x(t) + B_j sat(u(t))) \\ y(t) = \sum_{j=1}^{r} \mu_j(z) (C_j x(t) + D_j sat(u(t))) \end{cases}$$

- ▶ Démarche : représentation MM de la saturation
 - Commande saturée scalaire sous forme polytopique :

$$sat(u(t)) = \sum_{i=1}^{3} h_i(u(t))(\lambda_i u(t) + \gamma_i)$$

où les $h_i(u(t))$ sont positives et de somme unitaire

Généralisation au cas d'une commande saturée vectorielle

$$sat(u(t)) = \sum_{i=1}^{3^{nu}} h_i(u(t))(\Lambda_i u(t) + \Gamma_i)$$

Le système MM avec commande saturée s'écrit

$$\begin{cases} \dot{x}(t) = \sum_{j=1}^{r} \sum_{i=1}^{3^{n_u}} \mu_j(z) h_i(u) (A_i x(t) + B_j(\Lambda_i u(t) + \Gamma_i)) \\ y(t) = \sum_{j=1}^{r} \sum_{i=1}^{3^{n_u}} \mu_j(z) h_i(u) (C_x(t) + D_j(\Lambda_i u(t) + \Gamma_i)) \end{cases}$$

- Démarche : représentation MM de la saturation
 - Commande saturée scalaire sous forme polytopique :

$$sat(u(t)) = \sum_{i=1}^{3} h_i(u(t))(\lambda_i u(t) + \gamma_i)$$

où les $h_i(u(t))$ sont positives et de somme unitaire

Généralisation au cas d'une commande saturée vectorielle

$$sat(u(t)) = \sum_{i=1}^{3^{n_u}} h_i(u(t))(\Lambda_i u(t) + \Gamma_i)$$

Le système MM avec commande saturée s'écrit

$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}\Lambda_{h}u(t) + B_{\mu}\Gamma_{h} \\ y(t) = C_{\mu}x(t) + D_{\mu}\Lambda_{h}u(t) + D_{\mu}\Gamma_{h} \end{cases}$$

- Démarche : approche descripteur
 - ► Retour de sortie statique saturé

système :
$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}(\Lambda_{h}u(t) + \Gamma_{h}) \\ y(t) = C_{\mu}x(t) + D_{\mu}(\Lambda_{h}u(t) + \Gamma_{h}) \end{cases}$$
 correcteur : $u(t) = K_{\mu}y(t)$

- Démarche : approche descripteur
 - Retour de sortie statique saturé

système :
$$\begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}(\Lambda_{h}u(t) + \Gamma_{h}) \\ y(t) = C_{\mu}x(t) + D_{\mu}(\Lambda_{h}u(t) + \Gamma_{h}) \end{cases}$$
 correcteur : $u(t) = K_{\mu}y(t)$

Système en boucle fermée sous forme descripteur :

$$\begin{pmatrix} I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}(t) \\ \dot{u}(t) \\ \dot{y}(t) \end{pmatrix} = \begin{pmatrix} A_{\mu} & B_{\mu}\Lambda_{h} & 0 \\ 0 & -I & K_{\mu} \\ C_{\mu} & D_{\mu}\Lambda_{h} & -I \end{pmatrix} \begin{pmatrix} x(t) \\ u(t) \\ y(t) \end{pmatrix} + \begin{pmatrix} B_{\mu}\Gamma_{h} \\ 0 \\ D_{j}\Gamma_{h} \end{pmatrix}$$

- Démarche : approche descripteur
 - ► Retour de sortie dynamique saturé

Système en boucle fermée sous forme descripteur :

- Démarche : approche descripteur
 - Retour de sortie dynamique saturé

$$\text{syst\`eme}: \begin{cases} \dot{x}(t) = A_{\mu}x(t) + B_{\mu}(\Lambda_{h}u(t) + \Gamma_{h}) \\ y(t) = C_{\mu}x(t) + D_{\mu}(\Lambda_{h}u(t) + \Gamma_{h}) \end{cases}$$

$$\text{correcteur}: \begin{cases} \dot{x}_{c}(t) = A_{\mu}^{c}x_{c}(t) + B_{\mu}^{c}y(t) \\ u(t) = C_{\mu}^{c}x_{c}(t) + D_{\mu}^{c}y(t) \end{cases}$$

Système en boucle fermée sous forme descripteur :

- ► Dans les deux cas ²¹ :
 - $ightarrow E\dot{x}_a(t) = \tilde{A}_{\mu h} x_a(t) + \tilde{B}_{\mu h}$
 - \rightarrow fonction de Lyapunov de l'état augmenté x_a
 - ightarrow conditions LMI suffisantes pour la convergence dans $\mathcal{B}(0,eta)$
 - \rightarrow minimisation du rayon β

Pour finir...

- ► Approche multimodèle
 - + représentation générale de systèmes linéaires
 - + prise en compte unifiée de saturation, paramètres variants, etc
 - + utilisation d'outils issus du linéaire
 - conservatisme des conditions suffisantes évaluées aux sommets
 - problème des écritures équivalentes qui ne le sont pas

Pour finir...

- ► Approche multimodèle
 - + représentation générale de systèmes linéaires
 - + prise en compte unifiée de saturation, paramètres variants, etc
 - + utilisation d'outils issus du linéaire
 - conservatisme des conditions suffisantes évaluées aux sommets
 - problème des écritures équivalentes qui ne le sont pas
- ► Pistes à suivre
 - réduction du conservatisme
 - ▶ diagnostic / FTC sans estimation
 - croisement avec d'autres communautés : LPV, switché, etc

Approche multimodèle pour l'estimation et la tolérance aux fautes

Marx

Centre de Recherche en Automatique de Nancy UMR 7039 CNRS - Université de Lorraine

